Synthesis 2023; 55(10): 1602-1612
DOI: 10.1055/a-2009-8114
paper

Silylium Ion Initiated Intramolecular Friedel–Crafts-Type Cyclization of 1,1-Difluoroalkenes with Subsequent Hydrodefluorination of C(sp3)–F Bonds

Avijit Roy
,
Haopeng Gao
,
,
A.R. and H.G. thank the Berlin Graduate School of Natural Sciences and Engineering for predoctoral fellowships (2018–2021 and 2020–2023, respectively). Generous funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC 2008/1 – 390540038, UniSysCat) is gratefully acknowledged. M.O. is indebted to the Einstein Foundation Berlin for an endowed professorship.


Abstract

The strong electrophilicity of silylium ions has been leveraged to probe an intramolecular Friedel–Crafts-type cyclization of aryl-tethered 1,1-difluoroalkenes. The reaction is presumed to be initiated by a preferential electrophilic silylation of the carbon–carbon double bond over the activation of one of the vinylic C(sp2)–F bonds. Subsequent cyclization followed by hydrodefluorination of the resulting C(sp3)–F bonds leads to the final product. The resulting tetraline derivatives were obtained in moderate to good yields. Distinct from earlier reports, the reaction proceeds with the perfluorinated tetraphenylborate counteranion under ambient conditions without the prerequisite of a carborate counteranion associated with the silylium ion intermediates.

Supporting Information



Publication History

Received: 21 December 2022

Accepted after revision: 09 January 2023

Accepted Manuscript online:
09 January 2023

Article published online:
08 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Scott VJ, Çelenligil-Çetin R, Ozerov OV. J. Am. Chem. Soc. 2005; 127: 2852
    • 1b Panisch R, Bolte M, Müller T. J. Am. Chem. Soc. 2006; 128: 9676
  • 2 Gusev DG, Ozerov OV. Chem. Eur. J. 2011; 17: 634
    • 3a Stahl T, Klare HF. T, Oestreich M. ACS Catal. 2013; 3: 1578
    • 3b Klare HF. T. ACS Catal. 2017; 7: 6999
    • 4a Douvris C, Ozerov OV. Science 2008; 321: 1188
    • 4b Douvris C, Nagaraja CM, Chen C.-H, Foxman BM, Ozerov OV. J. Am. Chem. Soc. 2010; 132: 4946
    • 5a Kordts N, Künzler S, Rathjen S, Sieling T, Großekappenberg H, Schmidtmann M, Müller T. Chem. Eur. J. 2017; 23: 10068
    • 5b Künzler S, Rathjen S, Rüger K, Würdemann MS, Wernke M, Tholen P, Girschik C, Schmidtmann M, Landais Y, Müller T. Chem. Eur. J. 2020; 26: 16441
    • 5c Fernandes AJ, Robert F, Landais Y, Künzler S, Müller T. Chem. Eur. J. 2021; 27: 15496
    • 5d Stahl T, Klare HF. T, Oestreich M. J. Am. Chem. Soc. 2013; 135: 1248
    • 6a Klahn M, Fischer C, Spannenberg A, Rosenthal U, Krossing I. Tetrahedron Lett. 2007; 48: 8900

    • For a recent review on transition-metal-free C–F bond activation, see:
    • 6b Ai H.-J, Ma X, Song Q, Wu X.-F. Sci. China: Chem. 2021; 64: 1630
  • 7 Duttwyler S, Douvris C, Fackler NL. P, Tham FS, Reed CA, Baldridge KK, Siegel JS. Angew. Chem. Int. Ed. 2010; 49: 7519
    • 8a Allemann O, Duttwyler S, Romanato P, Baldridge KK, Siegel JS. Science 2011; 332: 574
    • 8b Shao B, Bagdasarian AL, Popov S, Nelson HM. Science 2017; 355: 1403
    • 9a Ichikawa J, Jyono H, Kudo T, Fujiwara M, Yokota M. Synthesis 2005; 39
    • 9b Ichikawa J, Yokota M, Kudo T, Umezaki S. Angew. Chem. Int. Ed. 2008; 47: 4870
    • 9c Fuchibe K, Jyono H, Fujiwara M, Kudo T, Yokota M, Ichikawa J. Chem. Eur. J. 2011; 17: 12175
    • 9d Suzuki N, Fujita T, Ichikawa J. Org. Lett. 2015; 17: 4984

