
Domon Y et al. The novel gabapentinoid mirogabalin … Drug Res 2023; 73: 54–60 | © 2022. Thieme. All rights reserved.

ThiemeOriginal Article Thieme

Introduction
Voltage-gated calcium channels (VGCCs) consist of four subunits: 
the pore-forming α1 subunit and three auxiliary α2δ, β, and γ sub-
units [1]. The α2δ subunit has four distinct isoforms (i. e., α2δ-1, -2, 
-3, and -4), with the α2δ-1 subunit in particular playing important 
roles in several neurological disorders [2, 3]. For instance, the up-
regulation of α2δ-1 mRNA and protein has been reported in vari-
ous experimental animal models of neuropathic pain [4–15], an-
xiety [16], and epilepsy [17]. Transgenic mice with overexpression 
of the α2δ-1 subunit in neurons have been reported to show me-
chanical and thermal hypersensitivity [18] or epileptic seizures [19]. 
The α2δ-1 subunit is the molecular target for gabapentinoids such 

as gabapentin and pregabalin [20, 21], and pharmacological stud-
ies with α2δ mutant mice have demonstrated that the analgesic, 
anxiolytic, and anticonvulsant effects of gabapentinoids are medi-
ated via their specific binding to the α2δ-1 subunit rather than the 
α2δ-2 subunit [22–25]. Although the mechanism of action of 
gabapentinoids remains to be completely elucidated, it involves 
both direct modulation of calcium channel kinetics and inhibition 
of channel trafficking and expression, which result in the inhibition 
of calcium ion influx and excitatory synaptic transmission at syn-
aptic endings [26–28]. Furthermore, recent studies have suggest-
ed the additional mechanism of action of gabapentinoids based on 
novel roles of the α2δ-1 subunit, such as interaction with throm-
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AbStr Act

Gabapentinoids are specific ligands for the α2δ-1 subunit of 
voltage-gated calcium channels. This class of drugs, including 
gabapentin and pregabalin, exert various pharmacological ef-
fects and are widely used for the treatment of epilepsy, an-
xiety, and chronic pain. The mechanism of action of gabapen-
tinoids involves both direct modulation of calcium channel 
kinetics and inhibition of channel trafficking and expression, 
which contribute to the above pharmacological effects. In the 
present study, we investigated the effects of mirogabalin, a 
novel potent gabapentinoid, on expression levels of the α2δ-1 
subunit in the spinal dorsal horn in a rat model of spinal nerve 
ligation (SNL) as an experimental animal model for peripheral 
neuropathic pain. The neuropathic pain state was induced by 
SNL in male Sprague – Dawley rats. After the development of 
mechanical hypersensitivity, the animals received 10 mg/kg 
mirogabalin or vehicle orally for 5 consecutive days and were 
subjected to immunohistochemical analysis of α2δ-1 subunit 
expression in the spinal cord. In the SNL model rats, expression 
of the α2δ-1 subunit significantly increased in the spinal dorsal 
horn at the ipsilateral side of nerve injury, while mirogabalin 
inhibited this increase. In conclusion, the α2δ-1 subunit was 
upregulated in the spinal dorsal horn of SNL model rats, and 
repeated administration of mirogabalin inhibited this upregu-
lation. The inhibitory effect of mirogabalin on upregulation of 
the α2δ-1 subunit after nerve injury is considered to contribute 
to its analgesic effects in peripheral neuropathic pain.
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bospondins and NMDA receptors, not VGCCs [29–31]. Mirogaba-
lin {[(1 R,5 S,6 S)-6-(aminomethyl)-3-ethylbicyclo[3.2.0]hept-3-en-
6-yl]acetic acid} is a newly synthesized gabapentinoid [32], which 
has been approved for the treatment of neuropathic pain in Japan 
and other Asian countries [25, 33, 34]. Three pivotal phase 3 clini-
cal trials of mirogabalin demonstrated its efficacy and safety in pa-
tients with postherpetic neuralgia [35, 36], diabetic peripheral neu-
ropathic pain [37, 38], and central neuropathic pain after spinal 
cord injury [39]. We previously reported that mirogabalin pos-
sessed potent and selective binding affinity for α2δ-1 subunit [32] 
and inhibited N-type calcium channel currents [40], and it showed 
more potent and sustained analgesic effects than pregabalin in ex-
perimental animal models of peripheral and central neuropathic 
pain [32, 41] and fibromyalgia [42]. We also reported that analge-
sic doses of mirogabalin alleviated anxiety-like behaviors and cog-
nitive impairments in chronic pain models of neuropathic pain and 
fibromyalgia [43–45].

