
The State of Machine Learning in Outcomes Prediction
of Transsphenoidal Surgery: A Systematic Review
Darrion B. Yang1 Alexander D. Smith1 Emily J. Smith1� Anant Naik1� Mika Janbahan1�

Charee M. Thompson2 Lav R. Varshney3 Wael Hassaneen1,4

1Carle Illinois College of Medicine, University of Illinois Urbana
Champaign, Champaign, Illinois, United States

2Department of Communication, University of Illinois Urbana
Champaign, Champaign, Illinois, United States

3Department of Electrical and Computer Engineering, University of
Illinois Urbana Champaign, Urbana, Illinois, United States

4Department of Neurosurgery, Carle Foundation Hospital, Urbana,
Illinois, United States

J Neurol Surg B Skull Base 2023;84:548–559.

Address for correspondence Wael Hassaneen, MD, PhD,
610 N Lincoln Avenue, Urbana, IL 61801, United States
(e-mail: wael.mostafa@carle.com).

Keywords

► transsphenoidal
surgery

► pituitary adenomas
► machine learning
► artificial intelligence
► Cushing’s disease
► acromegaly

Abstract The purpose of this analysis is to assess the use of machine learning (ML) algorithms in
the prediction of postoperative outcomes, including complications, recurrence, and
death in transsphenoidal surgery. Following Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines, we systematically reviewed all papers
that used at least one ML algorithm to predict outcomes after transsphenoidal surgery.
We searched Scopus, PubMed, and Web of Science databases for studies published
prior to May 12, 2021. We identified 13 studies enrolling 5,048 patients. We extracted
the general characteristics of each study; the sensitivity, specificity, area under the
curve (AUC) of the ML models developed as well as the features identified as important
by the ML models. We identified 12 studies with 5,048 patients that included ML
algorithms for adenomas, three with 1807 patients specifically for acromegaly, and five
with 2105 patients specifically for Cushing’s disease. Nearly all were single-institution
studies. The studies used a heterogeneous mix of ML algorithms and features to build
predictive models. All papers reported an AUC greater than 0.7, which indicates clinical
utility. ML algorithms have the potential to predict postoperative outcomes of trans-
sphenoidal surgery and can improve patient care. Ensemble algorithms and neural
networks were often top performers when compared with other ML algorithms.
Biochemical and preoperative features were most likely to be selected as important
by ML models. Inexplicability remains a challenge, but algorithms such as local
interpretable model–agnostic explanation or Shapley value can increase explainability
of ML algorithms. Our analysis shows that ML algorithms have the potential to greatly
assist surgeons in clinical decision making.
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Introduction

The pituitary gland is a multifaceted center of secretion for
multiple hormones located in the sella turcica of the sphe-
noid bone, inferior to the hypothalamus and optic chiasm.
Masses that arise from the pituitary gland, called pituitary
adenomas, comprise 10 to 15% of intracranial masses.1 They
are classified based on the primary cell origin, which, if the
adenoma is functional, dictates the type of hormone secret-
ed. Alternatively, pituitary adenomas that do not secrete
significant amounts of hormones are considered nonfunc-
tional and make up 28 to 37% of pituitary adenomas. Pitui-
tary adenomas that are 10mm or larger are classified as
macroadenomas and those that are less than 10mm are
microadenomas.1 Symptoms of pituitary adenomas are pri-
marily caused by mass effect and/or alterations in pituitary
hormone secretion. Symptoms of mass effect include head-
aches and bitemporal hemianopsia, given its location near
the optic chiasm. For functional pituitary adenomas, addi-
tional symptoms depend on the hormones secreted. Prolac-
tinomas are the most common, constituting 40 to 57% of
pituitary adenomas. Symptoms related to these include
galactorrhea, decreases in libido and infertility, gynecomas-
tia in males, and oligo- or amenorrhea in females.1 Growth
hormone (GH)-secreting pituitary adenomas comprise 11 to
13% of pituitary adenomas and can cause symptoms of
acromegaly in adults and gigantism in children.1 One to
two percent of pituitary adenomas are adrenocorticotropic
hormone (ACTH)-secreting, causing symptoms of Cushing’s
disease.1 Much less common are pituitary adenomas that
secrete follicle-stimulating hormone, luteinizing hormone
(LH), or thyroid-stimulating hormone.

