Endoscopy International Open

Difference in Color Tone between Early Gastric Cancer and Cancer-Suspected Non-Cancerous Mucosa on Linked Color Imaging

Hiromitsu Kanzaki, Yoshiro Kawahara, Takuya Satomi, Shotaro Okanoue, Kenta Hamada, Yoshiyasu Kono, Masaya Iwamuro, Seiji Kawano, Hiroyuki Okada.

Affiliations below.

DOI: 10.1055/a-1989-6643

Please cite this article as: Kanzaki H, Kawahara Y, Satomi T et al. Difference in Color Tone between Early Gastric Cancer and Cancer-Suspected Non-Cancerous Mucosa on Linked Color Imaging. Endoscopy International Open 2022. doi: 10.1055/a-1989-6643

Conflict of Interest: The authors declare that they have no conflict of interest.

Abstract:

Background and Aim: Linked color imaging (LCI) can enhance the original color of each area and may useful to detect tumorous lesions during esophagogastroduodenoscopy. However, LCI might also enhance the cancer-suspected non-cancerous regional color change. We conducted a retrospective image analysis study to investigate the color characteristics of early gastric cancer (EGC) and cancer-suspected non-cancerous mucosa (CSM) in LCI.

Methods: LCI images of both EGC and CSM were retrospectively collected from the database of the institution. Fifteen endoscopists individually judged the image as EGC or CSM. The color difference between the inside and outside of the lesion was measured by CIE-Lab analysis in both groups and compared.

Results: A total of 245 LCI images of EGC (169) and CSM (76) were extracted and randomly lined for image collection. The test by the endoscopists showed accuracy, sensitivity, and specificity of 64.0%, 63.7%, and 64.0%, respectively. Although the color difference between EGC and CSM was almost the same (12.5 vs. 12.9, not significant), each parameter of ΔL (bright: -0.3 vs. -2.7, P<0.001), Δa (Reddish: 7.2 vs. 9.6, P=0.004), and Δb (Yellowish: 6.4 vs. 3.8, P<0.001) were significantly different in both groups. The color feature of both positive ΔL and Δb to EGC showed accuracy, sensitivity, and specificity of 54.7%, 39.6%, 88.2%, respectively.

Conclusion: The total color difference was almost the same between EGC and CSM; however, they had different color tones in linked color imaging. Although the color characteristics of EGC had high specificity, we should be aware of their low sensitivity.

Corresponding Author:

Hiromitsu Kanzaki, Okayama University Hospital, Gastroenterology and Hepatology, Okayama, Japan, kanzaki@qc4.so-net.ne.jp

Affiliations:

Hiromitsu Kanzaki, Okayama University Hospital, Gastroenterology and Hepatology, Okayama, Japan
Yoshiro Kawahara, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Practical gastrointestinal endoscopy, Okayama, Japan
Takuya Satomi, Okayama University Hospital, Gastroenterology and Hepatology, Okayama, Japan
[...]
Hiroyuki Okada, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Department of Gastroenterology and Hepatology, Okayama, Japan

This article is protected by copyright. All rights reserved.
Difference in Color Tone between Early Gastric Cancer and Cancer-Suspected Non-Cancerous Mucosa on Linked Color Imaging

Hiromitsu Kanzaki¹, Yoshiro Kawahara², Takuya Satomi¹, Shotaro Okanoue¹, Kenta Hamada², Yoshiyasu Kono³, Masaya Iwamuro¹, Seiji Kawano¹, Hiroyuki Okada¹,³

¹ Department of Gastroenterology and Hepatology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan
² Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan
³ Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan

Corresponding Author
Hiromitsu Kanzaki, Department of Gastroenterology and Hepatology, Okayama University Hospital, Okayama, Japan. E-mail: kanzaki@qc4.so-net.ne.jp

Conflict of interest statement
The authors declare no conflict of interest.

