Synlett 2023; 34(12): 1524-1528
DOI: 10.1055/a-1982-5433
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science

N-Tosyl-1,2,3-triazoles as Scaffolds for Morpholines: The Total Synthesis of (–)-Chelonin A

Nina Gunawan
a   School of Natural Sciences – Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
b   School of Molecular Sciences, The University of Western Australia (M310), Crawley, WA, 6009, Australia
,
Michael J. Nutt
b   School of Molecular Sciences, The University of Western Australia (M310), Crawley, WA, 6009, Australia
,
Alex C. Bissember
a   School of Natural Sciences – Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
,
Jason A. Smith
a   School of Natural Sciences – Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
,
b   School of Molecular Sciences, The University of Western Australia (M310), Crawley, WA, 6009, Australia
› Author Affiliations
The authors thank the University of Tasmania School of Natural Sciences – Chemistry for funding. NG thanks the University of Tasmania for a Tasmanian Graduate Research Scholarship. MJN is a grateful recipient of financial support from an Australian Government Research Training Program (RTP) scholarship and the Ernest and Evelyn Havill-Shacklock scholarship. ACB’s contributions were supported by an Australian Research Council (ARC) Future Fellowship (FT200100049).


This paper is dedicated to Professor Masahiro Murakami for his distinguished achievements in novel transition-metal-catalysed reactions and organic synthetic chemistry.

Abstract

Substituted morpholine derivatives appear frequently in biologically active compounds and thus novel routes towards such structures are of great synthetic interest. Herein, we report the total syntheses of chelonin A, a morpholine-derived marine natural product with reported antibacterial and anti-inflammatory activity. The key step in this process was a rhodium carbenoid 1,3-insertion into a bromohydrin O–H bond, followed by annulation, leading to a 2,6-disubstituted-3,4-dihydro-2H-1,4-oxazine core. This work was then extended to deliver the first asymmetric total synthesis of (–)-chelonin A using an enantioenriched bromohydrin, prepared in turn via asymmetric transfer hydrogenation of an α-bromoketone.

Supporting Information



Publication History

Received: 03 November 2022

Accepted after revision: 18 November 2022

Accepted Manuscript online:
18 November 2022

Article published online:
10 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Delost MD, Smith DT, Anderson BJ, Njardarson JT. J. Med. Chem. 2018; 61: 10996
    • 1b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 1c Carlino L, Rastelli G. J. Med. Chem. 2016; 59: 9305
  • 2 Tong XG, Zhou LL, Wang YH, Xia C, Wang Y, Liang M, Hou FF, Cheng YX. Org. Lett. 2010; 12: 1844
  • 3 Bobzin SC, Faulkner DJ. J. Org. Chem. 1991; 56: 4403
    • 4a Masanori S, Kazuko A, Yoshiyuki N, Kyoko N. Heterocycles 1995; 41: 5
    • 4b Gharpure SJ, Anuradha D, Prasad JV. K, Rao PS. Eur. J. Org. Chem. 2015; 86
    • 4c Borah M, Borthakur U, Saikkia AK. J. Org. Chem. 2017; 82: 1330
    • 4d Wang Y, Zhang WY, You SL. J. Am. Chem. Soc. 2019; 141: 2228

      For an overview of the synthesis of N-heterocycles from N-sulfonyl-1,2,3-triazoles, please see:
    • 5a Miura T, Murakami M. Reactions of α-Imino Rhodium(II) Carbene Complexes Generated from N-Sulfonyl-1,2,3-Triazoles. In Rhodium Catalysis in Organic Synthesis: Methods and Reactions. Tanaka K. Wiley-VCH; Weinheim: 2019: 449
    • 5b Monalisa A, Kavuri R, Pazhamalai A. Chem. Rev. 2022; 15: 13108