Here, to obtain further information on the mechanism of action 
of mirogabalin, we investigated its inhibitory effects on upregula-
tion of the α2δ-1 subunit of VGCCs in the spinal dorsal horn in a rat 
model of spinal nerve ligation (SNL) as an experimental animal 
model for peripheral neuropathic pain.

Materials and Methods

Test compounds
Mirogabalin besylate (DS-5565, CAS number: 1138245–21–2, 
PubChem CID: 81689826) was synthesized by Daiichi Sankyo Co., 
Ltd. (Tokyo, Japan). The test compound was dissolved in JP-grade 
distilled water (Otsuka Pharmaceutical Factory, Inc., Tokushima, 
Japan) and administered at an oral dose of 10 mg/2 mL/kg (ex-
pressed as free form). The control groups (SNL model control and 
sham control) were administered with an equal amount of JP-grade 
distilled water. The dosing protocol of the test compound (dose 
level, volume, route, frequency, and period) was determined based 
on our previous study [32]. The chemical structure of mirogabalin 
besylate is shown in ▶Fig. 1.

Experimental animals
The male Slc:SD rats (Japan SLC, Inc., Shizuoka, Japan) used in this 
study were 6 weeks old at the time of surgery. The animals were 
housed under conditions of regulated temperature (23 ± 2 °C) and 
relative humidity (55 ± 10 %) in a room with a 12-h day/night cycle 
(lights on 07:00–19:00 h). A standard laboratory diet (FR-2; Funa-
bashi Farm Co., Ltd., Chiba, Japan) and tap water were available ad 
libitum. All experimental procedures were carried out in compli-
ance with the Basic Guidelines for the Use of Experimental Animals 
in Institutions under the Jurisdiction of the Ministry of Health, La-
bour and Welfare (Notification No. 0601001 of the Science Bureau, 
Japanese Ministry of Health, Labour and Welfare, June 1, 2006) and 
the Guidelines of the Institutional Animal Care and Use Commit-
tee of Daiichi Sankyo Co., Ltd.

Experimental design
The SNL model was prepared in accordance with the method of Kim 
and Chung [46], with minor modifications. Briefly, under 1.5–2.0 % 

isoflurane anesthesia (Pfizer Japan Inc., Tokyo, Japan), the animals 
were placed in a prone position. The skin on the left lower back was 
incised and the transverse process of the lumbar vertebrae (L6) was 
exposed and removed. The left L5 and L6 spinal nerves were iso-
lated and tightly ligated with 6–0 surgical threads. The surgical area 
was sutured and 5 mg/kg enrofloxacin (Kyoritsu Seiyaku Corp., 
Tokyo, Japan) was subcutaneously injected for postoperative infec-
tion control. The animals received subcutaneous injection of 
0.05 mg/kg buprenorphine hydrochloride (Otsuka Pharmaceutical 
Co., Ltd., Tokyo, Japan) for 2 days after surgery. Sham operation 
was conducted in the same manner, except that the L5 and L6 spi-
nal nerves were not ligated.

Two weeks after SNL surgery, the development of mechanical 
hypersensitivity (i. e., neuropathic pain) was confirmed using the 
von Frey test. In brief, the plantar region of the left hind paw was 
stimulated with von Frey filaments (North Coast Medical Inc., Gil-
roy, CA, USA), and the paw withdrawal threshold was measured as 
described in our previous reports [42, 44, 45]. SNL model rats with 
a paw withdrawal threshold of 4 g or lower were selected and ran-
domly assigned to two treatment groups of seven animals each. 
The SNL rats received the test compound (mirogabalin at 
10 mg/2 mL/kg) or vehicle (JP-grade distilled water at 2 mL/kg) oral-
ly for 5 consecutive days (twice-daily from day 1 to day 4, and once-
daily on day 5). As a normal control group, four sham-operated rats 
received the vehicle in the same manner. After the last administra-
tion on day 5, the animals were subjected to immunohistochemi-
cal analysis. Because the potent and sustained analgesic effects of 
mirogabalin in neuropathic pain model rats have already been con-
firmed under the above dosing protocol [32], we focused on chang-
es in expression levels of the α2δ-1 subunit of VGCCs in the spinal 
dorsal horn in the present study.