Management of pituitary adenomas depends on the size
and function of the tumor and includes both medical and
surgical treatment. Prolactinomas are commonly managed
with dopamine agonists, such as bromocriptine and caber-
goline, which inhibit release of prolactin.1 Hormonal ther-
apy, however, is less effective for other types of functional
pituitary adenomas. Regardless of type, pituitary adeno-
mas that are causing mass effect often need to be surgi-
cally removed or debulked. Transsphenoidal surgery (TSS)
is the mainstay of treatment for pituitary masses and other
skull base diseases. It involves the insertion of either a
microscope or an endoscope through an incision in the
sphenoid bone and then into the skull base.2 Adverse
events in TSS are uncommon, with mortality rates below
1%, but the complication rates can be significant.3,4 Com-
plications include cranial nerve injury, vision loss,
sinusitis, cerebrospinal fluid (CSF) leaks, infections, bleed-
ing, diabetes insipidus (DI), syndrome of inappropriate
secretion of antidiuretic hormone, or recurrence of
tumors.2

Clinicians must be able to determine good surgical can-
didates prior to recommending surgery. This is often diffi-
cult, as the management of sellar masses may require the
expertise of neurosurgeons, otolaryngologists, endocrinolo-
gists, along with the assistance of ophthalmologists, oncol-
ogists, and neurologists.5 The ability to quantify individual

risk factors has been elusive and few studies have demon-
strated links betweenpreoperative factors and postoperative
complications due to the relative complexity of these dis-
eases. A systematic review by Lobatto et al found that old age
was the only risk factor for overall complications and intra-
ventricular extension of the tumor was the only risk factor
for CSF leakage, though it was noted that many of the studies
had a high risk of bias and lacked clear definitions for
postoperative complications.6

Recently, machine learning (ML) algorithms have become
increasingly utilized in medical research to find patterns in
health-related data and develop predictions based on those
patterns.7,8 There exist two classifications of ML algorithms:
supervised and unsupervised, with some classes of algo-
rithms capable of both. SupervisedML trains on data that has
already been labeled and classified. If the algorithm has
achieved an acceptable accuracy, it can be applied to new,
unseen data. Examples of supervised ML algorithms include
random forest (RF), boosted algorithms, K-nearest neighbor
(KNN), decision tree (DT), naïve bayes (NB), and support
vectormachines (SVM). UnsupervisedML, on the other hand,
trains on data that is unlabeled, and includes dimensionality
reduction, anomaly detection, and clustering algorithms.
Neural networks (NN), including deep learning NN, can be
used for both supervised and unsupervised learning,
depending on their type. The unsupervised algorithms
may identify attributes within the data that are important
in developing predictions.9

ML algorithms can be particularly helpful in clinical prac-
tice for issues where there are unclear predictive risk factors,
such as for outcomes after TSS. Several papers have been
published recently using ML to predict outcomes in TSS.10–12

The application of ML to predictive modeling in TSS is novel,
with a small but significant number of papers being published
in recent years. In this present systematic review, we compile
the known research on the application of ML for TSS, and we
investigate the features used by theseML algorithms to predict
postoperative outcomes, looking at which are deemed most
predictive of poor postoperative outcomes.

Methods

Searches
Our methodology for the systematic review adhered to
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines (►Fig. 1) with the study
protocol included in an open access database (PROSPERO ID:
CRD42021254552). We searched for studies using ML to
predict outcomes after TSS on Scopus, PubMed, and Web
of Science databases on May 12, 2021. The search terms are
listed in the ►Supplemental Materials (available in the
online version).

Studies were first identified using the search criteria de-
tailed in the►Supplemental Materials (available in the online
version). After duplicates were removed, the title and abstract
of the remaining 55 papers were reviewed by three research-
ers (DY, ES, MJ) using inclusion and exclusion criteria. When
therewasdisagreement, theauthors discussed their reasoning
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and if an agreement could not be reached, the final decision
was determined by majority rule (⅔ vote).

Inclusion/Exclusion Criteria
To be included, papers had to report on studies using specific
ML algorithms to analyze preoperative, intraoperative, or
postoperative patient data to predict postoperative out-
comes of TSS in humans. TSS for pituitary adenoma, Cush-
ing’s syndrome, acromegaly, and craniopharyngioma were
included. Postsurgical outcomes of remission, delayed re-
mission, CSF leak, pituitary insufficiency, injury, and death
were also included. Studies must have used at least one ML
algorithm with analyses that include sensitivity, specificity,
and area under the curve (AUC). Exclusion criteria include
studies that were reviews, meta-analyses, case series, and
case reports; papers written in languages other than English;
and papers without full text available.

Screening
Thirteen papers met the criteria and were further divided by
how the disease was classified in each paper: functional
pituitary adenomas specifically causing Cushing’s disease or
acromegaly, nonfunctional pituitary adenomas, all classes of
pituitary adenomas unspecified by type, and all classes of
functional pituitary adenomas unspecified by type.

Data and Information Extraction
Due to the heterogeneous nature of the papers found, we
determined that a quantitative analysis was inappropriate
and opted for a qualitative synthesis. Characteristics of each

study were extracted, including number of patients, the
source of the patient population, the ML algorithms, and
the types of pathology investigated, to obtain a general view
of the kinds of studies that are being developed. All of the
algorithms used by the papers as well as their corresponding
AUC values, sensitivities, and specificities were extracted.
Finally, the features that were analyzed by theML algorithms
and their importance as determined by the researchers, the
algorithms themselves or post hoc with explanation algo-
rithms were collected to investigate which features are most
important and which have not been well investigated. The
data was extracted by three investigators independently.