Word count
2873 words

Specific author contributions

1
2
Hiromitsu Kanzaki: designed the study. Takuya Satomi, Shotaro Okanoue, Kenta Hamada, Yoshiyasu Kono, Masaya Iwamuro, Seiji Kawano: joined the image evaluation test. Hiromitsu Kanzaki: wrote the paper. Yoshiro Kawahara, Hiroyuki Okada: advised for this study; and Hiromitsu Kanzaki, Yoshiro Kawahara, Takuya Satomi, Shotaro Okanoue, Kenta Hamada, Yoshiyasu Kono, Masaya Iwamuro, Seiji Kawano, Hiroyuki Okada read and gave approval of this final version of the article to be published.

Statement of Ethics

Informed consent was obtained from the patient for the use of their clinical data using an opt-out method. The study was approved by the independent ethics committee of the Okayama University Hospital (ID-1902-012), and this study was conducted according to the Declaration of Helsinki.

Abbreviations

LCI, linked color imaging; EGC, early gastric cancer; CSM, cancer-suspected non-cancerous mucosa; EGD, esophagogastroduodenoscopy; IEE, image-enhanced endoscopy; WLI, white light imaging; NLR, numerous rating scale; ROI, region of interest; CIE, Commission Internationale d’Eclairage; ROC, receiver operating characteristic; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.

Keywords

Linked color imaging, early gastric cancer, esophagogastroduodenoscopy, image enhanced endoscopy.
Abstract

Background and Aim: Linked color imaging (LCI) can enhance the original color of each area and may useful to detect tumorous lesions during esophagastroduodenoscopy. However, LCI might also enhance the cancer-suspected non-cancerous regional color change. We conducted a retrospective image analysis study to investigate the color characteristics of early gastric cancer (EGC) and cancer-suspected non-cancerous mucosa (CSM) in LCI.

Methods: LCI images of both EGC and CSM were retrospectively collected from the database of the institution. Fifteen endoscopists individually judged the image as EGC or CSM. The color difference between the inside and outside of the lesion was measured by CIE-Lab analysis in both groups and compared.

Results: A total of 245 LCI images of EGC (169) and CSM (76) were extracted and randomly lined for image collection. The test by the endoscopists showed accuracy, sensitivity, and specificity of 64.0%, 63.7%, and 64.0%, respectively. Although the color difference between EGC and CSM was almost the same (12.5 vs. 12.9, not significant), each parameter of ΔL (bright: -0.3 vs. -2.7, P<0.001), Δa (Reddish: 7.2 vs. 9.6, P=0.004), and Δb (Yellowish: 6.4 vs. 3.8, P<0.001) were significantly different in both groups. The color feature of both positive ΔL and Δb to EGC showed accuracy, sensitivity, and specificity of 54.7%, 39.6%, 88.2%, respectively.

Conclusion: The total color difference was almost the same between EGC and CSM; however, they had different color tones in linked color imaging. Although the color characteristics of EGC had high specificity, we should be aware of their low sensitivity.
Introduction

Gastric cancer was the fifth most common cancer among cancer-related deaths [1]. Early detection and treatment are essential for preventing death from gastric cancer. Especially when detected at the mucosal cancer, it might be cured by endoscopic treatment, which is a minimally invasive treatment with organ preservation [2]. Because patients with early gastric cancer (EGC) are generally asymptomatic, surveillance esophagogastroduodenoscopy (EGD) to high-risk patients or screening EGD in medical health checks are important for the early detection and improvement of mortality [3-5]. As the endoscopic findings of EGC are subtle, it is difficult to find out not only for the endoscopist who is unfamiliar with the diagnosis of EGC, but also for expert endoscopists [6]. Endoscopists require severe caution during EGD to identify slight morphological and color changes that were suspected to be EGC.

The usefulness of image-enhanced endoscopy (IEE), especially narrow band imaging and blue laser imaging, has been widely reported for the detection of superficial esophageal and pharyngeal cancers [7,8]. The IEE technology enhanced the color difference of the target lesion from the surrounding mucosa and was beneficial in terms of lesion recognition. The efficacy of IEE for EGC has been reported for diagnosis with magnification [9]. However, the effectiveness of the detection of EGC has not been reported for a long time after the development of IEE. In 2020, the LCI FIND trial revealed the efficacy of linked color imaging (LCI) for the detection of tumorous lesions during EGD [10]. The sub-analysis of this study suggested that LCI provides a higher detection rate of gastric epithelial lesions compared with white light imaging (WLI). Some reports have described the beneficial color enhancement of EGC compared with the surrounding mucosa in LCI rather than WLI [11,12], supporting the
superiority of LCI over WLI in terms of the recognition of tumorous lesions.