Immunohistochemistry
Under combined anesthesia involving the intraperitoneal injection 
of 0.3 mg/kg medetomidine hydrochloride (Kyoritsu Seiyaku 
Corp.), 4 mg/kg midazolam (Maruishi Pharmaceutical Co., Ltd., 
Osaka, Japan), and 5 mg/kg butorphanol tartrate (Meiji Seika Phar-
ma Co., Ltd., Tokyo, Japan), the animals were transcardially per-
fused with heparinized saline solution (2000 units/L; heparin sodi-
um injection, Mochida Pharmaceutical Co., Ltd., Tokyo, Japan; and 
JP-grade normal saline, Otsuka Pharmaceutical Factory, Inc.), fol-
lowed by 4 % paraformaldehyde phosphate buffer solution (4 % PFA; 
Fujifilm Wako Pure Chemical Corporation, Osaka, Japan). Following 
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▶Fig. 1 Chemical structure of mirogabalin besylate.
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perfusion, the lumbar spinal cord at the L5 level was removed and 
post-fixed in 4 % PFA at room temperature overnight. The 4 % PFA-
fixed spinal cord tissues were routinely processed and embedded 
in paraffin. Tissue sections of 3 μm thickness were prepared and 
immunohistochemistry was performed using PT Link 100 Pretreat-
ment Module and Autostainer Link 48 (Dako/Agilent, Santa Clara, 
CA, USA). Sections were heated at 60 °C for 60 min, and then heat-
induced antigen retrieval was carried out using Target Retrieval So-
lution High pH (Dako/Agilent) at 97 °C for 20 min. After endoge-
nous peroxidase and protein blocking, the spinal cord sections were 
incubated with anti-α2δ-1 antibody [1:500 dilution, CACNA2D1 
monoclonal antibody (20 A), Invitrogen MA3–921; Thermo Fisher 
Scientific, Waltham, MA, USA] at room temperature for 30 min. The 
primary antibody was localized by the application of peroxidase-
labeled polymer-conjugated secondary antibody (EnVision + HRP-
mouse; Dako/Agilent) and visualized using a substrate-chromogen 

system (DAB + chromogen; Dako/Agilent). The sections were then 
counterstained using hematoxylin (FLEX Hematoxylin; Dako/Agi-
lent).

Image analysis
Slides were digitally scanned using a virtual slide scanner (Nano-
Zoomer S360; Hamamatsu Photonics K.K., Shizuoka, Japan) and 
analyzed with digital imaging analysis software (HALO, version 
2.2.1870; Indica Labs Inc., Albuquerque, NM, USA). The area quan-
tification module was used for the automated analysis of scanned 
sections. To determine the α2δ-1-positive staining intensity, the 
thresholds were set based on the optical density as follows: weak 
( ≥ 0.116), moderate ( ≥ 0.234), and strong ( ≥ 0.546). The areas of 
α2δ-1-positive signals were determined for each staining intensity 
and the ratio between the ipsilateral and contralateral sides of SNL 
(i. e., Ipsi/Contra ratio) was calculated.
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▶Fig. 2 Typical examples of original-scanned (left) and pseudo-colored (right) images of the spinal cord sections.; Top: Sham control (animal No. 
2), Middle: SNL control (animal No. 5), Bottom: SNL mirogabalin (animal No. 12).
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Statistical analysis
Summarized data are presented as the mean ± standard error. Sta-
tistical comparisons (sham control vs. SNL control, SNL control vs. 
SNL mirogabalin) were performed using the F-test, followed by 
Aspin – Welch’s or Student’s t-test. Two-tailed P values of less than 
0.05 were considered as statistically significant. Microsoft Excel for 
Microsoft 365 (Microsoft Japan Co., Ltd., Tokyo, Japan) was used 
for these analyses.