Results

Description of Studies
►Table 1 includes information on number of patients, source
of data, type of algorithm used, and type of disease investi-
gated. Single-institution studies were the most common,
with only one out of 13 studies being multiinstitutional.
All 13 used retrospective data. Five papers focused specifi-
cally on Cushing’s, three on acromegaly, two on functional
pituitary adenoma, one on nonfunctional pituitary adenoma,
and twoon all types of pituitary adenoma. In summary, these
studies included 5,048 participants. A total of 24 algorithms
were used throughout the papers, with many papers sharing
certain algorithms, but no papers using the same set of ML
algorithms. Similarly, each paper investigated multiple fea-
tures to train the ML algorithms, with no paper using the
exact same combination of features.

Pituitary Adenoma, All Types
Two papers looked at all pituitary adenomas, regardless of
type. They both looked at a specific outcome postsurgically,
namely CSF leak and hyponatremia. Staartjes et al investi-
gated the utility of ML models at predicting CSF leak post-
surgically after TSS resection of pituitary adenomas.11 They
examined cases in 154 patients, out of which 45 had CSF
leaks documented. They divided their patients into training
(70%), validation (15%), and testing (15%) groups. A deep NN-
based prediction model they constructed using the training
set was able to identify 88% of patients in the testing set
accurately, with AUC of 0.84. Age, prior surgery, and high
suprasellar Hardy grade were found to be highly positively
predictive and clear gross resectability was found to be
negatively predictive via a polarized correlation plot con-
structed by the researchers. In contrast, Voglis et al investi-
gated the prediction of hyponatremia in postoperative
patients using four ML algorithms.13 Using data from 207
patients, they divided the data into training (75%) and testing
(25%) sets and were able to obtain an AUC of 0.843, 81.8%
sensitivity, and 77.5% specificity with the boosted general-
ized linear machine (GLMBoost). The algorithm identified
preoperative serum prolactin to be the most important
feature, followed by preoperative insulin-like growth factor
1 (IGF-1), body mass index (BMI), and preoperative serum
sodium level. In both models, the degree of classification
accuracy was found to be adequate in predicting the risk of

Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow diagram for the systematic review of machine
learning studies on outcomes prediction in transsphenoidal surgery.
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postoperative complications with preoperative data
elements.

Functional Pituitary Adenoma
Two studies evaluated additional functional outcomes for
patients with functional pituitary adenomas. Hollon et al
investigated 400 consecutive pituitary surgeries for the
prediction of postoperative outcomes such as functional
DI, hyponatremia, length of stay in the hospital, and death
using four ML algorithms.14 They divided the data into
training (75%) and testing (25%) sets. Using logistic regres-
sion with elastic net they obtained a predictive accuracy of
87% and AUC of 0.87. The SVMmodel they used identified six
features as important: lowest perioperative sodium, age,
BMI, highest perioperative sodium, Cushing’s disease, and
male sex. Shahrestani et al investigated 348 patients, 81 of
whomhad defined suboptimal outcomes, including remnant
tumor, nonimprovement of preoperative visual deficit, and
transient DI.15 They divided their population into training
(60%), validation (20%), and testing (20%) sets. Using a
multivariate analysis, they identified features to be used in
their multilayered NN, which achieved an overall accuracy of
87.1%, sensitivity of 89.5%, and an AUC of 0.917.

Nonfunctional Pituitary Adenoma
Machado et al investigated the utility of radiomics and
convolutional NNs in predicting recurrence of nonfunctional
pituitary adenomas after surgical resection, in 54 patients.16

They used five ML algorithms, with RF achieving the highest
AUC and accuracy of 0.962 and 92.3%, respectively, demon-
strating the efficacy of three-dimensional (3D) radiomics.

Cushing’s Disease Secondary to Functional Pituitary
Adenoma
Our search found a total of five papers investigating the use of
ML in outcomes prediction for TSS treatment of Cushing’s
disease caused by pituitary adenoma. The papers investigated
prediction of remission, delayed remission, and recurrence.

Prediction of Remission in Cushing’s Disease
Zhang et al investigated prediction of immediate remission
postsurgically, defined asmorning serum cortisol lower than
5 µg/dL or 24-hour urinary free cortisol (UFC) lower than 20
µg/dL postsurgically.17 Their analysis included 1,045 partic-
ipants, with a total of 766 exhibiting immediate remission.
The data was split into training (80%) and testing (20%) sets.
In total, nine ML models were used, and they investigated 11
features. The stacking ensemble algorithm was found to be
the most effective, with an AUC of 0.743, a sensitivity of
80.4%, and a specificity of 58.9%. They found that four
features were ideal to prevent overfitting, with the most
accurate model being constructed from invasion of the
cavernous sinus on preoperative magnetic resonance imag-
ing (MRI), followed by tumor size, initial operation (as
opposed to reoperation), and preoperative ACTH.