Although LCI had a higher detection rate of EGC than WLI, LCI may enhance not only EGC but also the regional color change that was suspected to be EGC. The increase in the number of cancer-suspected non-cancerous mucosa (CSM) leads to unnecessary biopsy or magnified observation, which is laborious to the patient and endoscopist. According to some reports, each lesion in LCI has a specific hue, such as orange in early stage gastric cancer and blue-purple in intestinal metaplasia [11-13]. However, the accuracy of attributing such characteristics to specific lesions has not been supported by any data.

In this study, we investigated the color features of EGC and CSM lesions using LCI and aimed to identify their differences while ascertaining the method’s accuracy. Moreover, we investigated the relationship between endoscopists’ diagnosis and color characteristics of the lesions on LCI.

Methods

Creation of image collection

We investigated all EGD cases that were performed using the LASEREO system (EG-L590WR, EG-L590ZW, and EG-L600ZW) equipped with LCI at the Okayama University Hospital between January 2014 and December 2018. All EGD procedures were performed by an expert endoscopist or young endoscopist under the supervise of an expert. Because this was a retrospective study, the EGD procedure could not be regulated. Cases that did not undergo biopsy were excluded in the first step. Based on the purpose of biopsy and histological findings, EGC and CSM were collected. EGC were cases that underwent endoscopic resection and were histologically diagnosed as
mucosal or slightly invasive submucosal carcinoma (<500 μm). Cases were designated as CSM when endoscopists performed biopsies out of suspicion or to rule out EGC, but histological examination revealed the presence of non-cancerous tissue. We excluded cases without proper image of LCI to the target lesion, protruded-type lesion, and lesions > 30 mm in size in both the EGC and CSM groups. We also excluded cases of poorly differentiated type in the EGC group, because the color was vastly different from differentiated adenocarcinoma [14-16]. Similarly, cases of white-toned lesions that were biopsied for the suspicion of poorly differentiated lesions were excluded from the CSM group. One LCI image of the lesion focused in the middle range was extracted from these cases by an expert endoscopist (H. K.). Image collection was performed using randomly lined EGC and CSM images. The following data of the included cases were collected from the medical records for the analysis of lesion characteristics: age, sex, *Helicobacter pylori* status, degree of atrophic gastritis, location of the target lesion, estimated lesion size, invasion depth in EGC, and morphology.

Test to the image collection by endoscopists

The image collection, which consisted of randomly lined LCI images of EGC and CSM, was tested by 15 endoscopists who routinely used LCI, except for those who created the image collection (H. K.). All endoscopists were informed that there was a lesion of EGC or CSM per LCI image, but the total number of each EGC and CSM was not provided. The test was conducted for each individual without a time limit. The questions that needed to be answered included whether the image depicted EGC or CSM, and which factors mainly contributed to the diagnosis, color or morphological finding. These diagnoses were made at endoscopist's discretion and as per their
experience. The factor contributing to the diagnosis was indicated by a numerous rating scale (NLR) of 1 to 5. The NLR score was as follows: 1, mostly diagnosed by color; 2, color more beneficial than morphology; 3, Even; 4, morphology more beneficial than color; and 5, mostly diagnosed by morphology. We defined "cases judged by the color" as over half of the answer was judged by the color of score 1 or 2, whether the answer was correct or not. Similarly, "cases judged by the morphology" was defined as over half of the answers were judged by the morphology of score 4 or 5.

