Osteologie 2022; 31(04): 298-303
DOI: 10.1055/a-1951-1398
Review

Arteriosklerose und Knochendichte – Arterielle Kalzifikationen in der hochauflösenden, peripheren quantitativen Computertomographie

Arteriosclerosis and Bone Density – Arterial Calcifications in High Resolution Peripheral Quantitative Computed Tomography
1   Institut für Osteologie und Biomechanik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
,
1   Institut für Osteologie und Biomechanik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
› Author Affiliations

Zusammenfassung

Aufgrund der Gemeinsamkeit eines mineralisierten Gewebes sowohl im Falle des Knochens (mineralisiertes Osteoid) als auch bei Arteriosklerose (Mineralisation im Bereich des Endothels bei chronischer Entzündungsreaktion) und verwandter biochemischer Mechanismen wird seit geraumer Zeit ein Zusammenhang zwischen Arteriosklerose und der Knochenstruktur und -mineralisation vermutet. Eine abnehmende Knochendichte in der Knochendichtemessung (DXA) konnte parallel zu einem gehäuften Auftreten einer Arteriosklerose gezeigt werden, eine Kausalität konnte bis heute nicht geklärt werden. Die hochauflösende, periphere, quantitative Computertomographie (HR-pQCT) bietet die Möglichkeit die Kalzifikation der Arterien der unteren Extremität im Scanvolumen zu detektieren und quantifizieren. Hierbei treten Gefäßkalzifikationen nebenbefundlich in Abhängigkeit der Grunderkrankung bei 32,6% der Patienten ohne Grunderkrankung auf. Bei weiblichen Patient:innen ohne Grunderkrankung konnte im Gegensatz zu Männern eine gleichzeitige Abnahme einzelner kortikaler und trabekulärer HR-pQCT-Parameter bei vermehrtem Auftreten einer LLAC beobachtet werden. Bei einer CKD lässt sich parallel zum vermehrten Auftreten einer LLAC ein kortikales Knochenstrukturverlustsyndrom feststellen, wobei CKD-Patienten mit LLAC signifikant geminderte Werte im Vergleich zu CKD-Patienten ohne LLAC aufwiesen. Auch beim Hypoparathyreoidismus zeigen sich eine Häufung der LLAC im HR-pQCT im Vergleich zu einer Kontrollgruppe. Somit zeigt sich der Einfluss einer Dysbalance der Calciumhomöostase auf die Mineralisation beider Gewebe und unterstreicht die hohe Bedeutung einer Balancierung der Calciumhomöostase. Dieser Artikel stellt die bisherigen Erkenntnisse und Zusammenhänge der Arteriosklerose mit osteologischen Aspekten im Sinne der Knochenmikrostruktur und weiterer Parameter vor.

Abstract

Due to the commonality of a mineralized tissue both in the case of bone (mineralized osteoid) and atherosclerosis (mineralization in the area of the endothelium during chronic inflammatory) and related biochemical mechanisms, a connection between atherosclerosis and bone structure and mineralization has been suspected for some time. Decreasing bone density has been shown to occur parallel to a occurrence of atherosclerosis. High-resolution peripheral quantitative computed tomography (HR-pQCT) offers the opportunity to detect and quantify the calcification of the lower leg arteries within the scan volume. Calcifications of the lower leg arteries (LLAC) occur in 32.6% of patients without underlying disease. In female patients without underlying disease, in contrast to men, a concomitant decrease in specific cortical and trabecular HR-pQCT parameters was observed with an increased occurrence of LLAC. In CKD, a cortical bone loss can be observed simultaneously with the occurrence of LLAC, with CKD patients with LLAC showing significantly reduced values compared to CKD patients without LLAC. Hypoparathyroidism also shows an accumulation of LLAC in HR-pQCT compared to a control group. Therefore, the influence of a disbalance of the calcium homeostasis on the mineralization of both tissues becomes apparent. This article presents the previous findings and correlations of atherosclerosis with osteological aspects in terms of bone microstructure and other parameters.



