Is Maximal Lactate Accumulation Rate Promising for Improving 5000-m Prediction in Running?

Authors
Oliver Jan Quittmann¹,², Tina Foitschik¹, Ramin Vafa¹, Finn Jannis Freitag¹, Nordin Sparmann¹, Simon Nolte¹, Thomas Abel¹,²

Affiliations
1 Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
2 European Research Group in Disability Sport (ERGiDS)

Key words
lactate threshold, time trial, 5000-m, performance, ċLa_max,˙VO2max

accepted 26.09.2022
published online 2022

Bibliography
Int J Sports Med
DOI 10.1055/a-1958-3876
ISSN 0172-4622
© 2022. The Author(s).

This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag, Rüdigerstraße 14, 70469 Stuttgart, Germany

Correspondence
Dr. Oliver Jan Quittmann
German Sport University Cologne
Institute of Movement and Neurosciences
Am Sportpark Müngersdorf 6
50933 Cologne
Germany
Tel.: +49221 4982 7170, Fax: +49221 4973 454
o.quittmann@dshs-koeln.de

Supplementary Material is available under https://doi.org/10.1055/a-1958-3876

ABSTRACT
Endurance running performance can be predicted by maximal oxygen uptake (˙VO2max), the fractional utilisation of oxygen uptake (% ˙VO2max) and running economy at lactate threshold (REOBLA). This study aims to assess maximal lactate accumulation rate (ċLa_max) in terms of improving running performance prediction in trained athletes. Forty-four competitive female and male runners/triathletes performed an incremental step test, a 100-m sprint test and a ramp test to determine their metabolic profile. Stepwise linear regression was used to predict 5000-m time trial performance. Split times were recorded every 200-m to examine the ‘finishing kick’. Females had a slower t5k and a lower ˙VO2max, ċLa_max, ‘finishing kick’ and REOBLA. Augmenting Joyner’s model by means of ċLa_max explained an additional 4.4 % of variance in performance. When performing the same analysis exclusively for males, ċLa_max was not included. ċLa_max significantly correlated with % ˙VO2max (r = -0.439, p = 0.003) and the ‘finishing kick’ (r = 0.389, p = 0.010). ċLa_max allows for significant (yet minor) improvements in 5000-m performance prediction in a mixed-sex group. This margin of improvement might differ in middle-distance events. Due to the relationship to the ‘finishing kick’, ċLa_max might be related to individual pacing strategies, which should be assessed in future research.

ABBREVIATIONS
ANOVA analysis of variance
ASR anaerobic speed reserve (v100-˙VO2max)
d Cohen’s d effect-size
HRmax,5k maximal heart rate attained during the 5000-m time trial
HRmax,RT maximal heart rate attained during the ramp test protocol
HRmax,ST maximal heart rate attained during the incremental step test protocol
HRmean,5k mean heart rate attained during the 5000-m time trial
HROBLA interpolated heart rate corresponding to a lactate concentration of 4 mmol·l⁻¹ (onset of blood lactate accumulation, OBLA)
La max,ST maximal lactate concentration attained during the incremental step test protocol
Introduction

Knowledge about the determinants of endurance performance and the underlying metabolic profile is crucial for developing adequate exercise tests, provide concrete recommendations for improvement and individualise training prescriptions for athletes. Especially in the field of exercise physiology, various concepts have been developed to predict endurance performance by means of physiological parameters [1]. The most common model has been developed by Michael J. Joyner in 1991, who calculated running speed in a marathon by means of maximal oxygen uptake (\(\dot{V}O_2 \text{max} \)) and running economy (RE) [2]. Whereas the factors underlying \(\dot{V}O_2 \text{max} \) [3–5] and RE [6–8] have extensively been examined in previous research, the physiological origin of \(\% \dot{V}O_2 \text{max} \) (and the corresponding lactate threshold) remained mostly unknown. As an example, recent research indicated that the velocity and corresponding \(\% \dot{V}O_2 \text{max} \) at lactate threshold do not significantly correlate [9].

The goal of most lactate threshold concepts is to estimate the maximal lactate steady-state (MLSS), which is defined as the highest intensity at which lactate production and clearance are in equilibrium [10]. As one example, the intensity corresponding to a lactate concentration of 4 mmol·l\(^{-1} \) (\(\text{VOLBA} \)) has demonstrated a high correlation and agreement to MLSS [11, 12]. Joyner & Coyle (2008) updated the existing model by an anaerobic component and stated "...that truly accurate models of energy turnover during actual competition would require [...] calculation of fluxes through multiple metabolic pathways (e. g. total ATP turnover with contributions from both aerobic and anaerobic components [...])." However, anaerobic parameters have hardly been implemented in predictive performance models of long-distance running, which was recently highlighted in a review article covering a total of 58 studies [13].