Color measurement methods

Color processing and analysis were performed using Adobe Photoshop CC (Adobe Systems Inc., San Jose, California, United States). The algorithm used to locate the region of interest (ROI) in the selected image is shown in Figure 1. As the color of background mucosa was slightly different in each patient, we measured not the color value but the color difference between the inside and outside of the ROI. A demarcation line was drawn by one endoscopist (H.K.) for all images, in reference to the histological examination of the ESD-resected tissue in the EGC group and uniformly colored area with biopsied points in the CSM group. In addition, two lines around the demarcation line were drawn with an extension of 10 pixels and 40 pixels, using Photoshop's range selection extension function, and the area surrounded by these two lines was defined as outside of the ROI. A line of extended 10 pixels from the demarcation line was created to exclude the uncertain area that comes from the handmade line by a single endoscopist. Unusually colored areas such as light reflections, scopes, and blood were partially excluded from the ROI. The color values were calculated using CIE-Lab color space (CIE: Commission Internationale d' Eclairage) developed by the International Commission on Illumination.
Commission on Illumination in 1976 [17]. The color value was expressed using the three-dimensional color parameters L* (black to white; range, 0 to +100), a* (green to red; range, -128 to +127), and b* (blue to yellow; -128 to +127). A positive value represents a shift toward white in axis L*, red in a*, and yellow in axis b*, indicating all colors visible to the human eye [18,19]. The median ([L*inside, a*inside, b*inside] and [L*outside, a*outside, b*outside]) of the color values in the ROI and outside of the ROI, respectively, were measured. The color differences of L*, a*, and b* were also described as ΔL, Δa, and Δb. These parameters were calculated using the following equations:

\[
\begin{align*}
\Delta L &= L_{\text{inside}} - L_{\text{outside}} \\
\Delta a &= a_{\text{inside}} - a_{\text{outside}} \\
\Delta b &= b_{\text{inside}} - b_{\text{outside}}
\end{align*}
\]

The total color difference between the inside and outside of the lesion, ΔE, was calculated using the following formula:

\[
\Delta E = \sqrt{(L_{\text{inside}} - L_{\text{outside}})^2 + (a_{\text{inside}} - a_{\text{outside}})^2 + (b_{\text{inside}} - b_{\text{outside}})^2}
\]

Statistics

All statistical analyses were performed using JMP PRO (ver. 15; SAS Institute Inc., Cary, North Carolina, USA). All continuous variables are expressed as medians with ranges or percentages. The color difference between EGC and CSM was compared using the Wilcoxon signed-rank test. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the detection ability of EGC for each color parameter. Statistical significance was set at \(P<0.05 \).

Results
During the inclusion period, 2,775 cases of EGD were performed using the LASEREO system and the applicable scope. Based on the inclusion and exclusion criteria, 245 LCI images (EGC, 169; CSM, 76) with target lesions were extracted (Figure 2). The image collection was created using randomly arranged EGC and CSM images. The background characteristics of the patients are shown in Table 1.

The test to the image collection by the 15 endoscopists showed the accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 64.0%, 63.7%, 64.0%, 82.2%, and 48.4%, respectively. The "cases judged by the color" were 65 (39%) and 24 (30%) and "cases judged by the morphology" were 104 (61%) and 55 (70%) in the EGC and CSM groups, respectively. The accuracy, sensitivity, specificity, PPV, and NPV of "cases judged by the color" and "cases judged by the morphology" were almost the same.

The color difference (ΔE) was almost the same in EGC and CSM (12.5 vs. 12.9%, not significant, Table 2). However, there was a clear difference in the content of color differences. Although EGC had significantly higher ΔL and Δb and lower Δa compared with CSM, the plot of each parameter showed the overlapping of colors between EGC and CSM (Supplemental Figure 1). The area under the curve (AUC) for the discrimination of EGC and CSM in ΔE, ΔL, Δa, and Δb were 0.54, 0.70, 0.61, and 0.63, respectively (Supplemental Figure 2).

