Synlett 2023; 34(10): 1153-1158
DOI: 10.1055/a-1951-2833
cluster
Dispersion Effects

Investigation of Alkyl–Aryl Interactions Using the Azobenzene Switch – The Influence of the Electronic Nature of Aromatic London Dispersion Donors

Dominic Schatz
a   Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
b   Center of Material Research (LaMa/ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
,
Anne Kunz
a   Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
b   Center of Material Research (LaMa/ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
,
Aileen R. Raab
a   Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
b   Center of Material Research (LaMa/ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
,
Hermann A. Wegner
a   Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
b   Center of Material Research (LaMa/ZfM), Justus Liebig University, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
› Author Affiliations
This project was partially funded by the Deutsche Forschungsgemeinschaft (DFG, WE5601/8-1).


Abstract

Herein we report the synthesis of nonsymmetrically substituted azobenzene derivatives with meta-alkyl substituents on one side and meta-aryl moieties with electron-donating or electron-withdrawing groups on the other side. The half-lives for the thermal (Z)- to (E)-isomerization of these molecules were measured in n-octane, which allows investigation of the strength of the aryl–alkyl interactions between their substituents. It was found that the London dispersion donor strength of the alkyl substrate is the decisive factor in the observed stabilization, whereas the electronic structure of the aryl fragment does not influence the isomerization in a significant way.

