Synthesis 2023; 55(12): 1929-1939
DOI: 10.1055/a-2017-4738
paper
Special Issue Honoring Prof. Guoqiang Lin's Contributions to Organic Chemistry

Enantioselective Synthesis of Dispirooxindole Derivatives via Asymmetric Catalytic Cascade Reactions

Rui Ma
a   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. of China
,
Jia-Lu Zhang
a   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. of China
,
Xiu-Qin Hu
a   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. of China
,
Peng-Fei Xu
a   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. of China
b   State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. of China
c   Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, P. R. of China
› Author Affiliations
We are grateful to the National Natural Science Foundation of China (NSFC) (21632003, 21871116, 22071085), the Key Program of Gansu Province (17ZD2GC011), and the ‘111’ Program from the MOE of P. R. China for funding the research.


Dedicated to Prof. Guo-Qiang Lin for his 80th birthday.

Abstract

A series of optically active 3,3′-pyrrolidinyl-dispirooxindole derivatives containing a CF3 moiety have been efficiently constructed through asymmetric catalytic cascade reactions catalyzed by cinchona-derived bifunctional squaramide catalyst, bearing four contiguous stereogenic centers, two of which are vicinal spiro-stereocenters. Additionally, a wide range of substituted products were achieved with moderate to high yields (up to 99% yield) and excellent stereoselectivities (up to >20:1 dr for all cases and up to 99% ee).

Supporting Information



Publication History

Received: 16 December 2022

Accepted after revision: 22 January 2023

Accepted Manuscript online:
22 January 2023

Article published online:
27 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews, see:
    • 1a Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 1b Rios R. Chem. Soc. Rev. 2012; 41: 1060
    • 1c Franz AK, Hanhan NV, Ball-Jones NR. ACS Catal. 2013; 3: 540
    • 1d Hiesinger K, Dar’in D, Proschak E, Krasavin MS. J. Med. Chem. 2021; 64: 150

      For reviews and examples, see:
    • 2a Rottmann M, McNamara C, Yeung BK. S, Lee MC. S, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, González-Páez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck H.-P, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT. Science 2010; 329: 1175
    • 2b Babu SA, Padmavathi R, Aslam NA, Rajkumar V. Stud. Nat. Prod. Chem. 2015; 46: 227
    • 2c Mali PR, Rao LC, Bangade VM, Shirsat PK, George SA, Babu NJ, Meshram HM. New J. Chem. 2016; 40: 2225
  • 3 Antonchick AP, Gerding-Reimers C, Catarinella M, Schürmann M, Preut H, Ziegler S, Rauh D, Waldmann H. Nat. Chem. 2010; 2: 735
  • 4 Arun Y, Bhaskar G, Balachandran C, Ignacimuthu S, Perumal PT. Bioorg. Med. Chem. Lett. 2013; 23: 1839
  • 5 Velikorodov AV, Ionova VA, Degtyarev OV, Sukhenko LT. Pharm. Chem. J. 2013; 46: 715
  • 6 Babu AR. S, Raghunathan R, Mathivanan N, Omprabha G, Velmurugan D, Raghu R. Curr. Chem. Biol. 2008; 2: 312

    • For reviews, see:
    • 7a Luo Y.-C, Zhang H.-H, Wang Y, Xu P.-F. Acc. Chem. Res. 2010; 43: 1317
    • 7b Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
    • 7c Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 7d Cheng D.-J, Ishihara Y, Tan B, Barbas CF. III. ACS Catal. 2014; 4: 743
    • 7e Xie X, Huang W, Peng C, Han B. Adv. Synth. Catal. 2018; 360: 194
    • 7f Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
    • 8a Liu H, Dou G.-L, Shi D.-Q. J. Comb. Chem. 2010; 12: 292
    • 8b Lanka S, Thennarasu S, Perumal PT. Tetrahedron Lett. 2014; 55: 2585
    • 8c Suman K, Srinu L, Thennarasu SL. Org. Lett. 2014; 16: 3732
    • 9a Xiao J.-A, Zhang H.-G, Liang S, Ren J.-W, Yang H, Chen X.-Q. J. Org. Chem. 2013; 78: 11577
    • 9b Xu Q, Wang D, Wei Y, Shi M. ChemistryOpen 2014; 3: 93
    • 9c Almansour AI, Arumugam N, Kumar RS, Periyasami G, Ghabbour HA, Fun H.-K. Molecules 2015; 20: 780
    • 9d Lin B, Zhang W.-H, Wang D.-D, Gong Y, Wei Q.-D, Liu X.-L, Feng T.-T, Zhou Y, Yuan W.-C. Tetrahedron 2017; 73: 5176
    • 9e Feng T.-T, Gong Y, Wei Q.-D, Wang G.-L, Liu H.-H, Tian M.-Y, Liu X.-L, Chen Z.-Y, Zhou Y. J. Heterocycl. Chem. 2018; 55: 1136
    • 10a Dai W, Jiang X.-L, Wu Q, Shi F, Tu S.-J. J. Org. Chem. 2015; 80: 5737
    • 10b Zhao K, Zhi Y, Li X.-Y, Puttreddy R, Rissanen K, Enders D. Chem. Commun. 2016; 52: 2249
    • 10c Huang W.-J, Chen Q, Lin N, Long X.-W, Pan W.-G, Xiong Y.-S, Weng J, Lu G. Org. Chem. Front. 2017; 4: 472
    • 10d Zhi Y, Zhao K, Essen C, Rissanen K, Enders D. Synlett 2017; 28: 2876
    • 10e He Q, Du W, Chen Y.-C. Adv. Synth. Catal. 2017; 359: 3782
    • 10f Lin Y, Zhao B.-L, Du D.-M. J. Org. Chem. 2018; 83: 7741