Because the single parameter of color difference could not distinguish EGC and CSM, a combination of parameters was attempted to determine the specific color. Although the value of Δa was significantly higher in CSM than in EGC, 221 of the 245 cases (90.2%) had positive values and overlapped significantly. Therefore, it was difficult to distinguish EGC and CSM in combination with Δa. Therefore, a two-dimensional plot
was constructed for ΔL and Δb (Figure 3). The accuracy, sensitivity, specificity, PPV, and NPV for diagnosing EGC at the first quadrant, which had positive values in both ΔL and Δb, were 54.7%, 39.6%, 88.2%, 88.2%, and 39.6%, respectively. The diagnostic accuracy was worse than the endoscopist's test but exhibited high specificity (Table 3). Meanwhile, in the area of the third quadrant, which had negative ΔL and Δb values, the accuracy, sensitivity, PPV, and NPV for CSM were 71.8%, 23.7%, 94.1%, 64.3%, and 73.3%, respectively.

Discussion

LCI could enhance the color of EGC and highlight it among the surrounding mucosa [11,12], which might contribute to the higher detection rate of EGC than WLI [10]. However, the color enhancement technology might also increase in suspicious areas, especially in chronic atrophic gastritis, which has many localized unevenly colored areas. In this study, ΔE between the inside and outside of the ROI was similarly high in EGC and CSM, and there was no significant difference between them. This indicates that EGC and CSM are equally recognized by the endoscopist in terms of the color difference between the lesion and the surrounding mucosa. However, the color components were significantly different between the groups. EGC had higher ΔL and Δb and lower Δa than the CSM. The different color features between EGC and CSM may help endoscopists distinguish them.

Although the median ΔL, Δa, and Δb between EGC and CSM were significantly different, these parameters overlapped in most cases. Therefore, it may be difficult to judge them using only a single parameter of color difference. As for Δa, most cases had positive values for EGC and CSM (Supplemental Figure 1). Therefore, red was a color
indicative of cancer but not specific to EGC. The combination of positive values in both
ΔL and Δb represented high specificity for EGC, and negative values for both ΔL and
Δb depicted a high specificity for CSM. Although the sensitivity was low, the high
specificity indicated the specific color of each EGC and CSM in LCI. Overall,
compared to the surrounding mucosa, the colors of EGC and CSM were bright reddish
yellow (called orange) for EGC and a dark reddish blue (called blue-purple) for CSM
(Figure 4).

The results of the survey by the endoscopists were not as good, given the accuracy,
sensitivity, specificity, PPV, and NPV of 64.0%, 63.7%, 64.0%, 82.2%, and 48.4%,
respectively. The reasons for this low accuracy may come from the inclusion criteria of
CSM, which were clinically suspected carcinoma that underwent biopsy. The images of
the CSM were very similar to those of the EGCs. Moreover, this image collection
consisted of only a single LCI image per lesion, and it was difficult to accurately
diagnose EGC or CSM even for an experienced endoscopist. The accuracy and
sensitivity in diagnosing EGC using the color features, and positive ΔL and Δb values
were not superior to the endoscopists' data. As shown in the endoscopists' test, the major
finding that contributed to the diagnosis was morphology, not color. The attempt to
diagnose EGC or CSM solely based on color was disadvantageous. However, the color
characteristics of the lesions corresponding to positive and negative ΔL and Δb values
were highly specific for EGC and CSM. The knowledge of these color characteristics
may improve the confidence level of endoscopists for identifying EGC or CSM without
magnification. On the other hand, we should be aware that these color features are not
highly sensitive. Some previous reports have described the unique colors indicative of
lesions of EGC and gastric intestinal metaplasia [11-13]; however, even though these
color characteristics were highly specific, they exhibited low sensitivity in this study. Endoscopists should be aware that many EGC lesions lack a distinctive color and that judging the lesion as non-cancerous solely based on color tones would be dangerous.

The parameter of \(\Delta L \) representing the brightness was excluded in past color evaluation studies, including our previous report [11], because \(\Delta L \) varies depending on the light exposure and the distance from the endoscope. However, there was a clear difference in \(\Delta L \) between EGC and CSM. The value of \(\Delta L \) varies greatly depending on the photo conditions; however, the \(\Delta a \) and \(\Delta b \) values also vary according to the situation. In the CIE-Lab color evaluation, brightness and saturation are major factors, and it is not something that can be easily removed in color analysis. The results of this study with a large number of cases show that \(\Delta L \) is also a major factor in recognizing the specific color of EGC and CSM.