Results
Representative images of the spinal cord sections are presented in 
▶Fig. 2, and the results of statistical analysis are illustrated in ▶Fig. 
3. The α2δ-1-positive signals were predominantly observed in the 
spinal dorsal horn. In particular, strong α2δ-1-positive signals were 
observed at the highest density in the superficial layers of the spi-
nal dorsal horn (▶Fig. 2).

In the sham control group, the Ipsi/Contra ratio of the α2δ-1-
positive area was approximately 1 at all signal strengths (1.05 ± 0.04 
for weak, 1.04 ± 0.04 for moderate, 1.53 ± 0.18 for strong), indicat-
ing no differences in expression of the α2δ-1 subunit in the spinal 
dorsal horn between the ipsilateral and contralateral sides of sham 
surgery (yellow, orange, and red bars of the sham control group in 
▶Fig. 3).

The Ipsi/Contra ratio of the α2δ-1-positive area in the SNL con-
trol group was significantly higher than that in the sham control 
group for all signal strengths: weak (P = 0.0066 by Student’s t-test, 
yellow bars in ▶Fig. 3), moderate (P = 0.0013 by Aspin – Welch’s t-
test, orange bars in ▶Fig. 3), and strong (P = 0.0018 by Aspin–
Welch’s t-test, red bars in ▶Fig. 3). This indicated increased expres-
sion of the α2δ-1 subunit in the spinal dorsal horn at the ipsilateral 
side of SNL surgery.

In the comparison between the SNL control group and the SNL 
mirogabalin group, there were no significant differences in the Ipsi/
Contra ratio of the α2δ-1-positive area for weak signals (P = 0.1534 
by Aspin – Welch’s t-test, yellow bars in ▶Fig. 3) and moderate sig-
nals (P = 0.2814 by Aspin – Welch’s t-test, orange bars in ▶Fig. 3). 
Meanwhile, for strong signals, the Ipsi/Contra ratio of the α2δ-1-
positive area in the SNL mirogabalin group was significantly lower 
than that in the SNL control group (P = 0.0383 by Aspin – Welch’s 
t-test, red bars in ▶Fig. 3). This indicated that mirogabalin inhib-
ited the increase in expression of the α2δ-1 subunit in the spinal 
dorsal horn of SNL model rats.

Discussion and Conclusions
The SNL model is regarded as one of the most validated experimen-
tal animal models for peripheral neuropathic pain and is widely 
used for pharmacological evaluations of analgesics and pathophysio-
logical studies of peripheral neuropathic pain [47, 48]. Although 
the SNL model requires more extensive and complicated surgical 
techniques, it has some advantages over other nerve injury mod-
els such as chronic constriction injury (CCI) and partial sciatic nerve 
ligation (PSL) [49, 50]. For example, the surgical procedure of SNL 
is stereotyped (i. e., tight ligation of the same spinal nerves in each 
animal), and the intra- and inter-experimental variability due to 
differences in the numbers and types of injured nerve fibers can be 

lower than in the other models [46, 49, 50]. Furthermore, the lev-
els of injured and uninjured spinal segments are completely sepa-
rated in the SNL model. Therefore, injured spinal nerves among the 
three spinal nerves contributing to the sciatic nerve (i. e., L4, L5, 
and L6) and their corresponding levels of the dorsal root ganglia 
and spinal segments are more distinct in the SNL model than in the 
other models [46, 49, 50].

In the present study, the distribution of α2δ-1 protein in the spi-
nal cord was clearly determined using immunohistochemistry and 
imaging analysis. Strong α2δ-1-positive signals were detected at 
the highest density in the superficial layers of the spinal dorsal horn, 
which are known as the projection sites of the primary afferent fib-
ers [51], consistent with previous reports [3, 8, 9, 26].