A mathematical model designed to describe the regulation of ATP production in muscle cells was introduced by Alois Mader in 2003 [14]. He calculated the fractional utilisation of oxidative phosphorylation and glycolysis as a function of free ADP concentration. Besides \(\dot{V}O_2 \text{max} \), the maximal rate of glycolysis was included in this model, which is formally known as maximal lactate accumulation rate (\(\dot{\text{La}} \text{max} \)). Just recently, the fundamentals of this concept and the corresponding influence of \(\dot{\text{La}} \text{max} \) on MLSS were extensively summarized [15].

\[
\begin{align*}
\% \dot{V}O_2 \text{max} &= \frac{\text{minimal velocity necessary to elicit maximal oxygen uptake in the ramp test}}{\text{oxygen uptake in the ramp test protocol}} \\
\dot{\text{La}} \text{max} &= \text{maximal lactate accumulation rate} \\
\text{VOLBA} &= \text{interpolated velocity corresponding to a lactate concentration of 4 mmol·l}^{-1} \ (\text{onset of blood lactate accumulation, OBLA}) \\
\dot{V}O_2 \text{max} &= \text{minimal velocity necessary to elicit maximal oxygen uptake in the ramp test} \\
\text{VOL} &= \text{maximal respiratory exchange ratio attained during the ramp test protocol} \\
\text{VOLBA} &= \text{interpolated running economy corresponding to a lactate concentration of 4 mmol·l}^{-1} \ (\text{onset of blood lactate accumulation, OBLA}) \\
\end{align*}
\]

In cycling, previous research demonstrated that mathematical simulation approaches allow for calculating maximal lactate steady-state with an acceptable reliability [17, 18] and accuracy [19]. Furthermore, test procedures to determine \(\dot{\text{La}} \text{max} \) in running have been developed and demonstrated high reliability [20, 21]. Usually, the increase in post-exercise lactate concentration following an 10–15 s all-out sprint test is used to determine \(\dot{\text{La}} \text{max} \). Hence, the required tools exist to examine if \(\dot{\text{La}} \text{max} \) is a suitable...
augmentation of the metabolic profile and whether it is related to %\(\dot{V}O_2\)max in running. This study aims to assess the practical value of \(\dot{V}Lact\)max in terms of improving performance prediction in endurance running.

Materials and Methods

Participants

A total of \(N = 44\) trained endurance athletes (runners \(n = 24\); triathletes \(n = 20\)) volunteered to participate in this study. As an inclusion criterion, a 5000-m personal best of 22 and 20 minutes was required for female \((n = 15)\) and male \((n = 29)\) participants, respectively. Participants stated to have an overall weekly training routine based on the guidelines of the European Society of Cardiology (ESC). This check-up includes notation of the individuals’ account of their own medical, family and personal history, a physical examination and a resting electrocardiogram [22]. Only participants without positive findings were included. All procedures received institutional ethics approval (No. 008/2019) according to the Declaration of Helsinki. Before the investigation, participants were personally informed about the aims, procedures and potential risks of this study, and gave their written consent.

Design

The design of this study oriented on recent research that examined circadian rhythm, the participants performed the laboratory tests on Mondays and Wednesdays at approximately the same time of the day.

On their first visit to the laboratory, the participants were informed about the procedures, received the medical check-up and underwent a ten-site skinfold thickness measurement (Harpenden Skinfold Caliper, Baty Int., West Sussex, United Kingdom) to determine their body fat percentage [25]. Afterwards, the participants performed an incremental step test on a treadmill. On Wednesdays, the participants performed the 100-m all-out sprint test on an indoor track and approximately one hour afterwards a ramp test protocol until subjective exhaustion in the laboratory. On their last visit (Fridays), the participants performed a 5000-m time trial on a 400-m outdoor track. Testing in the laboratory was performed on a motorised treadmill (satum 300/100, h/p/cosmos sports & medical GmbH, Nussdorf-Traunstein, Germany) with a constant gradient of 1 % [26]. According to the guidelines of the manufacturer, the participants wore a safety belt, which was connected to the automatic security brake system of the treadmill.

Protocols

Incremental step test

The incremental step test started with an initial velocity of \(2.0 \text{ m} \cdot \text{s}^{-1}\) (\(7.2 \text{ km} \cdot \text{h}^{-1}\) or \(8:20 \text{ min} \cdot \text{km}^{-1}\)), which increased by 0.4 \(\text{m} \cdot \text{s}^{-1}\) (\(1.44 \text{ km} \cdot \text{h}^{-1}\)) every five minutes as illustrated in ▶ Fig. 1a. At the end of every step, the treadmill stopped for 30 seconds in which ratings of perceived exertion [27] were noted and a blood sample \((20 \mu l)\) was collected from the right earlobe to determine lactate concentration immediately (Biosen C-Line, EKF-diagnostic GmbH, Barleben, Germany). The incremental step test was terminated when blood lactate concentration exceeded 4.0 mmol · l\(^{-1}\). Fractional utilization of \(\dot{V}O_2\)max (%\(\dot{V}O_2\)max) at lactate threshold was interpolated for the velocity according to a fixed lactate concentration of 4 mmol · l\(^{-1}\) \((\dot{V}\text{OBLA})\). Throughout the incremental test, participants wore an airtight silicone oro-nasal mask (7450 Series, V2™, Hans-Rudolph, Inc., Shawnee, KS, United States of America) to record oxygen uptake \((\dot{V}O_2)\) and carbon dioxide output \((\dot{V}CO_2)\) breath-by-breath by a spirometric device (ZAN 600 USB, nSpire Health, Inc., Longmont, CO, United States of America). Flow sensors were calibrated manually by using a standardised 3000 ml high precision syringe (nSpire Health, Inc., Longmont, CO, United States of America).