Most of the histological evaluations of CSM included intestinal metaplasia. There have been reports of patchy distribution of atrophy and intestinal metaplasia in chronic atrophic gastritis [20,21]. In this study, localized intestinal metaplasia tended to be biopsied as CSM because of its different coloration and morphology compared with the surrounding mucosa. Intestinal metaplasia has been reported to be a lavender color in LCI [13], which is a reddish dark blue color. In this study, the specific color of CSM was reddish dark blue compared to the surrounding mucosa. Even if there is a regional color area with such a color, it may not be cancer but intestinal metaplasia.

This study had some limitations. First, a single endoscopist collected all the images, and there were many cases of exclusion by photo-conditions. All candidate images were checked, but this may be related to selection bias. However, the low accuracy of the results of the endoscopist survey show the similarity of EGC and CSM in this
image collection. Even using such image collection, we could identify the color characteristics of both EGC and CSM by color analysis, which was completely objective data. Second, the value of the color difference was simply the objective data. It is not known whether endoscopists can recognize them during examinations. However, this knowledge of the color features helps the endoscopist judgement in clinical scene. Third, the exclusion of undifferentiated-type EGC may have reduced the clinical value of this study. However, many reports have revealed that undifferentiated-type EGC lesions are pale colored, which is clearly different from the differentiated-type EGC [14-16]. Mixing the different lesions with varying color characteristics may have led to confusion and an erroneous result. Also, the small number of undifferentiated-type EGC cases prevented their sub-analysis. Lastly, we could not investigate the comparison with white light images that were used for surveillance endoscopy in usual institutions. Surely, there were stored images of WLI; however, limited to the cases of a set of reviewable clear images of LCI and WLI, the number of cases was very small. For comparison with WLI, a prospective design study is needed to collect the appropriate images.

Conclusions

Although the total color difference was almost the same between EGC and CSM, they had different color tones in LCI. The specific color of EGC was bright, reddish yellow, and that of the CSM was dark, reddish blue. The knowledge of these specific color characteristics may improve the confidence level of endoscopists in identifying EGC or CSM without magnification; however, they should also be aware of the low sensitivity of these color characteristics.
Reference

Figure Legends

Figure 1. Image processing protocol for color analysis
A. Linked color image of early gastric cancer (EGC) or cancer-suspected non-cancerous mucosa (CSM) was prepared.
B. A demarcation line was drawn in reference to the histological examination of the ESD-resected tissue in the EGC group and color uniform area with biopsied points in the CSM group. Unusually colored areas, such as light reflections, scopes, and blood, were partially excluded from the demarcation line.
C. Two lines around the demarcation line were drawn with an extension of 10 pixels and 40 pixels using Photoshop’s range selection extension function.
D. The area inside the demarcation line was defined as the inside of the region of
interest (ROI) and outside of the ROI was defined as surrounded by 10-pixel and 40-pixel lines, which were expanded from demarcation line. A line of extended 10 pixels from the demarcation line was created to exclude the uncertain area that comes from the handmade line by a single endoscopist.

Figure 2. Image collection flow

Figure 3. Plot on the ΔL and Δb dimension

A. Plot of all cases on ΔL and Δb dimensions. Many of the cases in the area of the first quadrant, which had positive scores for both ΔL and Δb, were EGC.

B. The accuracy, sensitivity, specificity, PPV and NPV for EGC in the 1st quadrant, which had both positive ΔL and Δb values, were 54.7\%, 39.6\%, 88.2\%, 88.2\%, and 39.6\%, respectively. In contrast, many of the cases in the area of the third quadrant, which had negative scores for both ΔL and Δb, were CSM. The accuracy, sensitivity, specificity, PPV and NPV for CSM were 71.8\%, 23.7\%, 94.1\%, 64.3\%, and 73.3\%, respectively.

EGC, early gastric cancer; CSM, cancer-suspected non-cancerous mucosa; PPV, positive predictive value; NPV, negative predictive value

Figure 4. Typical cases of each EGC and CSM, and the color samples

The EGC case had positive ΔL, Δa, and Δb scores, representing a bright reddish and yellowish color compared to the surrounding mucosa. The CSM case had high Δa, but negative scores of ΔL and Δb, representing the reddish but dark bluish color compared with the surrounding mucosa.

