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Introduction

Creating long-term, multisource, national surveillance data
services for emerging disease response is a complex topic to

which coronavirus disease 2019 (COVID-19) has given new
importance.1–5 Public health emergencies responses seldom
leave surplus time or resources to stand up novel methods
and respond, further essentializing (specific) disease
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Abstract Background Public health emergencies leave little time to develop novel surveillance
efforts. Understanding which preexisting clinical datasets are fit for surveillance use is
of high value. Coronavirus disease 2019 (COVID-19) offers a natural applied informatics
experiment to understand the fitness of clinical datasets for use in disease surveillance.
Objectives This study evaluates the agreement between legacy surveillance time
series data and discovers their relative fitness for use in understanding the severity of
the COVID-19 emergency. Here fitness for use means the statistical agreement
between events across series.
Methods Thirteen weekly clinical event series from before and during the COVID-19
era for the United States were collected and integrated into a (multi) time series event
data model. The Centers for Disease Control and Prevention (CDC) COVID-19 attribut-
able mortality, CDC's excess mortality model, national Emergency Medical Services
(EMS) calls, and Medicare encounter level claims were the data sources considered in
this study. Cases were indexed by week from January 2015 through June of 2021 and fit
to Distributed Random Forest models. Models returned the variable importance when
predicting the series of interest from the remaining time series.
Results Model r2 statistics ranged from 0.78 to 0.99 for the share of the volumes
predicted correctly. Prehospital datawere ofhighvalue, and cardiac arrest (CA)prior to EMS
arrivalwas on average the best predictor (tiedwith studyweek). COVID-19Medicare claims
volumes can predict COVID-19 death certificates (agreement), while viral respiratory
Medicare claim volumes cannot predict Medicare COVID-19 claims (disagreement).
Conclusion Prehospital EMS data should be considered when evaluating the severity
of COVID-19 because prehospital CA known to EMS was the strongest predictor on
average across indices.

received
March 31, 2022
accepted after revision
January 4, 2023
accepted manuscript online
January 18, 2023
article published online
February 27, 2023

DOI https://doi.org/
10.1055/a-2015-1244.
ISSN 0026-1270.

© 2023. The Author(s).
This is an open access article published by Thieme under the terms of the

Creative Commons Attribution-NonDerivative-NonCommercial-License,

permitting copying and reproduction so long as the original work is given

appropriate credit. Contents may not be used for commercial purposes, or

adapted, remixed, transformed or built upon. (https://creativecommons.org/

licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart,
Germany

Original Article
THIEME

100

Accepted Manuscript online: 2023-01-18   Article published online: 2023-02-27

mailto:nick.williams@nih.gov
https://doi.org/10.1055/a-2015-1244
https://doi.org/10.1055/a-2015-1244


preparedness.6–8 More often than not epidemic response is
managed using preexisting data services, often legacy data
series from yesteryear’s epidemics.9–11 Epidemic prepared-
ness in the United States is generally weak, and the COVID-19
response is largely drawn frompreexisting pan-flu emergency
plans.12,13

During a public health emergency, the clinical knowledge
needed to respond is developed by case surveillance drawn
from preexisting data series. COVID-19 has presented an
unusualopportunitytoevaluateagreementacrosssurveillance
efforts within the United States. The ability to detect clinical
findings from surveillance nets and epidemiology methods
which were not necessarily designed to detect them in mean-
ingful ways is a high priority for the future management of
emerging infectious diseases. Strikingly, the difference in
COVID-19 mortality for severe acute respiratory syndrome
(SARS)-impacted countries (China, SouthKorea, andAustralia)
versus the United States comes down to what emergency
response plan was last implemented (SARS vs. swine flu) and
thefitness of surveillance (case specific vs general population)
rather than deeper cultural, economic, or racial differences, as
have been proposed in popular media.14–20

Objectives

In this study, public health surveillance data are processed
using a machine learning approach to discover the relative
agreement of a surveillance event series when predicting
surveillance event series. Toward objectives, this study seeks
to assess the agreement between event series and contrast
the value of traditional surveillance methods (death certif-
icates, influenza, and respiratory infection claims volumes)
with nontraditional sources such as national Emergency
Medical Services (EMS) call volume data in the COVID-19
era in the United States.