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Total ((n = 44))</th>
<th>Females ((n = 15))</th>
<th>Males ((n = 29))</th>
<th>(d)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ([\text{yrs.}])</td>
<td>25.2 ± 4.1</td>
<td>27.1 ± 4.7</td>
<td>24.2 ± 3.4</td>
<td>0.747*</td>
<td>0.028</td>
</tr>
<tr>
<td>Height ([\text{m}])</td>
<td>1.77 ± 0.1</td>
<td>1.68 ± 0.06</td>
<td>1.81 ± 0.08</td>
<td>-1.758***</td>
<td><0.001</td>
</tr>
<tr>
<td>Mass ([\text{kg}])</td>
<td>66.5 ± 9.2</td>
<td>58 ± 6.4</td>
<td>70.8 ± 7.2</td>
<td>-1.843***</td>
<td><0.001</td>
</tr>
<tr>
<td>Body Fat ([%])</td>
<td>12.5 ± 3.2</td>
<td>13.6 ± 4.9</td>
<td>11.9 ± 1.7</td>
<td>0.539</td>
<td>0.202</td>
</tr>
<tr>
<td>Experience ([\text{yrs.}])</td>
<td>8.0 ± 5.8</td>
<td>7.5 ± 5.6</td>
<td>8.2 ± 5.9</td>
<td>-0.121</td>
<td>0.756v</td>
</tr>
<tr>
<td>Training ([\text{h} \cdot \text{wk}^{-1}])</td>
<td>11.9 ± 5.4</td>
<td>12.3 ± 4.5</td>
<td>11.6 ± 5.8</td>
<td>0.130</td>
<td>0.683</td>
</tr>
<tr>
<td>Training ([\text{km} \cdot \text{wk}^{-1}])</td>
<td>58.6 ± 24.2</td>
<td>62.2 ± 12.0</td>
<td>54.1 ± 28.4</td>
<td>0.332</td>
<td>0.307</td>
</tr>
</tbody>
</table>

Values are expressed as mean value \((\bar{x})\) and standard deviation \((SD)\); * significant difference between female and male participants \((p \leq 0.05)\); ** significant difference between female and male participants \((p \leq 0.001)\); *** Comparisons between female and male participants were performed by using the Mann-Whitney-U test.
Fig. 1 Protocols used for the incremental step test (left) and the ramp test (right). Occasions for blood sampling to determine lactate concentration are marked by the drop symbol. During the incremental test, gas analyses were provided throughout, whereas the 8 min warm-up preceding the ramp test was performed without gas analyses.

100-m all-out sprint test
The participants performed the 100-m all-out sprint test and the standardised warm-up of 15 minutes including technical drills and starts as described previously [20, 21]. Throughout the sprints, participants were verbally encouraged by the examiners. The time to cover the 100 metres (t_{100}) was determined using a start pedal and a double infrared photoelectric light barrier (Sportronic Electronic Sports Equipment, Winnenden-Herthmannsweiler, Germany). Blood samples were collected immediately before and after the sprint test, as well as every minute after the sprint for 10 minutes.

ΔL_{max} was calculated as the difference between the measured maximal post-exercise lactate concentration and resting lactate concentration (ΔL_{100}), which was divided by the difference between t_{100} and the period at the beginning of exercise for which no lactate formation is assumed (t_{alac}) (Eq. 1) [20, 21, 28, 29].

$$cL_{\text{max}} = \frac{\Delta L_{100}}{t_{\text{test}} - t_{\text{alac}}}$$

As a representation of phosphocreatine metabolism, t_{alac} was interpolated according to previous research (Eq. 2) [20, 28].

$$t_{\text{alac}} = t_{100} \cdot 0.0909 + 2.0455$$

After the last blood sample was collected, participants performed an individual cool-down for 10 min at a self-determined intensity and had to arrive at the laboratory approximately 45 min afterwards.

Ramp test
As a warm-up preceding the ramp test protocol, the participants performed eight minutes at 2.8 m·s⁻¹ (10.08 km·h⁻¹ or 5:57 min·km⁻¹) without spirometric measurement (Fig. 1b). After a short break for attaching the mask, the ramp test protocol started with an initial velocity of 2.8 m·s⁻¹ for another 2 minutes. Afterwards, velocity increased by 0.15 m·s⁻¹ (0.54 km·h⁻¹) every 30 seconds until subjective exhaustion of the participants. The time to exhaustion (TTE) was noted. Data of gas analysis were averaged for every single 30 second step to determine VO₂max. The minimal velocity necessary to elicit maximal oxygen uptake (vVO₂max) was determined as the velocity corresponding to the highest value for oxygen uptake. Anaerobic speed reserve (ASR) was calculated as the difference between the average speed during the 100-m all-out sprint (v₁₀⁰) and vVO₂max. Blood lactate concentration was determined before and after performing the warm-up as well as immediately after the ramp test protocol. As criteria for VO₂max, a plateau of ≤ 150 ml·min⁻¹, a heart rate of ≥ 95 % HRmax (highest values attained in the ramp test or 5000-m time trial), a respiratory exchange ratio (RER) of ≥ 1.05 and a post-exercise lactate concentration of ≥ 8 mmol·l⁻¹ were used for evaluation [30]. After the ramp test, participants were encouraged to perform an individual cool-down at a self-determined intensity and duration.