EGC, early gastric cancer; CSM, cancer-suspected non-cancerous mucosa
Table 1. Characteristics of patients and target lesion

<table>
<thead>
<tr>
<th></th>
<th>EGC</th>
<th>CSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>169</td>
<td>79</td>
</tr>
<tr>
<td>M/F</td>
<td>125/44</td>
<td>58/21</td>
</tr>
<tr>
<td>age</td>
<td>75 (49–89)</td>
<td>70 (38–83)</td>
</tr>
<tr>
<td>Helicobacter pylori status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-infection/past/present/unknown</td>
<td>1/132/36/0</td>
<td>4/62/13/5</td>
</tr>
<tr>
<td>Atrophic gastritis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>none/mild/moderate/severe</td>
<td>1/14/57/97</td>
<td>4/15/38/22</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UM/L</td>
<td>109/60</td>
<td>47/32</td>
</tr>
<tr>
<td>Estimated lesion size</td>
<td>11 (2–30)</td>
<td>8 (3–20)</td>
</tr>
<tr>
<td>invasion depth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M/SM1</td>
<td>152/17</td>
<td></td>
</tr>
<tr>
<td>Morphology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>superficial depressed/flat/superficial protruded</td>
<td>125/7/37</td>
<td>69/7/3</td>
</tr>
</tbody>
</table>

EGC, early gastric cancer; CSM, cancer-suspected non-cancerous mucosa; M, male; F, female; UM, upper and middle third of the stomach; L, lower third of the stomach; M, mucosal carcinoma; SM1, slightly invasive submucosal carcinoma (<500 μm).
Table 2. The color difference between the region of interest and surrounding mucosa in early gastric cancer (EGC) and cancer-suspected non-cancerous mucosa (CSM).

<table>
<thead>
<tr>
<th></th>
<th>EGC (n=169)</th>
<th>CSM (n=79)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE</td>
<td>12.5</td>
<td>12.9</td>
<td>n.s</td>
</tr>
<tr>
<td>ΔL</td>
<td>-0.3</td>
<td>-2.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Δa</td>
<td>7.2</td>
<td>9.6</td>
<td>0.004</td>
</tr>
<tr>
<td>Δb</td>
<td>6.4</td>
<td>3.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Color feature</td>
<td>Endoscopist’s test</td>
<td>Major finding contributed the diagnosis</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ΔL, Δb > 0</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Number of images (%)</td>
<td>248</td>
<td>248</td>
<td>89 (36)</td>
</tr>
<tr>
<td>EGC (%)</td>
<td>169</td>
<td>169</td>
<td>65 (39)</td>
</tr>
<tr>
<td>CSM (%)</td>
<td>79</td>
<td>79</td>
<td>24 (30)</td>
</tr>
<tr>
<td>Accuracy, %</td>
<td>54.7</td>
<td>64.0</td>
<td>64.0</td>
</tr>
<tr>
<td>Sensitivity, %</td>
<td>39.6</td>
<td>63.7</td>
<td>64.6</td>
</tr>
<tr>
<td>Specificity, %</td>
<td>88.2</td>
<td>64.0</td>
<td>63.1</td>
</tr>
<tr>
<td>PPV, %</td>
<td>88.2</td>
<td>82.2</td>
<td>84.8</td>
</tr>
<tr>
<td>NPV, %</td>
<td>39.6</td>
<td>48.4</td>
<td>42.0</td>
</tr>
</tbody>
</table>

EGC, early gastric cancer; CSM, cancer-suspected non-cancerous mucosa; PPV, positive predictive value; NPV, negative predictive value.
Supplemental figure 1. Comparisons of color difference between EGC and CSM in each ΔL, Δa and Δb
Supplemental Figure 2. ROC curve for EGC by each parameter

TPF: true positive fraction, FPF: false positive fraction

AUC = 0.54 for ΔE
AUC = 0.70 for ΔL
AUC = 0.61 for Δa
AUC = 0.63 for Δb