Methods

Statistic of Interest
Variable importance is the statistic of interest in this study.
Variable importancemeans that when predicting the depen-
dent variable, an independent variable which is of compara-
tively higher predictive value (association) than another is of
higher (predictive) use value. When considering high vari-
able importance with weekly event series data, series which
help themachine learningmodels learn, predict, or guess the
correct dependent weekly event series could be cooccurring
or mutually observed events. The high variable importance
scores from different sources suggest that series observe the
same real-world event across surveillance efforts as they
support prediction better than noise and other candidate
series (other independent variables).

Of special interest are “high variable importance and
independent variables” from a different data source than
the dependent variable. High same-source variables aremost
likely high in value because they are similarly distributed
across study weeks to their parent–sister series and in turn
are not necessarily interesting. A series of events can be said to

have “agreement value” if it has high statistical agreement
with other series from a different source. Low statistical
agreement suggests “out of era” events or events which are
not driven by the same causes as other series considered here.

Toward noise and disagreement, influenza and respirato-
ry infection claims volumes are considered below with
COVID-19 claims volumes. Claims volumes are traditionally
used in influenza surveillance. As a test of the efficacy of the
models described here, COVID-19 volumes should be able to
“outperform” influenza volumes as the COVID-19 era is
largely understood to be influenza sparse. In this way respi-
ratory and influenza events could be understood as a control
arm as well as a model output of independent interest.

Data Sources

Medicare
Medicare provided three event series to this study. Medicare
encounter-level claims through July, 2021 were sourced
through the Chronic Conditions Warehouse (CCW). Records
from 2015 through July 2021 were considered. Claims that
contained influenza, COVID-19, or respiratory infection di-
agnostic code were enrolled. A series was generated for
counts of distinct individuals within a series by calendar
week. The Medicare-sourced series do not describe the
duration of illness but the frequency of billing over time
for distinct individuals. Medicare claims provided three
series to this study, specifically “Influenza Diagnostic (DX)
Codes,” “COVID-19 DX Codes,” and “(Viral) Respiratory Infec-
tion DX Codes” series. The viral respiratory series includes
fever, bronchitis, viral lung infection, acute respiratory dis-
tress syndrome (ARDS), and pneumonia ICD10-CM codes.
Procedure, HCPS, and CPT-4 codes were not considered.

The Centers for Disease Control and Prevention
TheCenters forDiseaseControl andPrevention (CDC)provided
five series for this study. COVID Deaths: COVID deaths are
described asweekly data setwhichdisambiguates the primary
cause of death (COD) on Multiple Cause of Death Certificates
(MCDC) received by the CDC within the given week. The
dataset further describes secondary causes of death when
COVID-19 diagnostic codes are present. The COD All Cause,
COD COVID Primary, and COD COVID Secondary series in this
study were learned from this data set. COVID deaths data
were retrieved from: “https://data.cdc.gov/NCHS/Provisional-
COVID-19-Deaths-by-HHS-Region-Race-and/tpcp-uiv5.”

Excess Mortality: CDC evaluates “excess mortality’ or
death certificates above expectation where expectation
means the three smallest death rates per state within a
condition and calendar week.21–27 These deaths are techni-
cally preventable because they are being prevented in real
time in other states. The interpretation of excess mortality is
a complex topic, and individuals who die in excess are not
necessarily dying significantly before they would have died
baring excess. Two study series are learned from this data set,
Observed Deaths and Excess Deaths. Excessive deaths are
produced using Farrington flexible methods.28,29 Excess
mortality data were retrieved from “https://data.cdc.
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gov/NCHS/Excess-Deaths-Associated-with-COVID-19/xkkf-
xrst” and “https://github.com/Mortality-Surv-and-Repor-
ting-Proj/county-level-estimates-of-excess-mortality.”