5000-m time trial
The participants started with an easy jog for 10 min at a self-determined intensity on the 400-m track. Afterwards, the participants performed various technical drills for approximately 7 to 10 minutes, followed by four ascending runs of approximately 50 metres. After performing the warm-up, participants had a passive recovery of 5 to 10 minutes before performing the 5000-m time trial. The 5000-m time trial started simultaneously for all participants that had been tested in the respective week (2 to 6 participants). The examiner gave the following instruction regarding the participants’ choice of pacing strategy:

Try to finish the 5000-m in the shortest time possible. This should be the main goal for your attempt. At the end of the race, you should arrive with nothing left in the tank. You can freely choose and adjust your individual pacing strategy. Don’t let yourself be distracted by the...
pace of the other runners. But try to increase your velocity predominantly towards the end of the race."

Throughout the time trial, the participants wore a sport watch (Garmin Forerunner 920XT, Garmin International, Inc., Olathe, KS, United States of America), which recorded the participants’ time, heart rate, cadence and pace. Participants were allowed to take a look at these measures ad libitum. Split times were hand-stopped by one examiner for each runner, who were standing inside the 400-m track near the finish line. To accurately record the participants’ 200-m splits, two markers (javelins with flashy pennants at the top) were placed near the beginning of the curves as illustrated in Fig. 2. Participants received verbal feedback every second 200-m split time by their examiner. Additionally, feedback about the remaining laps was given for the last four laps. As a measure of the ‘finishing kick’, the average velocity during the final 200 m was divided by the average velocity of the preceding 4800 m (v200/v4.8k).

Lactate concentration was determined before and after the warm-up, as well as immediately before and after performing the 5000-m time trial.

Statistical analyses

Statistical analyses were done using SPSS (25, IBM SPSS, Armonk, NY, USA). To access which physiological variables significantly predict 5000-m time trial performance (t5k), a stepwise multiple regression analysis was performed. This analysis is in line with previous research focusing on ultramarathon trail-running [23, 24]. However, this study excluded anthropometrics and performance parameters and focussed on purely physiological variables. Physiological variables were entered into the model if there was a significant change in the F-value (p ≤ 0.05) and by order of their change in R². The assumptions of normality, linearity and homoscedasticity were checked visually by using the plot of expected cumulated probability against observed cumulative probability (P-P plot) and the plot of standardized residuals (ZRESID) against standardised predicted values (ZPRED). Independence of errors was assessed by Durbin-Watson statistics (ranging between 0 and 4) with a value of close to two indicating that the residuals are uncorrelated. Col-linearity statistics were calculated as tolerance and variance inflation factor (VIF).

Differences between female and male runners were analysed by using independent t-tests in case of normally distributed values in both groups or by using the non-parametric Mann-Whitney U-test. Normality was checked by using the Shapiro-Wilk test (a > 0.10), since it is more appropriate for small sample sizes (N ≤ 50) and more powerful when compared to the Kolmogorov-Smirnov test (even with Lilliefors correction) [31–33]. Analogously, a dependent t-test or Wilcoxon’s test were applied for analysing differences between maximal heart rate attained in the ramp test (HRmax,RT) and during the 5000-m time trial (HRmax,5k). The individual differences between maximal heart rates were examined visually. As a measure of effect-size, Cohen’s d was calculated. Correlation analyses were performed for ċLa with %VO2max, v200/v4800 and ASR by using Pearson’s correlation coefficient or alternatively by Spearman’s rank correlation in case of significant violations to normal distribution.

Results

A total of n = 43 participants performed all exercise tests of this study. One participant attained a calf-muscle strain, which is why data for the 5000-m time trial are missing for this participant. Due to the personal schedule of the participants, the 5000-m time trial was, in few cases (n = 3), delayed for one week. Since testings were performed from March to September, ambient temperature during the 5000-m time trials ranged between 10 ° and 26 °C with drizzling rain on two occasions.

The VO2max criteria of ≤ 150 ml·min⁻¹ plateau and a heart rate of ≥ 95 % HRmax were met for almost all (except two) participants (96 %). The criteria for RER ≥ 1.05 and lactate concentration ≥ 8 mmol·l⁻¹ were met by 64 and 39 % of the participants, respectively. In total, the participants met at least four (30 %), three
(68%), two (96%) or one (100%) of these VO₂max criteria. All participants stated to be exhausted at the end of the test.

Maximal heart rate did not significantly differ between values attained during the ramp test and the 5000-m time trial (d = 0.015, p = 0.616). However, a large variation in individual heart rate differences was observed (▶ Fig. 3a). Whereas 18% of the participants attained exactly the same value for maximal heart rate during the ramp test and time trial, 47% attained a higher value during the ramp test (▶ Fig. 3b). However, only half of these individuals demonstrated a difference that exceeded 3 min⁻¹. On the other hand, 35% of the participants attained a higher maximal heart rate during the time trial with 18% of all participants demonstrating a difference of at least 5 min⁻¹.

The participants performed the 5000-m time trial at a high percentage of their maximal heart rate, which exceeded 90% for most of the time (▶ Fig. 4). Individual and mean pacing characteristics during the time trial demonstrate a fast start and a high variability at the end. Some participants performed the finish with a very high increase in velocity, while others demonstrated a steadier pace. Ca-dence demonstrated a high variability between participants and was highest during the start and finish of the race.