Zoli et al investigated rates of both short- and long-term
remission.18 They defined short-term remission as resolution
ofhypersecretion1 to 6monthsafter surgery. Their studyused

151 patient cases, with 88.1% exhibiting immediate remission
after surgery. They divided their data into training (80%) and
testing (20%) sets. In total they used 7 algorithms and assessed
a total of 24 features. For remission, thetopalgorithmusedwas
SVM with an AUC of 1.0, and a sensitivity and specificity of
100%. Themodel identified age and female sex, tumor visuali-
zation at preoperative MRI, size less than 10mm, low Hardy–
Wilson grade, histological confirmation of ACTH adenoma,
pre-/postoperative hypopituitarism, and presurgical medical
treatment as important positive prognostic values. Knosp
grade, cavernous sinus invasion, and persistent ACTH hyper-
secretion were negative prognostic features.

Prediction of Delayed Remission in Cushing’s Disease
Zoli et al also investigatedpredictionof long-termremission,18

defined as long-term control of hypersecretion after surgery
with additional medical treatment, such as repeated surgery,
radiation, or continued medical treatment. Their analysis
included 151 patients, with 13.9% exhibiting remission after
surgery and additional treatment. In total they used 7 algo-
rithms and assessed a total of 24 features. The top algorithm
used was a gradient boosted machine with an AUC of 0.783, a
sensitivity of 95.7%, and a specificity of 37.5%. Features were
ranked on an AUC-based individual variable importance mod-
el. With this method, younger age and female sex, tumor
visualization at preoperative MRI, size less than 10mm, low
Hardy–Wilson grade, histological confirmation of ACTH ade-
noma, pre-/postoperative hypopituitarism, and presurgical
medical treatment were identified as positive prognostic
features.Knospgrade, cavernoussinus invasion, andpersistent
ACTH hypersecretion were negative prognostic features.

Fan et al investigated spontaneous delayed remission,19

defined as achievement of remission later than 1 week
postsurgery but within 1 year. In total, 201 patients were
selected due to nonremission immediately postsurgery, and
88 patients achieved delayed remission. They divided their
data into training (80%) and testing (20%) sets. In total, the
paper assessed 5 algorithms and 18 features. Recursive
feature elimination was used to determine the best features
to use. Of the five algorithms, adaptive boosting (Adaboost)
was most effective, with an AUC of 0.7619, a sensitivity of
70%, and a specificity of 66.67%.

All 18 features were used in the final model, and permu-
tation importance and local interpretable model–agnostic
explanation (LIME) were used to provide weights to each of
the features. In addition, LIME was also used to create a
graphical interpretation of the relative prognostic values of
each of the features investigated to improve interpretability
by physicians. The most important feature was preoperative
24-hour UFC, with a weight of 0.136, and postoperative
immediate morning serum cortisol with a weight of 0.132.
Other important features include age, BMI, and disease
course, which is the length of time between first disease
incidence and treatment.

Prediction of Recurrence in Cushing’s Disease
Liu et al investigated recurrence, defined as immediate
remission postsurgery with morning cortisol levels below
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5 µg or 24-hour UFC below20 g at 7 days follow-up. After this,
recurrencemust occur either clinically or biochemically.20Of
the 354 patients surveyed, 13% had recurrence. They used a
fivefold cross-validation for training and testing. The paper
assessed 17 features with seven ML algorithms. The most
effective algorithmwas RF, with an AUC of 0.779. They found
that the models performed best with eight features selected.
The eight features that produced the most accurate model
were age, postoperative morning ACTH nadir, postoperative
morning serum cortisol nadir, preoperative morning ACTH
level, disease course, preoperative serum cortisol level, pre-
operative 24-hour UFC level, and postoperative 24-hour UFC
nadir.

Fan et al also investigated recurrence.21 Of the 354
patients surveyed, 13% had recurrence. They divided their
data into training (80%) and testing (20%) sets. The paper
assessed 17 features with 10 ML algorithms. A Factorization
MachineNeural Network (DeepFM)was found to be themost
effective, with an AUC of 0.884 and the lowest log loss value,
at 0.256. The top five features were ACTH level, age, postop-
erative morning serum cortisol nadir, disease course, and
postoperative 24-hour UFC nadir level. They also used a LIME
to provide weights and relative negative and positive prog-
nostic values of each of the features as a visual display to
enhance physician interpretability.

Acromegaly Secondary to Functional Pituitary
Adenoma
Our search found a total of three papers investigating the use
of ML in predicting the outcomes of TSS treatment for
acromegaly secondary to gonadotropin-releasing hormone
and GH-secreting pituitary adenoma. The papers investigat-
ed prediction of delayed remission and recurrence.

