Synthesis 2023; 55(07): 1069-1078
DOI: 10.1055/a-2004-1279
feature

Silver-Catalyzed Ring Expansion of Activated N-Heteroarenes via 1,4-Dearomative Addition of Diazomethylphosphonates

Sekwang Baek
,
Hyundug Jen
,
Eun Jeong Yoo
This research was supported by the National Research Foundation of Korea­ (NRF; NRF-2022R1A2C2008981 and NRF-2021R1A5A6002803), funded by the Korean government. This research was also supported by Kyung Hee University (KHU-20191037).


Abstract

Phosphorus-containing N-heterocycles are important molecular motifs due to their unique structural features and biological activities. In this study, we developed a silver-catalyzed reaction for the construction of phosphorus-containing azepine derivatives via a domino-type dearomatization procedure, followed by ring expansion. In addition, diazomethylphosphonates were employed for the first time as nucleophiles in the 1,4-dearomative addition of activated N-heteroarenes, furnishing cyclopropane-fused piperidine intermediates that were readily restructured into their corresponding azepine derivatives. The reactivities of the diazomethylphosphonates in the developed dearomatization strategy were found to be superior to those of other diazo compounds, thereby resulting in the generation of the desired seven-membered N-heterocycles within a very short reaction time.

Supporting Information



Publication History

Received: 28 November 2022

Accepted after revision: 27 December 2022

Accepted Manuscript online:
27 December 2022

Article published online:
31 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Kafarski P, Lejczak B. Phosphorus, Sulfur Silicon Relat. Elem. 1991; 63: 193
    • 2b Mathey F, Dillon KB, Nixon JF. Phosphorus: The Carbon Copy: From Organophosphorus to Phospha-organic Chemistry. Wiley; Hoboken: 1998
    • 2c Quin LD. A Guide to Organophosphorus Chemistry. Wiley; Hoboken: 2000
    • 2d Piperno A, Chiacchio MA, Iannazzo D, Romeo R. Curr. Med. Chem. 2006; 13: 3675
    • 3a Das S, Das U, Selvakumar P, Sharma RK, Balzarini J, Clercq ED, Dimmock JR. ChemMedChem 2009; 4: 1831
    • 3b Sivendran S, Jones V, Sun D, Wang Y, Grzegorzewicz AE, Scherman MS, Napper AD, McCammon JA, Lee RE, Diamond SL, McNeil M. Bioorg. Med. Chem. 2010; 18: 896
    • 3c Dang Q, Kasibthatla SR, Jiang T, Taplin F, Gibson T, Potter SC, van Poelje PD, Erion MD. Med. Chem. Commun. 2011; 2: 287
    • 3d Dang Q, Liu Y, Cashion DK, Kasibhatla SR, Jiang T, Taplin F, Jacintho JD, Li H, Sun Z, Fan Y, DaRe J, Tian F, Li W, Gibson T, Lemus R, van Poelje PD, Potter SC, Erion MD. J. Med. Chem. 2011; 54: 153
    • 3e Zhou L, Zhang H, Tao S, Bassit L, Whitaker T, McBrayer TR, Ehteshami M, Amiralaei S, Pradere U, Cho JH, Amblard F, Bobeck D, Detorio M, Coats SJ, Schinazi RF. J. Med. Chem. 2015; 58: 3445
    • 4a Montchamp J.-L, Dumond YR. J. Am. Chem. Soc. 2001; 123: 510
    • 4b Bloomfield AJ, Herzon SB. Org. Lett. 2012; 14: 4370
    • 4c Feng C.-G, Ye M, Xiao K.-J, Li S, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 9322
    • 4d Fu WC, So CM, Kwong FY. Org. Lett. 2015; 17: 5906
    • 4e Yang J, Chen T, Han L.-B. J. Am. Chem. Soc. 2015; 137: 1782
    • 4f Shaikh RS, Düsel SJ. S, König B. ACS Catal. 2016; 6: 8410
    • 4g Liu C, Szostak M. Angew. Chem. Int. Ed. 2017; 56: 12718
    • 4h Yuan J, To W.-P, Zhang Z.-Y, Yue C.-D, Meng S, Chen J, Liu Y, Yu G.-A, Che C.-M. Org. Lett. 2018; 20: 7816
    • 5a Gilbert JC, Weerasooriya U. J. Org. Chem. 1982; 47: 1837
    • 5b Brown DG, Velthuisen EJ, Commerford JR, Brisbois RG, Hoye TR. J. Org. Chem. 1996; 61: 2540
    • 5c Wu W, Liao N, Wei Q, Huang J, Huang Q, Peng Y. Org. Lett. 2021; 23: 6872
    • 6a Zhao Y, Jiang N, Wang J. Tetrahedron Lett. 2003; 44: 8339
    • 6b Hashimoto T, Maruoka K. J. Am. Chem. Soc. 2007; 129: 10054
    • 6c Hashimoto T, Kimura H, Nakatsu H, Maruoka K. J. Org. Chem. 2011; 76: 6030
    • 6d Zhang H, Wen X, Gan L, Peng Y. Org. Lett. 2012; 14: 2126
    • 6e Du F, Zhou J, Peng Y. Org. Lett. 2017; 19: 1310
    • 6f Cai L, Chen Y, Cao H, Wei Q, Yang Y, Ouyang Q, Peng Y. Org. Lett. 2019; 21: 7597
    • 6g Wu W, Wang Y, Guo J, Cai L, Chen Y, Huang Y, Peng Y. Chem. Commun. 2020; 56: 11235
    • 7a Marinozzi M, Tondi S, Marcelli G, Giorgi G. Tetrahedron 2014; 70: 9485
    • 7b Du T, Du F, Ning Y, Peng Y. Org. Lett. 2015; 17: 1308
    • 7c Huang N, Zou L, Peng Y. Org. Lett. 2017; 19: 5806
    • 7d Zheng B, Chen H, Zhu L, Hou X, Wang Y, Lan Y, Peng Y. Org. Lett. 2019; 21: 593
  • 8 Wen X, Chen J, Peng Y. Adv. Synth. Catal. 2014; 356: 3794
    • 9a Baek S, Lee JY, Ko D, Baik M.-H, Yoo EJ. ACS Catal. 2018; 8: 6353
    • 9b Samala S, Ryu DH, Song CE, Yoo EJ. Org. Biomol. Chem. 2019; 17: 1773
    • 9c Ko D, Baek S, Shim JY, Lee JY, Baik M.-H, Yoo EJ. Org. Lett. 2019; 21: 3998
    • 9d Lee J, Ko D, Park H, Yoo EJ. Chem. Sci. 2020; 11: 1672
    • 9e Kim J, Yoo EJ. Org. Lett. 2021; 23: 4256
    • 9f Lee DJ, Han HS, Shin J, Yoo EJ. J. Am. Chem. Soc. 2014; 136: 11606
  • 10 See the Supporting Information for details.
    • 11a Dias HV. R, Browning RG, Polach SA, Diyabalanage HV. K, Lovely CJ. J. Am. Chem. Soc. 2003; 125: 9270
    • 11b Caballero A, Despagnet-Ayoub E, Mar Díaz-Requejo M, Díaz-Rodríguez A, González-Núñez ME, Mello R, Muñoz BK, Ojo W.-S, Asensio G, Etienne M, Pérez PJ. Science 2011; 332: 835
    • 11c Liu Z, Liu B, Zhao X, Wu Y, Bi X. Eur. J. Org. Chem. 2017; 4: 928
    • 11d Liu Z, Sivaguru P, Zanoni G, Anderson EA, Bi X. Angew. Chem. Int. Ed. 2018; 57: 8927