Synthesis 2023; 55(10): 1497-1506
DOI: 10.1055/a-2006-9754
short review

Advances in Enantioconvergent Transition-Metal-Catalyzed Cross-Coupling Reactions of Racemic α-Silyl and α-Boryl Reagents

,
This scientific paper was supported by the Onassis Foundation - Scholarship ID: F ZM 045-2/2019-2020. Additional funding by the Deutsche Forschungsgemeinschaft is also gratefully acknowledged (Oe 249/25-1). M.O. is indebted to the Einstein Foundation Berlin for an endowed professorship.


Abstract

Enantioconvergent transition-metal-catalyzed cross-coupling reactions of racemic α-silyl and α-boryl reagents represent one of the key tools to afford highly enantioenriched α-chiral silanes and boranes. The approach traces back the use of α-silyl nucleophiles, employing palladium precatalysts. More recent work makes use of α-silyl and α-boryl electrophiles under nickel and copper catalysis. The limits of this field have been significantly extended by the design and development of numerous chiral ligands. In this short review, the progress made in this rapidly evolving field is summarized.

1 Introduction

2 α-Silyl Nucleophiles and Electrophiles

2.1 Palladium Catalysis

2.2 Nickel Catalysis

2.3 Copper Catalysis

3 α-Boryl Electrophiles

3.1 Nickel Catalysis

4 Summary and Outlook



Publication History

Received: 11 December 2022

Accepted after revision: 03 January 2023

Accepted Manuscript online:
03 January 2023

Article published online:
08 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014

    • For reviews on reductive cross-coupling, see:
    • 2a Yi L, Ji T, Chen K.-Q, Chen X.-Y, Rueping M. CCS Chem. 2022; 4: 9
    • 2b Weix DJ. Acc. Chem. Res. 2015; 48: 1767
    • 2c Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793

    • For a review on enantioselective reductive cross-coupling, see:
    • 2d Poremba KE, Dibrell SE, Reisman SE. ACS Catal. 2020; 10: 8237

      For selected reviews on enantioconvergent cross-coupling, see:
    • 3a Fu GC. ACS Cent. Sci. 2017; 3: 692
    • 3b Choi J, Fu GC. Science 2017; 356: eaaf7230
    • 3c Kaga A, Chiba S. ACS Catal. 2017; 7: 4697
    • 3d Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
    • 3e Rudolph A, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 2656
    • 3f Glorius F. Angew. Chem. Int. Ed. 2008; 47: 8347

      For selected books and reviews on organosilanes, see:
    • 4a Organosilicon Chemistry: Novel Approaches and Reactions . Hiyama T, Oestreich M. Wiley-VCH; Weinheim: 2019
    • 4b Komiyama T, Minami Y, Hiyama T. ACS Catal. 2017; 7: 631
    • 4c Denmark SE, Liu JH.-C. Angew. Chem. Int. Ed. 2010; 49: 2978
    • 4d Hydrosilylation . In Advances in Silicon Science, Vol. 1. Marciniec B. Springer; Berlin: 2009

      For a selected book and a review on organoboranes, see:
    • 5a Synthesis and Application of Organoboron Compounds. In Topics in Organometallic Chemistry, Vol. 49. Fernández E, Whiting A. Springer; Cham: 2015
    • 5b Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722

      For key reports employing geminally halogenated electrophiles, see:
    • 6a Jiang X, Gandelman M. J. Am. Chem. Soc. 2015; 137: 2542
    • 6b Jiang X, Kulbitski K, Nisnevich G, Gandelman M. Chem. Sci. 2016; 7: 2762

      For key reports employing α-sulfur- and α-phosphorus-substituted electrophiles, see:
    • 7a Varenikov A, Gandelman M. J. Am. Chem. Soc. 2019; 141: 10994
    • 7b He S.-J, Wang J.-W, Li Y, Xu Z.-Y, Wang X.-X, Lu X, Fu Y. J. Am. Chem. Soc. 2020; 142: 214
    • 7c Sun D, Ma G, Zhao X, Lei C, Gong H. Chem. Sci. 2021; 12: 5253
    • 7d Geng J, Sun D, Song Y, Tong W, Wu F. Org. Lett. 2022; 24: 1807
    • 7e Wang H, Zheng P, Wu X, Li Y, XU T. J. Am. Chem. Soc. 2022; 144: 3989