      For selected examples, see:
    • 11a Li B.-Y, Gao F.-Y, Feng X, Sun M.-M, Guo Y.-F, Wen D.-W, Deng Y.-B, Huang J.-Q, Wang K.-R, Yan W.-J. Org. Chem. Front. 2019; 6: 1567
    • 11b Liu X, Lu D.-M, Wu J.-H, Tan J.-P, Jiang C.-H, Gao G.-W, Wang T.-L. Adv. Synth. Catal. 2020; 362: 1490
    • 11c Zhao J.-Q, Zhou S, Yang L, Du H.-Y, You Y, Wang Z.-H, Zhou M.-Q, Yuan W.-C. Org. Lett. 2021; 23: 8600
    • 11d You Y, Lu W.-Y, Wang Z.-H, Chen Y.-Z, Xu X.-Y, Zhang X.-M, Yuan W.-C. Org. Lett. 2018; 20: 4453
    • 11e Zhao B.-L, Du D.-M. Adv. Synth. Catal. 2019; 361: 3412
    • 12a Ma M.-X, Zhu Y.-Y, Sun Q.-T, Li X.-Y, Su J.-H, Zhao L, Zhao Y.-Y, Qiu S, Yan W.-J, Wang K.-R, Wang R. Chem. Commun. 2015; 51: 8789
    • 12b Sun Q.-T, Li X.-Y, Su J.-H, Zhao L, Ma M.-X, Zhu Y.-Y, Zhao Y.-Y, Zhu R.-R, Yan W.-J, Wang K.-R, Wang R. Adv. Synth. Catal. 2015; 357: 3187
    • 12c Gui H.-Z, Wei Y, Shi M. Chem. Asian J. 2020; 15: 1225

      For reviews, see:
    • 13a Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 13b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 13c Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 13d Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem. Soc. Rev. 2012; 41: 31
    • 13e Smits R, Cadicamo CD, Burgerc K, Koksch B. Chem. Soc. Rev. 2008; 37: 1727
    • 13f Wang J, Rosell MS, Aceña JL, Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 14a Wang Y, Han R.-G, Zhao Y.-L, Yang S, Xu P.-X, Dixon DJ. Angew. Chem. Int. Ed. 2009; 48: 9834
    • 14b Liu J.-Y, Zhao J, Zhang J.-L, Xu P.-F. Org. Lett. 2017; 19: 1846
    • 14c Zhao C.-G, Feng Z.-T, Xu G.-Q, Gao A, Chen J.-W, Wang Z.-Y, Xu P.-F. Angew. Chem. Int. Ed. 2020; 59: 3058
    • 14d Ji D.-S, Luo Y.-C, Hu X.-Q, Xu P.-F. Org. Lett. 2020; 22: 1028
    • 14e Zhang J.-L, Ma R, Zhao H.-H, Xu P.-F. Chem. Commun. 2022; 58: 3493
    • 15a Zhang J.-L, Liu J.-Y, Xu G.-Q, Luo Y.-C, Lu H, Tan C.-Y, Hu X.-Q, Xu P.-F. Org. Lett. 2021; 23: 3287
    • 15b Zhang J.-L, Ye W.-L, Zhang J, Hu X.-Q, Xu P.-F. Org. Lett. 2021; 23: 5033