▶Fig. 3 Effects of mirogabalin on expression of the α2δ-1 subunit 
of VGCCs in the spinal cord of SNL model rats.; Mirogabalin besylate 
(10 mg/2 mL/kg as free form) was administered orally for 5 consecu-
tive days (twice-daily from day 1 to day 4, and once-daily on day 5), 
while the control groups received JP-grade distilled water (2 mL/kg) 
in the same manner. After the last administration on day 5, the 
animals were subjected to immunohistochemical analysis. Data are 
represented as the mean ± standard error (n = 4 for the sham control, 
n = 7 for the SNL control and SNL mirogabalin).  *  * P < 0.01 compared 
with the sham control group (Aspin–Welch’s or Student’s t-test). 
#P < 0.05 compared with the SNL control group (Aspin–Welch’s 
t-test).
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In SNL model rats, expression of the α2δ-1 subunit markedly in-
creased in the spinal dorsal horn at the ipsilateral side of nerve in-
jury. These findings are consistent with previous reports on the SNL 
model [6–10], and similar changes have been reported in other 
unilateral sciatic nerve injury models such as PSL [5] and CCI [10]. 
Increases in the α2δ-1 subunit in the spinal cord have also been re-
ported in various experimental animal models for peripheral and 
central neuropathic pain including diabetes [10], chemotherapy-
induced peripheral neuropathy [11], post-spinal cord injury 
[12, 13], post-stroke [14], and multiple sclerosis [15]. Not limited 
to neuropathic pain models, upregulation of the α2δ-1 subunit in 
the brain has been reported in experimental animal models of in-
nate anxiety [16] and post-traumatic epilepsy [17]. In addition, 
transgenic mice overexpressing the neuronal α2δ-1 subunit have 
been reported to show mechanical and thermal hypersensitivity 
[18] or epileptic seizures [19], without physical neuronal damage. 
Taking these findings together, it is apparent that the α2δ-1 sub-
unit plays dominant roles in the development and maintenance of 
various neurological disorders.

In the present study, repeated administration of mirogabalin 
significantly inhibited the increased expression of α2δ-1 subunit in 
the spinal dorsal horn at the ipsilateral side of nerve injury. This 
finding parallels previous studies on the classical gabapentinoids, 
gabapentin and pregabalin [8, 9, 13]. Although the mechanism of 
action of gabapentinoids is not fully understood, these drugs 
modu late and inhibit not only calcium channel function but also 
channel trafficking and expression, resulting in the inhibition of cal-
cium ion influx and excitatory synaptic transmission at synaptic 
endings [26–28]. The results of the present study demonstrate the 
latter, the inhibitory effect of mirogabalin on the trafficking and ex-
pression of the α2δ-1 subunit of VGCCs. In addition, recent studies 
have proposed novel roles of the α2δ-1 subunit, such as interaction 
with thrombospondins and NMDA receptors, not VGCCs [29–31]. 
These VGCC-independent pathophysiological roles of α2δ-1 subu-
nit might also be involved in the mechanism of action of gabapen-
tinoids including mirogabalin.

In our previous study using the same dosing protocol, repeated 
administration of mirogabalin enhanced its analgesic effects with-
out an increase in drug exposure in rats with streptozotocin-in-
duced diabetes, a typical experimental animal model for peripher-
al neuropathic pain. In particular, at 12 h after 4 consecutive days 
of oral administration of 10 mg/kg mirogabalin (i. e., before the last 
administration of mirogabalin on day 5), significant analgesic ef-
fects were still observed, despite undetectable plasma levels of mi-
rogabalin [32]. These notable findings can be explained by the in-
hibitory effect of mirogabalin on the trafficking and expression of 
the α2δ-1 subunit in the spinal dorsal horn. Meanwhile, the single 
oral administration of mirogabalin showed acute analgesic effects, 
which emerged 1 or 2 h after administration and disappeared with-
in a day [32, 41, 42]. The acute analgesic effects of mirogabalin ap-
pear to be mediated by its acute inhibition of calcium channel func-
tion. Therefore, mirogabalin can modulate both the function of up-
regulated α2δ-1 subunit and the process of α2δ-1 subunit 
upregulation in a state reflecting neuropathic pain.

In conclusion, the α2δ-1 subunit was upregulated in the spinal 
dorsal horn of SNL model rats, and repeated administration of mi-
rogabalin inhibited this upregulation. The inhibitory effect of mi-
rogabalin on upregulation of the α2δ-1 subunit after nerve injury 
is considered to contribute at least in part to its analgesic effects in 
peripheral neuropathic pain.
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