The National Emergency Medical Services Information
System
The National EmergencyMedical Services Information System
(NEMSIS) provided five event series to this study. NEMSIS is a
complex data center which collects data from state-level
supervising EMS authorities.30,31 NEMSIS is designed to sup-
port EMS outcomes research and complex, evidence-based-
medicine research.32 NEMSIS has a stable data model of EMS
episode values which are collected for every emergency (911)
call which is routed to an EMS in the United States. A weekly
extractwascreatedusingNEMSISOLAPcubes for2014 to2016
and 2017 present. The cardiac arrest (CA) subset which codes
calls for arrests before and after EMS arrived on the scenewas
alsoextracted. “NEMSISCalls,” “NEMSISCalls CAYes,” “NEMSIS
Calls CANo,” and “NEMSIS CA Prior” to arrival and “NEMSIS CA
After” arrival of the EMS crew were learned from NEMSIS.
NEMSIS data was retrieved from: “https://nemsis.org/view-
reports/public-reports/ems-data-cube/.”

Statistical Models
The 13 series sets were integrated into a single “cases per
week” data model and processed using machine learning
methods in h2o.ai (https://www.h2o.ai). Specifically, models
were generated to learn the dependent to independent
variable relationships across the series such that each series

weekly value was attempted to be learned (predicted) from
all other weekly event series values. Each series took a turn
being the dependent variable in a Distributed Random Forest
(DRF) model.33 R squares (r2) for models as well as scaled
variable importance in decision-making are described below
in detail. Models were cross-validated five times each. Note
each series was itself a model (being predicted) from other
series for a total of 14 models (13 event series and the study
week itself). The statistic of interest is the variable impor-
tance of an independent variablewhen attempting to predict
the dependent variable within a DRF model.

Models considered any volumebetween January 1st, 2018
and July 1st, 2021. Raw case count values were used, neither
log/lag modeling nor relative rates were considered. Note
DRF transforms numeric values to a continuous distribution
in preprocessing (before processing). The fitness of “week” of
event most likely obscures or confounds episode attribution
of count data model events as a case could be transported by
EMS, bill Medicare andpopulateaCDCdeathcertificatewithin
a calendarweekorover severalmonths in the caseof advanced
life support. The models should not be used to model the
epidemic but rather to assess the agreement within the
implicit (pseudo-harmonized) time scales of the series.

Results

►Table 1 describes the event series, its data source, the
specific data set name, the series extracted for this study,
the time range, and the total events within the series of

Table 1 Series ranges and data sources

Source Data set Series Start Stop Case weeks

Medicare Patient Level Claims Influenza Events 01-01-2015 6/31/2021 38,37,068

Medicare Patient Level Claims COVID Events 01-01-2015 6/31/2021 1,78,49,177

Medicare Patient Level Claims Respiratory Infection Events 01-01-2015 6/31/2021 14,07,77,208