Publication History

Received: 01 August 2022

Accepted: 25 September 2022

Article published online:
14 December 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Salari N. et al. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res 2021; 16 p 609
  • 2 Leopold JA. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med 2015; 25 p 267-274
  • 3 Bild DE. et al. Ethnic differences in coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2005; 111 p 1313-1320
  • 4 Shioi A, Ikari Y. Plaque Calcification During Atherosclerosis Progression and Regression.. J Atheroscler Thromb 2018; 25 p 294-303
  • 5 Cannata-Andia JB. et al. The connections between vascular calcification and bone health. Nephrol Dial Transplant 2011; 26 p 3429-3436
  • 6 Wei X. et al. Understanding the Stony Bridge between Osteoporosis and Vascular Calcification: Impact of the FGF23/Klotho axis. Oxid Med Cell Longev 2021; 2021 p 7536614
  • 7 Kanis JA. et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2019; 30 p 3-44
  • 8 Watts NB. Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporos Int 2004; 15 p 847-854
  • 9 Samelson EJ. et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol 2019; 7 p 34-43
  • 10 Mikolajewicz N. et al. HR-pQCT Measures of Bone Microarchitecture Predict Fracture: Systematic Review and Meta-Analysis. J Bone Miner Res 2020; 35 p 446-459
  • 11 Paccou J. et al. Lower leg arterial calcification assessed by high-resolution peripheral quantitative computed tomography is associated with bone microstructure abnormalities in women. Osteoporos Int 2016; 27 p 3279-3287
  • 12 Patsch JM. et al. Quantification of lower leg arterial calcifications by high-resolution peripheral quantitative computed tomography. Bone 2014; 58 p 42-47
  • 13 Šprem J. et al. Coronary calcium scoring with partial volume correction in anthropomorphic thorax phantom and screening chest CT images. PLoS One 2018; 13 p e0209318
  • 14 Heusch G. et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 2014; 383 p 1933-1943
  • 15 Kowara M, Cudnoch-Jedrzejewska A. Pathophysiology of Atherosclerotic Plaque Development-Contemporary Experience and New Directions in Research.. Int J Mol Sci 2021; 22
  • 16 Akers EJ. et al. Plaque Calcification: Do Lipoproteins Have a Role?. Arterioscler Thromb Vasc Biol 2019; 39 p 1902-1910
  • 17 Schinke T. et al. Extracellular matrix calcification: where is the action?. Nat Genet 1999; 21 p 150-151
  • 18 Schinke T, Karsenty G. Vascular calcification – a passive process in need of inhibitors.. Nephrol Dial Transplant 2000; 15 p 1272-1274
  • 19 Schmidt FN. et al. Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging. Bone 2017; 97 p 243-251
  • 20 Shin S. et al. Impact of serum calcium and phosphate on coronary atherosclerosis detected by cardiac computed tomography. Eur Heart J 2012; 33 p 2873-2881
  • 21 Rubin MR. et al. Carotid artery plaque thickness is associated with increased serum calcium levels: the Northern Manhattan study. Atherosclerosis 2007; 194 p 426-432
  • 22 Choi SH. et al. Lower bone mineral density is associated with higher coronary calcification and coronary plaque burdens by multidetector row coronary computed tomography in pre- and postmenopausal women. Clin Endocrinol (Oxf) 2009; 71 p 644-651
  • 23 Wang TK. et al. Relationships between vascular calcification, calcium metabolism, bone density, and fractures. J Bone Miner Res 2010; 25 p 2777-2785
  • 24 Arad Y. et al. Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol 2000; 36 p 1253-1260
  • 25 Rumberger JA. et al. Electron beam computed tomographic coronary calcium score cutpoints and severity of associated angiographic lumen stenosis. J Am Coll Cardiol 1997; 29 p 1542-1548
  • 26 van der Bijl N. et al. Assessment of Agatston coronary artery calcium score using contrast-enhanced CT coronary angiography. AJR Am J Roentgenol 2010; 195 p 1299-1305
  • 27 Hyder JA. et al. Association of coronary artery and aortic calcium with lumbar bone density: the MESA Abdominal Aortic Calcium Study. Am J Epidemiol 2009; 169 p 186-194
  • 28 Kiel DP. et al. Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int 2001; 68 p 271-276