Stepwise multiple regression demonstrated that augmenting Joyner’s model (VO₂max, REOBLA and %VO₂max) by means of ċLaₘₐₓ explained an additional amount of variance (ΔR² = 4.4%, p = 0.006) in tₕₕ resulting in a total R² of 79.8% (see Supplementary Table). Durbin-Watson statistics resulted in a value of 2.058. Visually examination of the respective plots demonstrated that the criteria for normality, linearity and homoscedasticity were met by the final model (see Supplementary Figure). Tolerance and VIF of the included parameters ranged from 0.627 to 0.777 and 1.332 to 1.595, respectively (▶ Table 2). VO₂max demonstrated the highest stand-ardized coefficient (β = −0.978) while ċLaₘₐₓ showed the lowest value (β = −0.244). However, performing the same analysis exclu-sively for males, ċLaₘₐₓ was not included in stepwise linear regression.

Female participants demonstrated a lower body mass, lower height and higher age (▶ Table 1). Body fat percentage, as well as training experience and volume did not differ between females and males. Regarding performance variables, females had a slower t₁₀₀ and tₕₕ (▶ Table 3). Females demonstrated a lower TTE, VO₂max, VO₂max, ċLaₘₐₓ, ASR and v₂₀₀/v₄.₈k. During the ramp test protocol, females demonstrated a lower maximal RER and a lower post-exercise lactate concentration. The lactate concentrations following the sprint test and the 5000-m time trial were also lower in females. No significant differences between females and males could be found in heart rate parameters. ċLaₘₐₓ significantly correlated with ASR (r = −0.644, p < 0.001), %VO₂max (r = −0.439, p = 0.003) and v₂₀₀/v₄.₈k (r = −0.389, p = 0.010) (▶ Fig. 5).

Discussion

The aim of this study was to assess the practical value of ċLaₘₐₓ in terms of improving performance prediction in a 5000-m time trial. It was found that including ċLaₘₐₓ in a model to calculate 5000-m time trial performance allows to explain a significant amount of variance (4.4%) in a mixed-sex group of trained athletes. Females had a slower tₕₕ and a lower VO₂max, ċLaₘₐₓ, ASR and v₂₀₀/v₄.₈k compared to males. Furthermore, ċLaₘₐₓ demonstrated a significantly negative correlation with %VO₂max and a positive correlation with v₂₀₀/v₄.₈k and ASR. Additionally, maximal heart rate showed high inter-individual differences between the ramp test and the 5000-m time trial.

The most important physiological variables to explain 5000-m time trial performance were, in descending order, VO₂max, REOBLA, %VO₂max and ċLaₘₐₓ. This model sufficiently met the assumptions of normality, linearity, homoscedasticity, non-collinearity and independence of errors indicating adequate dependability of the results. It is important to note that this information has poorly been reported in previous models [13]. In fact, more than 66% of the variance in 5000-m time trial performance could be explained by...
VO₂ max and RE	extsubscript{OBLA}. An explanation of nearly 80% of the variance in \(t_{5k} \) seems to be rather small when compared to other predictive performance models described in the literature [13, 23, 24]. However, most of these models include parameters that can be characterised as being both, physiological and performance parameter. For example, vVO₂ max (or maximum velocity in a ramp test) is one of the major variables associated with 5000-m [13] and 50-km performance [23]. The same applies to this very study: vVO₂ max would have predicted 5000-m time trial performance to a high extend. Including this parameter in our model would have resulted in two problems. Firstly, vVO₂ max demonstrates a high correlation to VO₂ max and as such would have increased collinearity. Secondly, this parameter is highly related to the ability to sustain an increasing task until exhaustion [34]. As such, this can be characterised as a kind of performance test that requires anaerobic capabilities as well. In order to assess relevant predictors for 5000-m performance, we decided to implement a purely physiological model. Pastor et al. (2022) demonstrated that 100-km performance was associated with muscular strength and body composition and that longer distances seem to lack prediction by classical physiological variables [24]. As highlighted in their conclusions, the implementation of other variables related to (neuro-)muscular fatigue might have improved performance prediction. This is in line with the upcoming concept of ‘durability’ which was recently highlighted [35].

The significant correlation between \(\text{CL}_{\text{max}} \) and \%VO₂ max indicates a qualitative agreement with the assumptions of Alois Mader [14]. Participants with a higher \(\text{CL}_{\text{max}} \) demonstrate a lower \%VO₂ max (given a similar VO₂ max) [15]. However, given a variance explanation of 20% and the rather high variability, this finding should not be overrated. It is important to note that this is a first approximation to the way more complex interdependencies described in Mader’s model [14, 15, 28]. As in other scientific contexts, the correlation between \(\text{CL}_{\text{max}} \) and \%VO₂ max does not imply causation. Longitudinal studies should augment \(\text{CL}_{\text{max}} \) in exercise testing and examine, whether a change in \(\text{CL}_{\text{max}} \) is related to a change in \%VO₂ max. This could verify the assumption made in this cross-sectional investigation. Another assumption of this model, that \%VO₂ max increases with higher values of VO₂ max [15], could not be verified with the data of this study. In fact, the correlation of these parameters even tended to be negative. Hence, it should be examined what kind of model – other than a pure linear one as applied here – might be the most adequate to describe the relationship between these measures.

Moreover, blood lactate concentration depends on the rate of release and removal, as well as the distribution volume [36]. Medbo & Toska (2001) examined post-exercise lactate concentration following (1-) 2 min of (non-) exhaustive bicycling. They found that the estimated distribution volume changes increases over time and is significantly larger following non-exhaustive exercise when compared to exhaustive cycling from 3 min after exercise onwards [36]. Hence, actual values of \(\text{CL}_{\text{max}} \) might be underestimated by using net post-exercise lactate concentration and assuming a constant distribution volume. However, since this study applied a completely different type of exercise (~14-s all-out), we can only speculate about the transferability of these findings. Recent research demonstrated that the interpretation of velocity constants describing lactate exchange and removal should consider the applied modeling approach as well as exercise intensity and duration [37].