CDC Excess Deaths Associated
with COVID-19

Total Weekly Deaths 01-01-2017 04-12-2021 1,50,66,215

CDC Excess Deaths Associated
with COVID-19

Weekly Excess Deaths 01-01-2017 04-12-2021 9,51,680

CDC Provisional COVID-19 Deaths
by HHS Region, Race, and Age

Weekly MCDC 01-01-2015 11-12-2021 1,95,69,921

CDC Provisional COVID-19 Deaths
by HHS Region, Race, and Age

Weekly COVID Primary MCDC 01-01-2015 11-12-2021 5,90,090

CDC Provisional COVID-19 Deaths
by HHS Region, Race, and Age

Weekly COVID Secondary
MCDC

01-01-2015 11-12-2021 6,52,472

NEMSIS OLAP Cube EMS Calls 01-01-2014 10-12�2021 23,79,08,326

NEMSIS OLAP Cube EMS Cardiac Arrest Calls 01�01�2014 10�12�2021 21,78,494

NEMSIS OLAP Cube EMS Non-Cardiac Arrest Calls 01�01�2014 10�12�2021 16,36,24,383

NEMSIS OLAP Cube All Cardiac
Arrest Pre-EMS Arrival

01�01�2014 10-12-2021 19,10,767

NEMSIS OLAP Cube All Cardiac
Arrest Post-EMS Arrival

01-01-2014 10-12-2021 2,67,727

Abbreviations: CDC, The Centers for Disease Control and Prevention; COVID-19, coronavirus disease 2019; EMS Emergency Medical Services; MCDC,
Multiple Cause of Death Certificates; NEMSIS, The National Emergency Medical Services Information System.
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interest. Note that NEMSIS CA status is a declaration aggre-
gate, and call where CA did not occur is a call with an explicit
declaration. In turn, the total calls (sum) do not reflect the
sum of CA and non-CA calls.

►Fig. 1 shows the weekly volume of events within series
described as totals in Table 1. The upper right describes
Medicare weekly case events, and the bottom right describes
excess mortality series. The upper left describes NEMSIS
series, and the bottom left describes COVID-19 death certif-
icates. Figure one demonstrates a collapse in influenza
Medicare claims and spikes in covid and viral respiratory
infection codes toward the end (right) of the series. COVID
excess deaths and MCDC indicate similar peaks on the right
side of the x-axis as well. All NEMSIS call volumes are
elevated as time progresses.

►Table 2 presents amatrixof dependent and independent
variable series relationships, where the scaled variable im-
portance is presented. Each column is a DRFmodelwhere the
column header is the dependent variable. The independent
variables are listed along the left-hand side of the table. In
scaled variable importancemeasures, “1” is the highest value
and independent variable can receive; and only one “1” can
be awarded within a model. For example, dependent “Influ-
enza DX Codes” weekly values from Medicare were most
strongly learned from “Respiratory Codes” (1) fromMedicare
followed by “All Cause COD” (0.7191) fromMCDC, “Observed
Deaths” from Excess Deaths (0.6552) and “COVID-19 DX

Codes” from Medicare (0.4475). Alternately, “COVID 19 DX
Codes” from Medicare shows “Week Ending Date” (1), fol-
lowed by “COVID Primary COD” (0.4015) and “COVID Sec-
ondary COD” fromMCDC (0.3455), “Excess Deaths” (0.2451),
and strikingly “NEMSIS CA Prior EMS” (0.2445). Note that
when predicting “COVID 19 DX Codes,” “Respiratory Codes”
are of little help (0.0636) but when predicting “Respiratory
Codes,” “COVID 19DXCodes” are fairly helpful (0.8722)when
making said prediction. r2 is plotted above the dependent
variable.

►Table 3 replots ►Table 2 values as above or below the
model run’s geometric mean variable importance score
(column-wise geometricmean). The regionswithin the black
outlines should be understood as variables from the same
series source. While the models did know weekly features
from the same data source their importance toward the
study objective is minimal. For example, the only “same
source series” variable importance below average was the
Medicare “COVID 19 DX” model with influenza and viral
respiratory variables being low importance (as expected).
This should mean that the model did not learn what the
weekly “COVID 19DXCodes” volumewas fromviral infection
and influenza codes; their series are independent in this
study. Above variable importance within column models
from different series should detail the interrelatedness of
the multiseries weekly events. For example, “NEMSIS CA
After EMS” shows above the geometric mean of variable

Fig. 1 The weekly event volume by event type. The upper right line graphs describe the per member per weekly occurrence of qualifying
diagnostic codes on identifiable Medicare claims. COVID-19 (red), influenza (green), and respiratory infection codes (blue) are featured.
The bottom right figures show the Excess Deaths (Red) and Observed Deaths (Blue) from which excess deaths are learned in the CDC excess
mortality model. The upper left region describes the NEMSIS series with cardiac arrest after EMS arrival (Red), cardiac arrest prior (Brown),
total calls (Green), calls without cardiac arrest (Blue) and calls with arrests (Purple). The lower left shows the all-cause mortality multiple cause
of death certificate volumes (Red) and volumes where the primary (Green) and secondary causes of death (Green) were COVID-19. The x-axis
is the study week, and the y-axis is the volume for all figures.
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importance for “Week Ending Date,” “COVID 19 DX Codes,”
and “COD COVID Primary” series. The “Total Above” ranged 5
to 8, indicating similar importance distributions.

