The gastric fundus is the most challenging site for endoscopic submucosal dissection (ESD) because accessing the fundus with the tip of the endoscope is difficult. Furthermore, the wall of the fundus is thin and the knife-edge is pointed towards the muscle layer. A combination of the previously reported effective methods, namely, a multibending endoscope [1], multiloop traction [2], and underwater technique [3] may offer safe treatment in the fundus. Herein, we report a successful ESD performed by a trainee using these three methods.

A 58-year-old woman presented with a 10-mm type 0-IIa gastric adenocarcinoma (fundic gland type) in the gastric fundus (►Fig. 1). ESD was performed using a multibending endoscope (GIF-2TQ260M; Olympus, Tokyo, Japan) and a DualKnife J (KD-655L; Olympus, Tokyo, Japan) by an endoscopist who was inexperienced in fundal surgery, under the supervision of an experienced surgeon (►Video 1).

Although a conventional endoscope cannot reach the fundus, this area can be easily accessed with a multibending endoscope, so enabling an easy peripheral incision. Dissection of the submucosa was complicated because the stomach was tense with air and the knife-edge was facing the muscle layer. Once the stomach had been sufficiently degassed, the knife-edge was nearly parallel to the muscle layer; however, the resulting field of view for the procedure was unsatisfactory. Therefore, underwater ESD was performed, which enables safe dissection in the nondilated stomach, with the knife nearly parallel to the muscle layer, but with a good field of view (►Fig. 2). Furthermore, the respiratory movement was suppressed using this method. After the flap had been created, a multiloop traction device (Boston Scientific, Marlborough, Massachusetts, USA) was attached, and traction was applied in the
The authors

Koichi Hamada1,2 @ Yoshinori Horikawa1, Yoshiki Shiwa1, Kae Techigawara1, Masafumi Ishikawa1, Noriyuki Nishino1, Michitaka Honda1,2,3
1 Department of Gastroenterology, Southern-Tohoku General Hospital, Koriyama, Japan
2 Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Fukushima, Japan
3 Department of Surgery, Southern-Tohoku General Hospital, Koriyama, Japan

Corresponding author

Koichi Hamada, MD
Department of Gastroenterology, Southern-Tohoku General Hospital, 7-115, Yatsuyamada, Koriyama-shi, Fukushima 963-8563, Japan
koichi.hamada@mt.strins.or.jp

References


Bibliography

Endoscopy
DOI 10.1055/a-1974-9792
ISSN 0013-726X
published online 2022
© 2022. The Author(s).

This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

ENDOSCOPY E-VIDEOS
https://eref.thieme.de/e-videos

Endoscopy E-Videos is an open access online section, reporting on interesting cases and new techniques in gastroenterological endoscopy. All papers include a high quality video and all contributions are freely accessible online. Processing charges apply (currently EUR 375), discounts and waivers acc. to HINARI are available.

This section has its own submission website at https://mc.manuscriptcentral.com/e-videos

opposite direction (Fig.3). The stomach was then dilated, providing better traction, and an uncomplicated en bloc dissection was performed by the trainee surgeon.

We have demonstrated that even nonexperts can safely perform ESD in the fundus using these techniques.

Endoscopy_UCTN_Code_TTT_1AO_2AG

Acknowledgments

We thank Editage (www.editage.com) for English language editing and publication support.

Competing interests

The authors declare that they have no conflict of interest.

Fig.3 Endoscopic image showing the good view of the submucosa obtained by applying traction using a multiloop traction device.