Differences between female and male in sprint and endurance performance as well as VO₂ max agreed with the literature [38]. \%VO₂ max and RE were similar between sexes, which might be due to the trained performance level of the participants [39]. The difference in \(\text{CL}_{\text{max}} \) between sexes is influenced by the mathematical dependence on \(t_{100} \), which was considerably higher in females. Despite the significantly longer exercise time, the pure increase in post-exercise lactate concentration following the sprint was found to be lower in females. This indicates that the net glyco-

![Image](94x456 to 282x580)

![Image](94x318 to 282x442)

![Image](94x593 to 281x717)
lytic power is lower in females, which might result from differences in muscle mass and fibre size contribution. The positive correlation between $\frac{\text{VO}}{2\text{max}}$ and $v_{200}/v_{4.8k}$ indicates that the athletes with a higher glycolytic power are capable of performing an even more reinforced ‘finishing kick’. This seems reasonable since spurs of higher intensity put substantial demands on glycolysis in terms of substrate-level phosphorylation. This could have direct applications to athletic practice and the individual pacing strategy. However, ċLa_{max} only explained 15% of the variance found in $v_{200}/v_{4.8k}$ making it hard to provide concrete recommendations. Aside from physiological factors, the anticipatory feedback model also considers psychological and environmental factors to explain modifications in work rate during time trials [16]. In this context, the rate of lactate production and concomitant physiological changes in muscular pH might be potent afferent feedback to optimise individual pacing.

Maximal heart rate assessment appears to be influenced by various factors resulting in rather high inter-individual differences. In contrast to the findings of this study demonstrating similar average values for maximal heart rate during the time trial and ramp test (192 ± 9 vs. 191 ± 9 min⁻¹, respectively), previous research indicated that maximal heart rate is substantially higher during training and competition (> 10 min⁻¹) when compared to a graded exercise test [40]. The discrepancy between studies might result from differences in exercise protocols. A reason for the higher maximal heart rate attained during the time trial when compared with the ramp test could be phenomenon called cardiovascular drift [41]. Cardiovascular drift is characterised as decrease in stroke volume and concomitant increase in heart rate during prolonged aerobic exercise, which might result from an increase in body temperature [42]. Accordingly, previous research demonstrated that heart rate during ramp tests designed to quickly elicit VO₂max might not result in true maximal heart rate when compared to other lab tests, field tests or even competitions of longer duration [43, 44]. The same holds for the huge inter-individual variation in maximal heart rate differences between procedures as observed in this study [44]. Given that heart rate increases with ambient temperature, the conditions during the individual time trials might influence the differences seen in maximal heart rate [45]. Another reason for a higher peak heart rate during the time trial could be the difference in the preceding warm-up [43]. In the study of Ingjer (1991), nine out of ten participants demonstrated a higher peak heart rate after performing a 30 min warm-up at 60 % VO₂max when compared to a 10 min warm-up at the same intensity. This could again be influenced by the phenomenon of cardiovascular drift [41]. However, given the fact that the warm-ups differed in other factors as well (e.g. technical drills and ascending runs compared to steady running at low-intensity), a direct comparison seems to be challenging. A higher maximal heart rate attained during the ramp tests could result from a fatigue effect occurring for exhaustive exercise when performed on consecutive days [43]. However, given that there was one day of rest between ramp test and the time trial, this influence might be less in this study. Additionally, receiving verbal encouragement throughout the ramp test (as opposed to the time trial in which encouragement was present every 200 to 400 metres) might increase the participants’ motivation to perform well and thus result in higher values of maximal heart rate [46]. However, the same effect was found for head-to-head competitions that were simulated during the time trials. We assume that this effect is moderated by the similarity of the participants’ performance and pacing in the respective time trial resulting in a literally more or less head-to-head competition.

Limitations

A very important aspect worth considering in this study is the fact that multiple regression was applied in a mixed-sex group of endurance athletes. Since females had a significantly lower T_{sa} and ċLa_{max}, the significant inclusion of ċLa_{max} might (at least in parts) be influenced by the effect of sex. However, subgroup analyses would have lacked statistical power for multiple regressions covering four predictors for the given effect size. Future studies are encouraged to replicate this study in a larger sample of females or males.

Differing conditions during time trials (e.g. temperature, wind and weather) might influence the agreement between laboratory findings and endurance performance and pacing in the field and the comparison between individual participants. However, previous research comparing a wide range of temperatures (-14 to +20 °C) at a wind speed of 5 m · s⁻¹ did not find an effect on TTE, RE and VO₂max in female endurance runners [45]. Hence, we believe that the potential perturbations in time trial resulting from differences in outdoor conditions are in the range of day-by-day variability and do not substantially influence the findings of this study.
threshold of 4 mmol · l⁻¹, there is reason to debate why we did not use other (ventilatory) thresholds instead. Some researchers gates in cycling [47] and running [48], since both concept result in