Dai et al investigated delayed remission in acromegaly
after surgical treatment, defined as remission occurring after
6 months follow-up.22 They had 306 patients, with 55
(17.97%) exhibiting delayed remission following surgery.
The patients were randomly assigned to the training set
and test set andwere included in a studyof sixML algorithms
using 18 clinical features. They found that extreme gradient
boost (XGBoost) was themost effective in predicting delayed
remission with an AUC of 0.8349 and sensitivity of 0.8889.
Using a LIME, the authors identified 6-month postoperative
IGF-1 and nadir growth hormone (nGH) were the most
predictive of delayed remission.

Fan et al investigated remission, defined as “3 months
after TSS, either nadir GH<0.4 ng/ mL after OGTT [oral
glucose tolerance test] or GH<1.0 ng/mL in a random sample
that is associated with a normal IGF-1 level (age and gender
matched)”12. Their analysis used 668 patient cases with 349
(52.2%) exhibiting remission with good response to TSS.
Patients were randomly divided into a training set including
534 patients (80%) and a test set including 134 (20%). Twelve
preoperative features were studied, and six supervised ML
algorithms were trained and gradient-boosting decision tree
(GBDT) was shown to be most effective in predicting post-
surgical outcome, with AUC of 0.8555, sensitivity of 85.25%,
and specificity of 84.83%. The authors noted that the GBDT

algorithmwas inexplicable, meaning that the features calcu-
late the outputs without clinical reason, and therefore,
despite increased predictive value, may be less clinically
valuable, especially when explaining results to patients.
Using a classifier-specific feature evaluator, individual fea-
tures were ranked on importance, with GH value and Knosp
grade being the most important features.

Qiao et al investigated recurrence of acromegaly, defined
as “off-medication GH levels (nadir GH<0.4 µg/L during an
oral glucose tolerance test, and/or random GH<1.0 µg/L) or
normalized IGF-1 (< 1) at 6-month follow-up after sur-
gery.”23 The authors used 833 patient cases with 434
(52.1%) expressing endocrine remission at 6 months after
surgery as the training set. The algorithmswere prospective-
ly validated using 151 additional patients. Partial and full
models were constructed with 15 preoperative and 20
perioperative features, respectively. The partial model that
had the best results was an ensemble of penalized logistic
regression, SVM, gradient boost machine, and NN, with AUC
of 0.803, sensitivity of 90.3%, and specificity of 53.1%. The full
model found to have the best results was a gradient boost
machine, with AUC of 0.888, sensitivity of 90.5%, and speci-
ficity of 69.6%. Using Shapley additive explanations, the
authors identified postoperative day 1 GH level, total resec-
tion, and Knosp grade as the most important features.

Discussion

The use of ML for outcome prediction in TSS is a recent
innovation in the field of neurosurgery. Outcomes for TSS
currently rely on population statistics and focus less on the
outcomes expected for individuals despite heterogeneity
within the population at risk for pituitary adenomas.14 Since
2018, several studies on TSS have assessed the predictability
of patient outcomes based on preoperative, intraoperative,
and postoperative outcomes (►Table 1). Some show promise
in outcomes prediction on an individual basis with algo-
rithms approaching AUC of 1 as seen in Zoli et al, indicating
perfect accuracy in predicting the outcomes for a given
patient population.18

According to a 2015 study, the outcomes of TSS between
2008 and 2011 found postoperative complication rates that
included 12.5% of patients experiencing central DI, 11.4% of
patients experiencing electrolyte abnormalities, 8.1% of
patients experiencing some level of neurological deficit,
4.2% of patients experiencing cranial nerve II or III deficits,
and 0.4% of patients experiencing mortality.24 Prior to sur-
gery, neurosurgeons currently do not have methods to
predict outcomes of surgery, especially specific outcomes
such as delayed remission, recurrence, or CSF leaks.

Outcomes prediction inTSSwould greatly benefit thefield
for a variety of reasons. First, predictions of unfavorable
outcomes prior to surgery would help the surgeon and
patient determine the best next steps in care of a pituitary
adenoma. Having the means of predicting patient outcomes
using features such as patient demographics, tumor charac-
teristics, and surgery timing would be ideal for decision
making, particularly for patients with high-risk adenomas.
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Additionally, the outcomes predicted by these algorithms
could assist in the long-termplanning, care, andworkup for a
patient, providing additional information such as expected
costs, insurance coverage, new surgical protocols, and addi-
tional assurance of favorable outcomes.

Because several variables associated with pituitary ade-
nomas may be characterized by a combination of linear and
nonlinear functions, the problem of preoperative outcomes
prediction appears to be an excellent application for ML. For
diagnostic purposes, ML algorithms will have to be highly
effective in predicting outcomes, especially surgical out-
comes such as central DI, electrolyte changes, neurological
deficits, visual changes, mortality, and more, to provide
proper planning for the future for patients. AUC is generally
used as away to compare ML algorithm accuracy by describ-
ing what percentage of the outcomes are typically correctly
predicted by the algorithm. An AUC of 0.7 to 0.8 is usually
considered acceptable for diagnosis, and 0.9 and above is
considered excellent.25 All of the papers in our study were
able to surpass the 0.7 AUC benchmark needed, and thus
would be useful in clinical practice (►Fig. 2).