      Selected treatises on fluorinated carbocations:
    • 10a Petrov VA, Bardin VV. In Organofluorine Chemistry: Fluorinated Alkenes and Reactive Intermediates . Chambers RD. Springer; Berlin/Heidelberg: 1997: 39
    • 10b Shteingarts VD. In Carbocation Chemistry . Olah GA, Prakash GK. S. John Wiley & Sons, Inc; Hoboken: 2014: 159
    • 10c Krespan CG, Petrov VA. Chem. Rev. 1996; 96: 3269
  • 11 Klare HF. T, Oestreich M. J. Am. Chem. Soc. 2021; 143: 15490
    • 12a Walker JC. L, Klare HF. T, Oestreich M. Nat. Rev. Chem. 2020; 4: 54
    • 12b Klare HF. T, Albers L, Süsse L, Keess S, Müller T, Oestreich M. Chem. Rev. 2021; 121: 5889
    • 12c Lee VYa, Sekiguchi A. In Organosilicon Compounds, Vol. 1. Lee VYa. Academic Press; Oxford: 2017: 197
    • 13a Arii H, Nakabayashi K, Mochida K, Kawashima T. Molecules 2016; 21: 1
    • 13b Arii H, Kurihara T, Mochida K, Kawashima T. Chem. Commun. 2014; 50: 6649
    • 13c Arii H, Yano Y, Nakabayashi K, Yamaguchi S, Yamamura M, Mochida K, Kawashima T. J. Org. Chem. 2016; 81: 6314
    • 13d Arii H, Nakao K, Masuda H, Kawashima T. ACS Omega 2022; 7: 5166
  • 14 Douvris C, Stoyanov ES, Tham FS, Reed CA. Chem. Commun. 2007; 1145
  • 15 He T, Klare HF. T, Oestreich M. ACS Catal. 2021; 11: 12186
    • 16a An arenium adduct of a hydrogen-substituted silylium ion such as I + is likely not stable, undergoing competing loss of dihydrogen.
    • 16b Albers L, Baumgartner J, Marschner C, Müller T. Chem. Eur. J. 2016; 22: 7970

    • For a quantum chemical prediction, see:
    • 16c Ignatyev IS, Schaefer HF. III. J. Am. Chem. Soc. 2004; 126: 14515
  • 17 Wigman B, Popov S, Bagdasarian AL, Shao B, Benton TR, Williams CG, Fisher SP, Lavallo V, Houk KN, Nelson HM. J. Am. Chem. Soc. 2019; 141: 9140
    • 18a Wu Q, Qu Z.-W, Omann L, Irran E, Klare HF. T, Oestreich M. Angew. Chem. Int. Ed. 2018; 57: 9176
    • 18b Wu Q, Irran E, Müller R, Kaupp M, Klare HF. T, Oestreich M. Science 2019; 365: 168
  • 19 Rej S, Klare HF. T, Oestreich M. Org. Lett. 2022; 24: 1346
  • 20 Furthermore, the substrate 1m-d 5 with a perfluorinated o-phenylene moiety furnished 3m-d 5 in C6H6, where significant deuterium incorporation was observed at the (homo)benzylic positions of 3m-d 5. This outcome suggests multiple H/D-exchange processes initiated by the silylium ion reacting with the substrate in benzene solvent. See the Supporting Information for details.
    • 21a He T, Klare HF. T, Oestreich M. J. Am. Chem. Soc. 2022; 144: 4734
    • 21b Duttwyler S, Butterfield AM, Siegel JS. J. Org. Chem. 2013; 78: 2134
  • 22 Harris RK, Becker ED, Cabral de Menezes SM, Goodfellow R, Granger P. Solid State Nucl. Magn. Reson. 2002; 22: 458
  • 23 Fuqua SA, Duncan WG, Silverstein RM. J. Org. Chem. 1965; 30: 1027
    • 24a Nador F, Moglie Y, Vitale C, Yus M, Alonso F, Radivoy G. Tetrahedron 2010; 66: 4318
    • 24b Clive DL. J, Sunasee R, Chen Z. Org. Biomol. Chem. 2008; 6: 2434
    • 24c Shen J, Li N, Yu Y, Ma C. Org. Lett. 2019; 21: 7179
    • 24d Lo C.-Y, Kumar MP, Chang H.-K, Lush S.-F, Liu R.-S. J. Org. Chem. 2005; 70: 10482
    • 24e Han B, Zhang M, Jiao H, Ma H, Wang J, Zhang Y. RSC Adv. 2021; 11: 39934
    • 24f Ritu, Das S, Tian Y.-M, Karl T, Jain N, König B. ACS Catal. 2022; 12: 10326
    • 24g Liu S, Fang M, Yin D, Wang Y, Liu L, Li X, Che G. Synth. Commun. 2019; 49: 942
    • 24h Zhou X, Xu Y, Dong G. Nat. Catal. 2021; 4: 703