Table 3 Physiological and performance parameters of female and male participants.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Total</th>
<th>Female</th>
<th>Male</th>
<th>d</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO₂max [ml · min⁻¹ · kg⁻¹]</td>
<td>60.5 ± 5.7</td>
<td>55.4 ± 3.9</td>
<td>63.2 ± 4.5</td>
<td>-1.810***</td>
<td><0.001U</td>
</tr>
<tr>
<td>vVO₂max [m · s⁻¹]</td>
<td>5.17 ± 0.4</td>
<td>4.8 ± 0.26</td>
<td>5.36 ± 0.31</td>
<td>-1.903***</td>
<td><0.001U</td>
</tr>
<tr>
<td>vOBLA [m · s⁻¹]</td>
<td>4.08 ± 0.36</td>
<td>3.88 ± 0.16</td>
<td>4.18 ± 0.4</td>
<td>-0.884**</td>
<td>0.003U</td>
</tr>
<tr>
<td>%VO₂max [%]</td>
<td>85.9 ± 5.4</td>
<td>87.6 ± 6</td>
<td>85.4 ± 4.9</td>
<td>0.491</td>
<td>0.243U</td>
</tr>
<tr>
<td>REOBLA [ml · kg⁻¹ · km⁻¹]</td>
<td>213 ± 15</td>
<td>208 ± 11</td>
<td>215 ± 17</td>
<td>-0.459</td>
<td>0.162</td>
</tr>
<tr>
<td>RE₁₂ [ml · kg⁻¹ · km⁻¹]</td>
<td>214 ± 18</td>
<td>209 ± 14</td>
<td>217 ± 19</td>
<td>-0.457</td>
<td>0.220</td>
</tr>
<tr>
<td>t5k [min]</td>
<td>19.05 ± 1.51</td>
<td>20.43 ± 1.02</td>
<td>18.31 ± 1.18</td>
<td>2.775***</td>
<td><0.001U</td>
</tr>
<tr>
<td>t100 [s]</td>
<td>13.9 ± 1.35</td>
<td>15.39 ± 1.14</td>
<td>13.14 ± 0.58</td>
<td>-1.237**</td>
<td><0.001</td>
</tr>
<tr>
<td>RE12 [ml · kg⁻¹ · km⁻¹]</td>
<td>214 ± 18</td>
<td>209 ± 14</td>
<td>217 ± 19</td>
<td>-0.457</td>
<td>0.220</td>
</tr>
<tr>
<td>%VO₂max based vOBLA</td>
<td>85.9 ± 5.4</td>
<td>87.6 ± 6</td>
<td>85.4 ± 4.9</td>
<td>0.491</td>
<td>0.243U</td>
</tr>
<tr>
<td>TTE [min]</td>
<td>8.43 ± 1.35</td>
<td>7.1 ± 0.85</td>
<td>9.12 ± 1</td>
<td>-2.120***</td>
<td><0.001U</td>
</tr>
<tr>
<td>HRmax_ST [min⁻¹]</td>
<td>187 ± 10</td>
<td>186 ± 13</td>
<td>187 ± 9</td>
<td>-0.105</td>
<td>0.655</td>
</tr>
<tr>
<td>HRmax_RT [min⁻¹]</td>
<td>191 ± 9</td>
<td>188 ± 12</td>
<td>193 ± 7</td>
<td>-0.557</td>
<td>0.114</td>
</tr>
<tr>
<td>HRmax,5k [min⁻¹]</td>
<td>192 ± 9</td>
<td>189 ± 11</td>
<td>193 ± 7</td>
<td>-0.466</td>
<td>0.242</td>
</tr>
<tr>
<td>HRmean,5k [min⁻¹]</td>
<td>179 ± 10</td>
<td>175 ± 13</td>
<td>181 ± 8</td>
<td>-0.600</td>
<td>0.110</td>
</tr>
<tr>
<td>HRmax,ST [min⁻¹]</td>
<td>181 ± 10</td>
<td>180 ± 12</td>
<td>181 ± 8</td>
<td>-0.105</td>
<td>0.655</td>
</tr>
<tr>
<td>HRmean,ST [%HRmax]</td>
<td>93.6 ± 2.8</td>
<td>94.5 ± 2.5</td>
<td>93.1 ± 2.8</td>
<td>0.518</td>
<td>0.090U</td>
</tr>
<tr>
<td>RĖOBLA [mmol · l⁻¹ · s⁻¹]</td>
<td>0.67 ± 0.16</td>
<td>0.55 ± 0.13</td>
<td>0.74 ± 0.14</td>
<td>-1.389***</td>
<td><0.001</td>
</tr>
<tr>
<td>t5k [s]</td>
<td>19.05 ± 1.51</td>
<td>20.43 ± 1.02</td>
<td>18.31 ± 1.18</td>
<td>2.775***</td>
<td><0.001U</td>
</tr>
<tr>
<td>VO₂max [ml · s⁻¹]</td>
<td>5.17 ± 0.4</td>
<td>4.8 ± 0.26</td>
<td>5.36 ± 0.31</td>
<td>-1.903***</td>
<td><0.001U</td>
</tr>
<tr>
<td>VO₂max [%]</td>
<td>85.9 ± 5.4</td>
<td>87.6 ± 6</td>
<td>85.4 ± 4.9</td>
<td>0.491</td>
<td>0.243U</td>
</tr>
<tr>
<td>ΔLa,OBLA [mmol · l⁻¹]</td>
<td>6.99 ± 1.23</td>
<td>6.43 ± 1.25</td>
<td>7.27 ± 1.14</td>
<td>-0.713*</td>
<td>0.029</td>
</tr>
<tr>
<td>ΔLa,RER [mmol · l⁻¹]</td>
<td>5.87 ± 1.74</td>
<td>5.31 ± 2.06</td>
<td>6.16 ± 1.5</td>
<td>-0.498*</td>
<td>0.045</td>
</tr>
<tr>
<td>ΔLa₃₅ [mmol · l⁻¹]</td>
<td>6.49 ± 2.18</td>
<td>5.87 ± 1.97</td>
<td>6.82 ± 2.24</td>
<td>-0.442</td>
<td>0.177</td>
</tr>
</tbody>
</table>