Using ML to predict an individual’s expected outcomes
after TSSwould be preferred to population statistics because
the population of patients with pituitary adenomas requir-
ing surgical consult is extremely diverse, and predicting
outcomes based on features carefully selected for the algo-

rithms and indications would be better applied to individual
cases. In determining the ideal model for a given pituitary
indication, many algorithms have been tested on retrospec-
tive patient data, and more research is currently underway.

Algorithms and Algorithm Selection
Algorithm selection is vital to successfully creating ML
models. We found that most papers used multiple ML
algorithms and compared the outputs of each to find the
most effective. Though therewasmuch heterogeneity among
the papers, over half used LR and RF,with Adaboost, XGBoost,
and GBDTused by eight, six, and six studies, respectively. No
papers used unsupervised learning methods to determine
outcomes. This is unsurprising, as the outcomes of all the
patients were already known. In general, unsupervised
algorithms are useful for categorizing uncategorized data,
analyzing images or visualizing data, and work best with
large datasets. They have shown promise in both the fields of
dermatology and pathology.26,27 Deep learning methods in
particular work well for large, raw datasets.28 The studies
investigated in our analysis used relatively small, labeled
datasets, which makes supervised learning the ideal option.

Some consistent trends emerged from our data showing
that, by far, ensemblemethodsweremost often top perform-
ers in the studies investigated, with nine studies identifying
them as most predictive. Ensemble methods allow for

Fig. 2 Achieved area under the curve (AUC) of top performing algorithm in each study, with algorithm used, compared with the 0.7 and 0.9 AUC
benchmarksofbeingconsideredclinicallyuseful orhighlypredictive, respectively.AdaBoost, adaptiveboosting;DNN,deepneuralnetworks;GBDT,gradient
boostingdecision tree;GBM,gradient boostedmachine; boostedmachine; GLMBoost, boostedgeneralized linearmachine; LR-EN, logistic regressionmodel
with elastic net; logistic regression; MNN, multilayered neural network; RF, random forest; XGBoost, extreme gradient boost.

Journal of Neurological Surgery—Part B Vol. 84 No. B6/2023 © 2022. The Author(s).

The State of Machine Learning in Outcomes Prediction of TSS Yang et al.554



multiple differentML algorithms ormultiple instances of the
same ML algorithm to be combined into a single algorithm
allowing for better predictive performance than could be
obtained from one source alone.8 They have been used in the
prediction of diabetes and cardiovascular disease,29 predic-
tion of disease course in multiple sclerosis,30 prediction of
fetal macrosomia,31 mortality prediction,32 and the diagno-
sis of breast cancer.33 Although ensemble models are pow-
erful, their use of multiple individual algorithms and then
further compilation of their results can cause these algo-
rithms to be resource intensive.34 Clinicians and researchers
looking to use these algorithms will have to take this into
account if they wish to use them in practice or research.
Multiple ensemble methods exist, such as bagging, boosting,
or stacking methods. Bagging (or bootstrap aggregating)
refers to a specific way of creating small random samples
derived from a larger training set and feeding those smaller
randomized samples to multiple learning algorithms. One
such example of this is RF, which is a bagging algorithm that
uses the averaged outputs of multiple DTs to produce an
aggregated result that is more accurate than the sum of its
individual parts.34 RF was used by 77% of the papers we
investigated. It proved useful in a wide variety of applica-
tions, including prediction using 3D radiomics16 and predic-
tion of recurrence in Cushing’s disease.20

Boosted algorithmswere also highly effective in our study.
Boosting refers to a method where multiple weaker ML
models are trained on the same training set one after
another, with each subsequent model focusing on the mis-
takes the previous model made. A multitude of boosted
algorithms were used throughout the studies, with Ada-
Boost, XGBoost, and GBDT being the most common. Ada-
boost uses single split DTs as weak learners and evaluates the
efficacy of the individual DTs using an exponential loss
function. Gradient boosting is similar but is not limited to
using exponential loss as its method of grading individual
DTs.35XGBoost is an open-source gradient boosting software
that focuses on execution speed and accuracy.36 Overall,
boosting was found to be particularly effective in the predic-
tion of remission in acromegaly,12,23 with two of the papers
identifying boosted algorithms as their top algorithm. Stack-
ing is when the outputs of multiple ML algorithms are used
in parallel and compiled into a single result via some other
algorithm. Usually, linear regression is used in stacking to
compile the results of multiple algorithms. Stacking proved
to be useful in the prediction of early remission of both
Cushing’s17 and acromegaly.23