In ►Table 4, the geometric mean has been computed for
each row and if the raw value exceeds the geometric mean,
the raw value is marked “above” as in►Table 3.►Table 4 can
assess above average variable importance across models.
High variable importance across models indicates that mul-
tiple series relied on the independent variable to learn the
dependent weekly value. For example, in ►Table 4, “COD All
Cause” independent variable was above the average variable
importance (for different sources) models “Week Ending
Date,” “Influenza DX Codes,” “Respiratory Codes,” “Excess
Deaths,” and “Observed Deaths” (from excess deaths source).
Total Above ranged from 2 to 10, suggesting that some
series had acute agreement (small number) and some have
generalized agreement. The Medicare sourced series have
low Total Above, indicating their value is concentrated in
models “COVID All Cause” and “Observed Deaths.” Note that
NEMSIS CA Prior EMS is tied with Week Ending Date in first
place (10).

Discussion

Toward prior work, syndromic surveillance and the uses of
prehospital data in understanding hospital utilization, (in-
fluenza) vaccination uptake, and community health are well
described.34–36 However, the potential for prehospital CA to
be considered as a syndromic effect is perhaps limited to
influenza and local area use cases in the United States.37 The
same cannot be said for Europe.38,39 There is evidence that
COVID-19 is associated with sudden cardiac death, some of
which should be prehospital and pre-EMS arrival.40 As
influenza has inspired developments in syndromic surveil-
lance, perhaps COVID-19 will do the same.38

Toward study findings, appreciating the severity of
COVID-19 in the United States has been met with difficul-
ty.41–43 Preexisting surveillance methods have proven inad-
equate, and CDC has proposed a modernization effort to
produce novel surveillance efforts within the epidemic re-
sponse.44 Ancillary events, such as EMS calls and Medicare
bills, could support surveillance tasks like early detection of
an outbreak, severity models, and prevention efforts. This
paper demonstrates that Medicare and NEMSIS data have
value when predicting traditional measures of epidemic
modeling like COD and Excess Mortality.

Within Medicare sourced series, EMS call volumes were
below average variable importance for Influenza and Respi-
ratory Viral claims volumes but were above average for
COVID-19 volumes when calls without CA and calls where
CA occurred prior to EMS arrival are considered. NEMSIS
series benefited from knowing the call volumes which were
CA prior to EMS arrival, consistently ranked within NEMSIS
series as 1 or the most important. COVID-19 as primary COD
on a multiple COD certificate and the volume of Medicare
COVID-19 claims was also above average in importance
when predicting NEMSIS call volumes. This suggests that
COVID-19 is driving EMS call volumes.

Within CDC MCDC series both primary and secondary
COD models found above average predictive value from
NEMSIS call volumes which involved a CA, suggesting that
EMS arrests may not survive the experience. There is also
predictive value in the CDC excess mortality model values
but this is to be expected as the excess mortality model was
designed to evaluate excess mortality from COVID-19. With-
in CDC ExcessMortality series, NEMSIS call volumes for CA as
well as COVID-19 being present on amultiple COD certificate
were high value when predicting the weekly Farrington
Flexible mortality excess estimates.