Values are expressed as mean value (±) and standard deviation (SD); * significant difference between female and male participants (p ≤ 0.05); ** significant difference between female and male participants (p ≤ 0.001); U Comparisons between female and male participants were performed by using the Mann-Whitney-U test.; ASR = anaerobic speed reserve which was calculated as the difference between the average speed during the 100-m all-out sprint and the minimal velocity necessary to elicit maximal oxygen uptake; ΔLa,OBLA = maximal lactate accumulation rate; d = Cohen’s d effect-size; HRmax,ST = maximal heart rate attained during the incremental step test protocol; HRmax,RT = mean heart rate attained during the 5000-m time trial; HRmax,5k = interpolated heart rate corresponding to a lactate concentration of 4 mmol · l⁻¹ (onset of blood lactate accumulation, OBLA); ΔLa,5k = interpolated lactate concentration during the incremental step test protocol; L̇p₉₅,5k = lactate concentration immediately after performing the 5000-m time trial; L̇p₉₅,RT = lactate concentration immediately after performing the ramp test protocol; p = probability of finding the observed (or more extreme) results when the null hypothesis is assumed to be true; RE₁₂ = interpolated running economy at 12 km · h⁻¹; RE,OBLA = interpolated running economy corresponding to a lactate concentration of 4 mmol · l⁻¹ (onset of blood lactate accumulation, OBLA); ṖE₉₅,5k = maximal respiratory exchange ratio attained during the ramp test protocol; t₁₀₀ = time to perform the 100-m all-out sprint; t₅₉₅ = time to perform the 5000-m time trial; TTE = time to reach subjective exhaustion during the ramp test protocol (excluding the time to perform the warm-up); v₂₀₀/v₄.₈₅k = ratio of the mean speed during the 100-m all-out sprint and the minimal velocity necessary to elicit maximal oxygen uptake; %VO₂max = fractional utilization of VO₂max at lactate threshold according to a fixed lactate concentration of 4 mmol · l⁻¹ (onset of blood lactate accumulation, OBLA); ΔLa₃₅ = maximal post-exercise increase in lactate concentration following the 100-m all-out sprint test; ΔLa,RER = increase in lactate concentration during the course of the ramp test protocol; ΔLa₃₅ = increase in lactate concentration during the course of the 5000-m time trial.

Even though %VO₂max based vOBLA as a frequently used lactate threshold of 4 mmol · l⁻¹ [11], there is reason to debate why we did not use other (ventilatory) thresholds instead. Some researchers argue that lactate and ventilatory thresholds can be seen as surrogates in cycling [47] and running [48], since both concept result in similar intensities and demonstrate a similar degree of reliability [49, 50]. However, other studies highlight the caveats of ventilatory thresholds in terms of objectivity and reliability [51, 52]. Since both approaches seem to be equally effective for estimating the beginning of the high-intensity domain in terms of MLSS [53], and the fact that vOBLA was equally reliable when compared to ‘individual’ lactate thresholds in cycling [54], we feel that the applied lac-
The present findings indicate that \(\text{CLan}_{\text{max}} \) allows for significant (yet minor) improvements in 5000-m performance prediction in a mixed-sex group and it is related to \(\% \text{VO}_{2\text{max}} \) and the ‘finishing kick’. This expands the established performance models by means of an anaerobic capability, which is relevant for understanding exercise physiology and performance. Since \(\text{CLan}_{\text{max}} \) testing is a time-efficient procedure and does not restrict the athletes’ training schedule, scientists and coaches are encouraged to implement it in practice. Future studies need to replicate this analysis in middle-distance events and examine differences in their predictability. Lon-
Quittmann OliverJan et al. Is Maximal Lactate Accumulation ... Int J Sports Med 2022; 43: 1–12 | © 2022. The Author(s)

gitudinal studies examining the effects of deliberate training on cLmax are sparse and thus of particular interest.

Athletes aiming to improve their ‘finishing-kick’ might need to increase their cLmax in order to provide the required power of glycolytic metabolism. However, since this study investigated pacing only in terms of the ‘finishing kick’, future research should identify pacing strategies over the complete time trial distance. Such pacing clusters could be compared by means of their performance outcomes and physiological characteristics to improve the understanding of individual pacing in running. Athletes aiming to elicit HRmax should be aware of the high inter-individual differences between procedures, which directly affect training prescription based on %HRmax. In search of the most effective testing procedures, research needs to further explore individual heart rate responses to different exercise protocols.

Acknowledgements

This paper is dedicated to Prof. Dr. med. Dr. h.c. mult. Wildor Hollmann. The authors would like to thank all participants who took part in this study for their patience and commitment. There were no funding sources for the present article.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

Quittmann OliverJan et al. Is Maximal Lactate Accumulation... Int J Sports Med 2022; 43: 1-12 | © 2022. The Author(s)