NNs are ML algorithms that are an older, well-known
technology in themedical field, having been used in research
for cancer detection and diagnosis for nearly 20 years, with
huge leaps being made in the complexity and predictive
ability of NNs during that time.37 Loosely inspired by the
neurons in a human brain, NNs utilize inputs that stimulate
neurons, which then go on to stimulate other neurons. In a
NN, the neurons are arranged in layers, with each neuron in a
layer communicating with certain neurons in the next layer.
Once an input is plugged into the algorithm, each neuronwill
analyze its input and will decide whether to send a signal

into the neurons in the layer below. Each layer then under-
goes a similar process with its individual neurons until it
reaches the final layer, where the output could be something
like a yes or no, or a specific category.38 NN’s have been
proven to be useful in the setting of high dimensional data,
such as imaging from radiomics and histology.28 However,
the papers included in this study show that they can also
perform well in categorical settings. They were found to be
highly effective in multiple fields, notably recurrence of
Cushing’s, where a factorization based NN was used,21 as
well as the prediction of CSF leaks, recurrence, progression
and hormonal nonremission in pituitary adenoma.15

Although the majority of high-performing ML algorithms
in our studywere ensemble or NN algorithms, the studieswe
looked at used a multitude of other algorithms as well, with
some even outperforming the ensemble or NNs to which
they were compared with. SVMs were found to be highly
accurate. They function by plotting all outcomes in some
multidimensional space and finding the best divider to
separate the outcomes. In a 2D plane, that divider can be a
line. In a 3D space, that divider would usually be a plane.
Subsequent data can then be plotted on the multidimen-
sional space and classified by where they fall relative to that
line.39 This algorithm was found to be effective in both
predicting early outcomes of pituitary surgery and 3D radio-
mics. SVMswere also identified asmost effective by Zoli et al
for the prediction of remission of Cushing’s disease.18 Logis-
tic regressionwas themost tested algorithm after RF, despite
it not being considered a proper ML algorithm. Rather it is
considered a statistical model. Christodoulou et al found that
there was no demonstrable difference in accuracy between
LR andMLmodels.40 In addition, it is simple and not resource
intensive to use, making it highly accessible.41 In our study,
LR performed well, often outperforming some of the ML
algorithmswhen tested against them. Hollon et al found that
LR, when combined with an elastic net, could outperform all
other algorithms including SVM and RF in the prediction of
postsurgical outcomes after TSS.14 Another notable advan-
tage it has is that it is explicable, meaning that its reasoning
behind its output is easily understandable by humans. Its
relative accuracy, ease of use, and interpretability justify its
inclusion in the majority of ML studies.

Amajor problemwithmostML algorithms is that they are
inexplicable, which reduces the trust that clinicians have in
the algorithm’s judgement. Inexplicability can be decom-
posed into two concepts: inscrutability and nonintuitive-
ness. Inscrutability is related to the ability of ML algorithms
to uncover relationships in data that are subtle and can result
in models that depend on the contributions of multiple
factors in ways that are exceedingly complex and impossible
for people to follow. Nonintuitiveness is defined as the
inability for statistical relationships between features and
outcomes to be understood. The relationships identified by
ML algorithms may not appear to have any intuitive expla-
nation, despite having a sound statistical basis.42 Some
researchers have focused on making the inexplicable ex-
plainable, while others have insisted that high stakes deci-
sions must be made using explicable functions. However,
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nearly every paper identified inexplicable algorithms as
most effective. Inexplicable algorithms include all ensemble
algorithms, SVM and NNs. Interpretable algorithms include
LR, GLM, LGAM, NB, and DTs. Multiple papers tackled this
problem, using various techniques to determine the impor-
tance of certain features to a certain algorithm. One method
that is used to explain suchML algorithms is LIME,whichwas
used in Fan et al 2021a,19 Fan et al 2021b,21 and Dai et al
2020.22 LIME is able to display the weight of each feature
used by the ML algorithm in its final prediction. Qiao et al
used a similar method called Shapley additive explanations,
which assigns an importance value to each feature used in a
prediction.23 Staartjes et al used a polarity correlation plot to
explain the outputs of its NN-based ML model.11 These
papers demonstrate that the field is beginning to move
past just algorithmic accuracy; translating these technolo-
gies into clinical practice requires that clinicians trust and
understand the decisions made by these algorithms.

Feature Selection
In our study, we also found that certain trends appeared in
the features that were selected identified as important.Many
of the features that were found to be important by the ML
algorithms were also proven to have associations with
postoperative outcome in the literature via traditional sta-
tistical methods. By far, biochemicalmeasures such as serum
concentrations of hormones were the most often deemed as
important (►Fig. 3). Biochemical measures were also the
most commonly tested features, likely because surveillance
of biochemical markers is a mainstay of treatment, making
the data readily available. Similarly, preoperative features
were also commonly investigated and commonly identified
as important (►Fig. 4). This is likely because biochemical
testing, imaging, and patient demographic data are usually
collected preoperatively. Intraoperative features are limited
to intraoperative histology, categorical determinations by
the surgeon, and other intraoperative events. Postoperative
imaging and biochemical tests are also done postsurgically,

but as the pathology is already diagnosed and treated,
usually less data are collected after the surgery. Other
important features included patient characteristics such as
sex and age and preoperative imaging results, such as evi-
dence of cavernous sinus invasion or Knosp grade. In addi-
tion, the papers noted that pituitary tumors are unique in
that they are often considered functioning, releasing hor-
mones that can result in serious systemic illnesses, further
modifying preoperative risk. In other tumors, location and
histology play an important role in prognosis, but for pitui-
tary masses, tumor morphology, location, patient features,
and other comorbidities can make patient selection and
outcome prediction extremely complex. This illustrates the
need for powerful models to assist in clinical decision
making.