    • For some early examples N-heterocycles from N-sulfonyl-1,2,3-triazoles using dirhodium catalysis, please see:
    • 5c Chattopadhyay B, Gevorgyan V. Org. Lett. 2011; 13: 3746
    • 5d Miura T, Tanaka T, Hiraga K, Stewart SG, Murakami M. J. Am. Chem. Soc. 2013; 135: 13652
    • 5e Zibinsky M, Fokin VV. Angew. Chem. Int. Ed. 2013; 52: 1507
    • 5f Alford JS, Spangler JE, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 11712
    • 5g Yang Y, Zhou M.-B, Ouyang X.-H, Pi R, Song R.-J, Li J.-H. Angew. Chem. Int. Ed. 2015; 54: 6595
    • 5h Shang H, Wang Y, Tian Y, Feng J, Tang Y. Angew. Chem. Int. Ed. 2014; 53: 5662
    • 5i Miura T, Funakoshi Y, Murakami M. J. Am. Chem. Soc. 2014; 136: 2272
    • 5j Miura T, Funakoshi Y, Fujimoto Y, Nakahashi J, Murakami M. Org. Lett. 2015; 17: 2454
    • 6a Jones DK, Nutt MJ, Elena C, Sobolev AN, Moggach SA, Miura T, Murakami M, Stewart SG. Org. Lett. 2020; 22: 3490
    • 6b Chuprakov S, Worrell BT, Selander N, Sit RK, Fokin VV. J. Am. Chem. Soc. 2014; 136: 195
    • 6c Chuprakov S, Hwang FW, Gevorgyan V. Angew. Chem. Int. Ed. 2007; 46: 4757
    • 6d Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J. Am. Chem. Soc. 2008; 130: 14972
    • 6e Sladojevich F, Guarna A, Trabocchi A. Org. Biomol. Chem. 2010; 8: 916
    • 6f Wang L, Liu Q.-B, Wang D.-S, Li X, Han X.-W, Xiao W.-J, Zhou Y.-G. Org. Lett. 2009; 11: 1119
    • 6g Zhang S, Shan C, Zhang S, Yuan L, Wang J, Tung C.-H, Xing L.-B, Xu Z. Org. Biomol. Chem. 2016; 14: 10973
    • 6h Doyle MP, McOsker CC. J. Org. Chem. 1978; 43: 693
  • 7 Jones BT, García-Cárceles J, Caiger L, Hazelden IR, Langer T, Bower JF. J. Am. Chem. Soc. 2021; 143: 15593
  • 8 Takeda T, Harada S, Okabe A, Nishida A. J. Org. Chem. 2018; 83: 11541
  • 9 Raushel J, Fokin VV. Org. Lett. 2010; 12: 4952
  • 10 Yuki Y, Touge T, Nara H, Matsumura K, Fujiwhara M, Kayaki Y, Ikariya T. Adv. Synth. Catal. 2018; 360: 568
  • 11 Key Rh2Oct4-Catalysed Synthesis of the Enantioenriched Oxazine (+)-19 In a sealed vial, under an inert atmosphere a suspension of 17 (397 mg, 0.81 mmol), (+)-18 (260 mg, 0.86 mmol, 80% ee, Table 1, entry 2), and Rh2Oct4 (6.7 mg, 0.0086 mmol) in CHCl3 (2.7 mL) were stirred and maintained at 65 °C. After 3 h, the excess solvent was removed under pressure and dried under high vacuum to afford a crude enamine residue. Cs2CO3 (671 mg, 2.06 mmol) was then added to a magnetically stirred solution containing this residue in CH3CN (3.8 mL) at room temperature. After 3 h, the ensuing mixture was filtered and concentrated under reduced pressure. The residue was subjected to flash column chromatography (40% ethyl acetate/hexanes) to provide previously unreported compound (+)-19 (452 mg, 0.67 mmol, 83%) as a yellow semisolid. 1H NMR (400 MHz, CDCl3): δ = 8.01 (d, J = 8.0 Hz, 1 H), 7.78–7.72 (m, 5 H), 7.69 (s, 1 H), 7.37–7.33 (m, 3 H), 7.30 (d, J = 7.6 Hz, 1 H), 7.23 (d, J = 8.0 Hz, 2 H), 6.80 (s, 1 H), 6.43 (s, 2 H), 4.29 (d, J = 8.4 Hz), 4.02 (d, 1 H, J = 13.2 Hz), 3.86 (s, 3 H), 3.85 (s, 6 H), 3.13 (dd, J = 9.4 and 13.2 Hz, 1 H), 2.45 (s, 3 H), 2.35 (s, 3 H) ppm. 13C NMR (150 MHz, CDCl3): δ = 153.7, 145.3, 144.6, 138.5, 136.6, 135.5, 135.2, 133.9, 132.7, 130.2, 130.1, 127.7, 127.3, 127.1, 125.2, 123.9, 123.4, 121.0, 116.7, 114.0, 103.4, 103.2, 74.8, 61.0, 56.4, 49.7, 21.8, 21.7 ppm. IR (ATR, neat): 2932, 1593, 1355, 1165, 1126 cm–1. HRMS (ESI): m/z calcd for C35H35N2O8S2 [M + H]+: 675.1835; found: 675.1835. [α]D 20 +37.7o (c 0.0045, CHCl3).