Supporting Information



Publication History

Received: 12 August 2022

Accepted after revision: 27 September 2022

Accepted Manuscript online:
27 September 2022

Article published online:
28 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 London F. Trans. Faraday Soc. 1937; 33: 8b
  • 2 Fokin AA, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Dahl JE. P, Carlson RM. K, Schreiner PR. J. Am. Chem. Soc. 2012; 134: 13641
  • 3 Cerný J, Kabelác M, Hobza P. J. Am. Chem. Soc. 2008; 130: 16055
  • 4 Grimme S, Djukic J.-P. Inorg. Chem. 2011; 50: 2619
    • 5a Grimm LM, Spicher S, Tkachenko B, Schreiner PR, Grimme S, Biedermann F. Chem. Eur. J. 2022; 28: e202200529
    • 5b Mears KL, Power PP. Acc. Chem. Res. 2022; 55: 1337
    • 5c Rummel L, Domanski MH. J, Hausmann H, Becker J, Schreiner PR. Angew. Chem. Int. Ed. 2022; e202204393
    • 5d McCrea-Hendrick ML, Bursch M, Gullett KL, Maurer LR, Fettinger JC, Grimme S, Power PP. Organometallics 2018; 37: 2075
    • 5e Linnemannstöns M, Schwabedissen J, Schultz AA, Neumann B, Stammler H.-G, Berger RJ. F, Mitzel NW. Chem. Commun. 2020; 56: 2252
    • 5f Zou W, Fettinger JC, Vasko P, Power PP. Organometallics 2022; 41: 794
    • 5g Giese M, Albrecht M. ChemPlusChem 2020; 85: 715
  • 6 Strauss MA, Wegner HA. Angew. Chem. Int. Ed. 2019; 58: 18552
  • 7 Schweighauser L, Strauss MA, Bellotto S, Wegner HA. Angew. Chem. Int. Ed. 2015; 54: 13436
  • 8 Wagner JP, Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274
    • 9a Kim E, Paliwal S, Wilcox CS. J. Am. Chem. Soc. 1998; 120: 11192
    • 9b Paliwal S, Geib S, Wilcox CS. J. Am. Chem. Soc. 1994; 116: 4497
  • 10 Yang L, Adam C, Nichol GS, Cockroft SL. Nat. Chem. 2013; 5: 1006
  • 11 Adam C, Yang L, Cockroft SL. Angew. Chem. Int. Ed. 2015; 54: 1164
  • 12 Hwang J, Dial BE, Li P, Kozik ME, Smith MD, Shimizu KD. Chem. Sci. 2015; 6: 4358
    • 13a Pollice R, Bot M, Kobylianskii IJ, Shenderovich I, Chen P. J. Am. Chem. Soc. 2017; 139: 13126
    • 13b Schümann JM, Wagner JP, Eckhardt AK, Quanz H, Schreiner PR. J. Am. Chem. Soc. 2021; 143: 41
  • 14 Strauss MA, Wegner HA. Eur. J. Org. Chem. 2018; 295
    • 16a Aliev AE, Motherwell WB. Chemistry 2019; 25: 10516
    • 16b Yamada M, Narita H, Maeda Y. Angew. Chem. Int. Ed. 2020; 132: 16267
    • 17a Carroll WR, Pellechia P, Shimizu KD. Org. Lett. 2008; 10: 3547
    • 17b Sun H, Horatscheck A, Martos V, Bartetzko M, Uhrig U, Lentz D, Schmieder P, Nazaré M. Angew. Chem. Int. Ed. 2017; 56: 6454
    • 17c Maier JM, Li P, Vik EC, Yehl CJ, Strickland SM. S, Shimizu KD. J. Am. Chem. Soc. 2017; 139: 6550
    • 17d Vik EC, Li P, Madukwe DO, Karki I, Tibbetts GS, Shimizu KD. Org. Lett. 2021; 23: 8179
  • 18 Carroll WR, Zhao C, Smith MD, Pellechia PJ, Shimizu KD. Org. Lett. 2011; 13: 4320
  • 19 Harada J, Ogawa K, Tomoda S. Acta Crystallogr., Sect. B: Struct. Sci. 1997; 53: 662
    • 20a Slavov C, Yang C, Schweighauser L, Boumrifak C, Dreuw A, Wegner HA, Wachtveitl J. Phys. Chem. Chem. Phys. 2016; 18: 14795
    • 20b Kunz A, Wegner HA. ChemSystemsChem 2021; 3: e2000035
    • 20c Petersen AU, Broman SL, Olsen ST, Hansen AS, Du L, Kadziola A, Hansen T, Kjaergaard HG, Mikkelsen KV, Nielsen MB. Chemistry 2015; 21: 3968
  • 21 Strauss MA, Wegner HA. Angew. Chem. Int. Ed. 2021; 60: 779
  • 22 García-Amorós J, Velasco D. Beilstein J. Org. Chem. 2012; 8: 1003
    • 23a Robertus J, Reker SF, Pijper TC, Deuzeman A, Browne WR, Feringa BL. Phys. Chem. Chem. Phys. 2012; 14: 4374
    • 23b Exner O. Prog. Phys. Org. Chem. . Streitwieser AJr, Traft RW. Wiley; Hoboken: 1973: 411-482
    • 23c Dokić J, Gothe M, Wirth J, Peters MV, Schwarz J, Hecht S, Saalfrank P. J. Phys. Chem. A 2009; 113: 6763
    • 23d Asano T, Okada T, Shinkai S, Shigematsu K, Kusano Y, Manabe O. J. Am. Chem. Soc. 1981; 103: 5161
  • 24 Di Berardino C, Strauss MA, Schatz D, Wegner HA. Chemistry 2022; 28: e202104284
  • 25 Dey RC, Seal P, Chakrabarti S. J. Phys. Chem. A 2009; 113: 10113
  • 26 Ringer AL, Figgs MS, Sinnokrot MO, Sherrill CD. J. Phys. Chem. A 2006; 110: 10822
  • 27 Li P, Parker TM, Hwang J, Deng F, Smith MD, Pellechia PJ, Sherrill CD, Shimizu KD. Org. Lett. 2014; 16: 5064
  • 28 Zhao C, Parrish RM, Smith MD, Pellechia PJ, Sherrill CD, Shimizu KD. J. Am. Chem. Soc. 2012; 134: 14306
  • 29 General Procedures Route 1: 1,3-Diphenyl-5-nitrosobenzene (20, 1.0 equiv.) was dissolved in toluene and degassed with a nitrogen stream. The corresponding aniline (14, 15 or 16, 1.0–1.6 equiv.) and acetic acid were added, and the mixture was stirred at 60 °C for the time given in the Supporting Information. The solvent was subsequently removed under reduced pressure, and the residue was purified by column chromatography. Route 2: Under nitrogen atmosphere the corresponding nitrosobenzene (24, 25, or 26, 1.0 equiv.) was dissolved in toluene and was degassed with a nitrogen stream. Acetic acid and a solution of aniline 23 (1.0 equiv.) in toluene were added. The reaction mixture was stirred at 60 °C for the time given in the Supporting Information. The solvent was subsequently removed under reduced pressure, and the residue was purified by column chromatography. Route 3 for 7, 8: Corresponding dibromoazobenzene (29 or 30, 1.0 equiv.) was dissolved in dry THF (transferred under inert conditions), boronic ester 28 (2.1 equiv.), CsF (6.7 equiv.), as well as tris(dibenzylideneacetone)dipalladium(0) (3 mol%) and tri-tert-(butylphosphonium tetrafluoroborate (10–14 mol%) were added and stirred for the time given in the Supporting Information. The solvent was subsequently removed under reduced pressure, and the residue was purified by column chromatography. Route 3 for 9: See the Supporting Information.