      For key reports employing α-trifluoromethyl-substituted electrophiles, see:
    • 8a Varenikov A, Gandelman M. Nat. Commun. 2018; 9: 3566
    • 8b Varenikov A, Shapiro E, Gandelman M. Org. Lett. 2020; 22: 9386
    • 8c Min Y, Sheng J, Yu J.-L, Ni S.-X, Ma G, Gong H, Wang X.-S. Angew. Chem. Int. Ed. 2021; 60: 9947
    • 8d Zhou P, Li X, Wang D, XU T. Org. Lett. 2021; 23: 4683
    • 8e Wu B.-B, Xu J, Bian K.-J, Gao Q, Wang X.-S. J. Am. Chem. Soc. 2022; 144: 6543
    • 8f Guo W, Cheng L, Ma G, Tong W, Wu F. Org. Lett. 2022; 24: 1796
  • 9 For a review on C(sp3)–Si cross-coupling, see: Bähr S, Xue W, Oestreich M. ACS Catal. 2019; 9: 16
    • 10a Hayashi T, Konishi M, Ito H, Kumada M. J. Am. Chem. Soc. 1982; 104: 4962
    • 10b Hayashi T, Konishi M, Okamoto Y, Kabeta K, Kumada M. J. Org. Chem. 1986; 51: 3772
  • 11 Hayashi T, Okamoto Y, Kumada M. Tetrahedron Lett. 1983; 24: 807

    • For monographs and reviews on the Kumada reaction, see:
    • 12a Juhasz K, Magyar A, Hell Z. Synthesis 2021; 53: 983
    • 12b Heravi MM, Zadsirjan V, Hajiabbasi P, Hamidi H. Monatsh. Chem. 2019; 150: 535
    • 12c Grignard Reagents and Transition Metal Catalysts: Formation of C–C Bonds by Cross-Coupling. Cossy J. De Gruyter; Berlin: 2016

      For seminal reports on kinetic resolution of secondary Grignard reagents by nickel-catalyzed cross-coupling, see:
    • 13a Hayashi T, Fukushima M, Konishi M, Kumada M. Tetrahedron Lett. 1980; 21: 79
    • 13b Hayashi T, Kanehira K, Hioki T, Kumada M. Tetrahedron Lett. 1981; 22: 137
  • 14 Cardellicchio C, Fiandanese V, Naso F. Gazz. Chim. Ital. 1991; 121: 11
  • 15 Hofstra JL, Cherney AH, Ordner CM, Reisman SE. J. Am. Chem. Soc. 2018; 140: 139

    • For selected reports on the mechanism of cross-electrophile couplings, see:
    • 16a Everson DA, Jones BA, Weix DJ. J. Am. Chem. Soc. 2012; 134: 6146
    • 16b Biswas S, Weix DJ. J. Am. Chem. Soc. 2013; 135: 16192
    • 16c Ren Q, Jiang F, Gong H. J. Organomet. Chem. 2014; 770: 130
  • 17 Schwarzwalder GM, Matier CD, Fu GC. Angew. Chem. Int. Ed. 2019; 58: 3571
  • 18 Yi H, Mao W, Oestreich M. Angew. Chem. Int. Ed. 2019; 58: 3575

    • For reports on mechanism of cross-coupling, see:
    • 19a Anderson TJ, Jones GD, Vicic DA. J. Am. Chem. Soc. 2004; 126: 8100
    • 19b Jones GD, McFarland C, Anderson TJ, Vicic DA. Chem. Commun. 2005; 4211
  • 20 Kranidiotis-Hisatomi N, Yi H, Oestreich M. Angew. Chem. Int. Ed. 2021; 60: 13652
  • 21 Kranidiotis-Hisatomi N, Oestreich M. Org. Lett. 2022; 24: 4987
  • 22 Xu Y, Yi H, Oestreich M. Organometallics 2021; 40: 2194
  • 23 Guo R, Sang J, Xiao H, Li J, Zhang G. Chin. J. Chem. 2022; 40: 1337
  • 24 Schmidt J, Choi J, Liu AT, Slusarczyk M, Fu GC. Science 2016; 354: 1265
  • 25 Sun S.-Z, Martin R. Angew. Chem. Int. Ed. 2018; 57: 3622
  • 26 Sun S.-Z, Börjesson M, Martin-Montero R, Martin R. J. Am. Chem. Soc. 2018; 140: 12765
  • 27 Wang J.-W, Li Y, Nie W, Chang Z, Yu Z.-A, Zhao Y.-F, Lu X, Fu Y. Nat. Commun. 2021; 12: 1313
  • 28 Zheng P, Zhou P, Wang D, Xu W, Wang H, XU T. Nat. Commun. 2021; 12: 1646
  • 29 Wang D, XU T. ACS Catal. 2021; 11: 12469
  • 30 For a seminal report on α-boryl nucleophiles, see: Knochel P. J. Am. Chem. Soc. 1990; 112: 7431

    • For selected reviews on dual transition-metal/photoredox-catalyzed cross-coupling, see:
    • 31a Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152
    • 31b Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
  • 32 Xu Y, Zhang M, Oestreich M. ACS Catal. 2022; 12: 10546
  • 33 For a non-asymmetric example employing electrochemistry, see: Zhang W, Lu L, Zhang W, Wang Y, Ware SD, Mondragon J, Rein J, Strotman N, Lehnherr D, See KA, Lin S. Nature 2022; 604: 292