Variable importance detailed in Tables 2 and 3 demon-
strates meaningful model segmentation between series and
series events. Influenza and viral respiratory codes are partic-
ularly interesting as a “control” case in this COVID-19 era data
set. Both influenza and viral respiratory series show interre-
latedness in their variable importance and difference or seg-
mentation from COVID-19. “CA prior to EMS” arrival was also
of note because “CA prior to EMS” arrival most likely results
in a decedent without a COVID-19 diagnosis, a decedent who
may be ineligible for a primary COD ‘COVID-19’ declaration.
►Table 3 further belabors the point, with “COD Primary
COVID” model showing “NEMSIS Calls CA Yes,” “NEMSIS CA
Before,” “NEMSIS CA Prior,” “Observed Deaths,” and “Excess
Deaths” above the geometric mean of variable importance
within the “COD Primary COVID” model. Given that DRF
does not knowwhat a cardiac arrest is nor Farrington Flexible
but is still able to associate the weekly distributions with
COVID-19 primary COD on MCDCs from only the weekly
counts highlights the strength of this approach.

Table 4 demonstrates high general utility for most inde-
pendent variables in the model series. It also suggests that
the Medicare series was not as strongly utilized in decision-
making with a geometric mean range of 2–3. This could be
due to the real-world sampling distribution of Medicare
enrollment relative to the total morbidity burden in the
United States. How much of the COVID-19 burden should
be among Medicare beneficiaries remains unknown. All
other series are national, while Medicare is enrollee specific
and may not offer as much instruction to prediction. How-
ever, despite the difference in real world lag (between claims
being processed and a death certificate being populated, or a
911 call being placed), the model produced r2>0.9 in most
cases. Note that “NEMSIS CA Prior EMS” had as many “above”
the geometric mean in ►Table 4 as the week itself. This
means it is tied for the best predictor across models. The
implications of these prior arrests are profound, and they
may be a sink of underrecognized COVID-19 mortality.

The length of the series, and the “isotonic” nature of the
data may explain the difficulty of predicting the week of
series, as the opportunity for weekly patterns to repeat most
likely confused week assignments. As COVID and influenza
had multiple “waves” over the observation period, a bad
week guess could be a repeat start, peak, or end event. A bad
week guess could also be a time point with little data being
confused for another low-volume time point. The NEMSIS
anomaly in 2017 (low volumes) is not well understood but is
most likely due to NEMSIS transitioning OLAP series in 2017
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or perhaps therewas a national decrease in EMS call volumes
in 2017. Most likely the models are not impacted as the
models consider records from 2018 onward.

The analysis would be more robust if series completeness
could be achieved, especially in early model years. ►Table 1

shows several data series available in earlier years than others.
Medicare data particularly suffers from changes in diagnostic
code recall in ICD9-CM versus ICD10-CM years (only ICD10-
CMyearswere considered here). The “stability” of a series is of
high importance when evaluating future surveillance value.
Themodel did not weighvariables by series source anddid not
“know”’ that variables were from the same data sources.
Weighting series completeness may improve model results;
however, r2 was high across models. The Medicare series
contains diagnostic and pathology codes for influenza and
COVID-19. There may be noncase incidence drivers of testing,
vaccination, and pathology including nosocomial infections,
the “worriedwell” aswell as public health interventions (mass
testing and roster vaccinations). Disambiguating theMedicare
indexes could increase their utility even further. The viral
respiratory code list includes minor codes like fever as well
as ARDS and pneumonia. Their disambiguation by severity
may improve model utility as well.

Conclusion

Prehospital data (EMS) are of high value in COVID-19 sur-
veillance and should be considered as a potential data source
when attempting to learn COVID-19 severity within juris-
dictions. Medicare data faired weaker though individuals
providing care to the Medicare population should consider
the disambiguation of patients with COVID-19 from individ-
uals seeking COVID-19 prevention services (testing and
vaccination).

Human Subjects Protections

While this study contains identifiable information describing
live human subjects, no National Institutes of Health Institu-
tional Review Board (NIH IRB) review was required. Note that
Centers forMedicare andMedicaid Services (CMS) data access
and use are approved through the CMS IRB, however. Data
were further “cleared” for public release by C.C.W., and C.C.W.
evaluated our compliance with CMS nonreidentification
standards for data describing beneficiary populations.
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