Biochemical features have long been used to assess risk of
negative outcomes in patients after pituitary surgery. In
particular, DI, an important feature reported by Shahrestani
et al, is a known postoperative indicator of damage to the
pituitary gland, with increased damage resulting in more
severe DI. Poorly marginated or aggressive tumors tend to
result in more damage when they are removed and thus are
associated with poorer outcomes.43 Moreover, risk of recur-
rence or lackof remission of functional tumors postsurgically
has also been consistently linked to increased levels of
hormone after surgery.44–48 Though less research has been
done into the association of preoperative hormone levels
with postoperative outcomes, higher preoperative levels of
IGF-1 have been shown to be predictive of nonremission
postsurgically in acromegaly,49 and lower remission rates of
Cushing’s disease postoperatively were associated with
higher preoperative levels of cortisol.50 Nearly all the studies
we investigated rank pre- and postoperative hormone levels
as important features, with postoperative hormone levels
being more commonly reported as significant. Interestingly,
multiple papers in our study also noted hypopituitarism as a
positive predictive feature for remission,15,18 despite DI also
being a sign of poor postoperative outcome.

Fig. 3 Number of times a feature was mentioned by a study as important to their machine learning model, by type. See ►Supplementary

Material for list of individual features.
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Patient characteristics such as age and sex were also
commonly cited as important features in outcomes predic-
tion, with age being identified as the most significant.
Younger age has been correlated with decreased rates of
remission and increased rates of recurrence in both Cush-
ing’s50 and acromegaly.51 BMI was also commonly investi-
gated in the papers we included in our study. It is a
preoperative feature that is known to have a positive corre-
lation with postsurgical CSF leaks52 and a negative correla-
tion with postsurgical hyponatremia.53 Despite being tested
in nearly every study in this review, it was only identified as
an important feature in two studies looking at the specific
outcomes of CSF leak11 and postsurgical hyponatremia.13

Other features that were sometimes considered impor-
tant include preoperative imaging and history of previous
surgery or diagnosis. Preoperative imaging is always per-
formed prior to surgery, as an invasion of the cavernous sinus
makes pituitary tumors not fully resectable, which can lead
to nonremission, recurrence, and other poor outcomes post-
surgically.51,54 Preoperative images such as MRI can be
analyzed to estimate Knosp grade or Hardy–Wilson grade
which are both helpful in determining probability of cavern-
ous sinus invasion. Invasion of cavernous sinus on preopera-
tiveMRIwas found to be the singlemost important feature in
the prediction of immediate remission of Cushing’s dis-
ease,17 and Knosp grade was found to be highly important
in the prediction of remission of acromegaly.12,23

Limitations
The main limitation with this study was the limited quanti-
tative analysis possible given the heterogeneity of the studies
analyzed. In each study, different patient features were
collected from the medical record or prospective data collec-
tion process to predict outcomes. Because each study utilized
different variables to predict outcomes, a comparison across
the different algorithms was not possible, as it became
difficult to parse the difference between the strength of
the algorithm compared with the strength of the variables

utilized. For this reason, statistical analysis comparing dif-
ferent algorithms or features was not performed.

Another associated limitation of this study stems from the
weaknesses of the individual studies included. The studies
consideredwere regional cohort studies analyzing data from
primarily single centers. Given this, heterogeneity of the
collection approaches and the patient populations are im-
portant to consider. To overcome this heterogeneity, large
multiinstitutional studies ought to be considered for training
algorithms. This would allow a fair assessment of the perfor-
mance of algorithms thatmay not be robust on small datasets
but may be more accurately trained on less heterogeneous
datasets constructed.

Conclusion

ML has the potential to be used to predict postsurgical
outcomes in multiple applications of TSS. The studies were
highly heterogeneous in their definitions of outcomes, the
features used to train the ML algorithms, and the ML algo-
rithms used. Ensemble algorithms and NNs were found to be
highly effective in the development of ML models for out-
comes prediction of TSS. Features that have support in
literature are biochemical in nature, or include patient
characteristics tend to be useful features for ML programs
to use. Once this technology is transferred into the hands of
clinicians, it is certain to decrease complications rates and
help guide clinicians in clinical and patient-oriented decision
making.
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