  • 29 Pennisi P. et al. Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels. Osteoporos Int 2004; 15 p 389-395
  • 30 Farhat GN. et al. Volumetric BMD and vascular calcification in middle-aged women: the Study of Women’s Health Across the Nation. J Bone Miner Res 2006; 21 p 1839-1846
  • 31 Naves M. et al. Progression of vascular calcifications is associated with greater bone loss and increased bone fractures. Osteoporos Int 2008; 19 p 1161-1166
  • 32 Szulc P. et al. Calcifications in the abdominal aorta predict fractures in men: MINOS study. J Bone Miner Res 2008; 23 p 95-102
  • 33 Szulc P. et al. Severity of aortic calcification is positively associated with vertebral fracture in older men – a densitometry study in the STRAMBO cohort. Osteoporos Int 2013; 24 p 1177-1184
  • 34 Sinnott B. et al. Coronary calcification and osteoporosis in men and postmenopausal women are independent processes associated with aging. Calcif Tissue Int 2006; 78 p 195-202
  • 35 Shen H. et al. Relationship between vascular calcification and bone mineral density in the Old-order Amish. Calcif Tissue Int 2007; 80 p 244-250
  • 36 Kim KI. et al. Is reduced bone mineral density independently associated with coronary artery calcification in subjects older than 50 years?. J Bone Miner Metab 2011; 29 p 369-376
  • 37 Guzman LFE. et al. Coronary calcification and bone microarchitecture by high-resolution peripheral quantitative computed tomography from the Sao Paulo Ageing and Health (SPAH) Study. Sci Rep 2022; 12 p 5282
  • 38 Chen J. et al. Coronary Artery Calcification and Risk of Cardiovascular Disease and Death Among Patients With Chronic Kidney Disease. JAMA Cardiol 2017; 2 p 635-643
  • 39 Moody WE. et al. Arterial disease in chronic kidney disease. Heart 2013; 99 p 365-372
  • 40 Hruska KA. et al. The chronic kidney disease – Mineral bone disorder (CKD-MBD): Advances in pathophysiology. Bone 2017; 100 p 80-86
  • 41 Waziri B. et al. Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD): Current Perspectives. Int J Nephrol Renovasc Dis 2019; 12 p 263-276
  • 42 Amling M. et al. Three-dimensional analysis of the spine in autopsy cases with renal osteodystrophy. Kidney Int 1994; 46 p 733-743
  • 43 Cejka D. et al. Bone microarchitecture in hemodialysis patients assessed by HR-pQCT. Clin J Am Soc Nephrol 2011; 6 p 2264-2271
  • 44 Syazrah S. et al. Vascular calcification relationship to vascular biomarkers and bone metabolism in advanced chronic kidney disease. Bone. 2020
  • 45 Sharma S. et al. Meta-analyses of the quantitative computed tomography data in dialysis patients show differential impacts of renal failure on the trabecular and cortical bones. Osteoporos Int. 2022
  • 46 Nickolas TL. et al. Rapid cortical bone loss in patients with chronic kidney disease. J Bone Miner Res 2013; 28 p 1811-1820
  • 47 Pelletier S. et al. Serum sclerostin: the missing link in the bone-vessel cross-talk in hemodialysis patients?. Osteoporos Int 2015; 26 p 2165-2174
  • 48 Cejka D. et al. Inverse association between bone microarchitecture assessed by HR-pQCT and coronary artery calcification in patients with end-stage renal disease. Bone 2014; 64 p 33-38
  • 49 Cannata-Andia JB. et al. Chronic Kidney Disease-Mineral and Bone Disorders: Pathogenesis and Management. Calcif Tissue Int 2021; 108 p 410-422
  • 50 Ok E. et al. Reduction of Dialysate Calcium Level Reduces Progression of Coronary Artery Calcification and Improves Low Bone Turnover in Patients on Hemodialysis. J Am Soc Nephrol 2016; 27 p 2475-2486
  • 51 Hofbauer LC. et al. Bone fragility in diabetes: novel concepts and clinical implications. Lancet Diabetes Endocrinol 2022; 10 p 207-220
  • 52 Wolfel EM. et al. Individuals with type 2 diabetes mellitus show dimorphic and heterogeneous patterns of loss in femoral bone quality. Bone 2020; 140 p 115556
  • 53 Nielsen CV. et al. Lower Leg Arterial Calcifications Assessed by High-Resolution Peripheral Quantitative Computed Tomography in Hypoparathyroid and Pseudohypoparathyroid Patients. Calcif Tissue Int 2021; 108 p 775-784