Synthesis 2023; 55(18): 2873-2895
DOI: 10.1055/a-2019-0399
short review
Special Issue Electrochemical Organic Synthesis

Research Advances in Electrochemical Synthesis of Spirocyclic Skeleton Compounds

Qian Wang
a   Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health of Guilin Medical University, 1 Zhiyuan Road, Guilin 541199, P. R. of China
b   State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. of China
,
Han-Fu Liu
b   State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. of China
,
Sai-Yan Ren
b   State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. of China
,
Mu-Xue He
a   Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health of Guilin Medical University, 1 Zhiyuan Road, Guilin 541199, P. R. of China
,
Ying-Ming Pan
b   State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (No. 22161008), the Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology (No. 2022KF05), the Central Government Guides Local Science and Technology Development Fund Projects (No. guike ZY21195014), and the Opening Project of Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountain (No. hgxy2101).


Abstract

Spirocyclic compounds have attracted the interest of synthetic chemists because of their unique ring systems and utility in drug discovery. Many natural compounds containing spirocyclic moieties in their skeleton are effective pharmaceuticals. For many redox processes, electroorganic synthesis is considered an environmentally friendly method, since the use of reagents with significant toxicity is replaced by electric current, so the amount of waste is often greatly reduced. Therefore, this review summarizes the construction of compounds with a spirocyclic skeleton via electrochemical synthesis strategies since 2000.

1 Introduction

2 Electrochemically Mediated Synthesis of Spirocyclopropanes

3 Electrochemically Mediated Synthesis of Spirooxindoles

4 Electrochemically Mediated Synthesis of Spirodienones

5 Electrochemically Mediated Synthesis of Other Heterospirocycles

6 Conclusion



Publication History

Received: 04 December 2022

Accepted after revision: 24 January 2023

Accepted Manuscript online:
24 January 2023

Article published online:
06 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Westphal R, Venturini Filho E, Medici F, Benaglia M, Greco S. Synthesis 2022; 54: 2927
    • 1b Hiesinger K, Dar’in D, Proschak E, Krasavin M. J. Med. Chem. 2021; 64: 150
    • 1c Mos GP. Pure. Appl. Chem. 1999; 71: 531
    • 2a Zhao J.-Y, Wang X.-J, Liu Z, Meng F.-X, Sun S.-F, Ye F, Liu Y.-B. J. Nat. Prod. 2019; 82: 2953
    • 2b Saraswat P, Jeyabalan G, Hassan MZ, Rahman MU, Nyola NK. Synth. Commun. 2016; 46: 1643
  • 3 Khanna P, Panda SS, Khanna L, Jain SC. Mini-Rev. Org. Chem. 2014; 11: 73
  • 4 Chin Y.-W, Salim AA, Su B.-N, Mi Q, Chai H.-B, Riswan S, Kardono LB, Ruskandi A, Farnsworth NR, Swanson SM, Kinghorn AD. J. Nat. Prod. 2008; 71: 390
  • 5 Babar K, Zahoor AF, Ahmad S, Akhtar R. Mol. Diversity 2021; 25: 2487
    • 7a Coppola GA, Pillitteri S, Van der Eycken EV, You SL, Sharma UK. Chem. Soc. Rev. 2022; 51: 2313
    • 7b Wang Q, Xu C.-H, Wang Y.-C, Pan Y.-M, Duan W.-G, Tang H.-T. Green Chem. 2022; 24: 7362
    • 7c Sharma D, Hussain Y, Sharma M, Chauhan P. Green Chem. 2022; 24: 4783
    • 7d He M.-X, Zhong P.-F, Liu H.-F, Ou C.-H, Pan Y.-M, Tang H.-T. Green Synth. Catal. 2022; in press DOI: 10.1016/j.gresc.2022.03.002.
    • 7e Zhong P.-F, Lin H.-M, Wang L.-W, Mo Z.-Y, Meng X.-J, Tang H.-T, Pan Y.-M. Green Chem. 2020; 22: 6334
    • 8a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 8b Novaes LF, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
    • 8c Cheng X, Lei A, Mei T.-S, Xu H.-C, Xu K, Zeng C.-C. CCS Chem. 2022; 4: 1120
    • 8d Meyer TH, Choi I, Tian C, Ackermann L. Chem 2020; 6: 2484
    • 8e Wang X.-Y, Wu S.-H, Zhong Y.-J, Wang Y.-C, Pan Y.-M, Tang H.-T. Chin. Chem. Lett. 2023; 34: 107537
    • 8f Wang X.-Y, Zhong Y.-F, Mo Z.-Y, Wu S.-H, Xu Y.-L, Tang H.-T, Pan Y.-M. Adv. Synth. Catal. 2021; 363: 208
    • 8g Cheng S.-Y, Ou C.-H, Lin H.-M, Jia J.-S, Tang H.-T, Pan Y.-M, Huang G.-B, Meng X.-J. Chin. J. Org. Chem. 2021; 41: 4718
    • 8h Pan Y.-Z, Xia Q, Zhu J.-X, Wang Y.-C, Liang Y, Wang H, Tang H.-T, Pan Y.-M. Org. Lett. 2022; 24: 8239
    • 8i Mahanty K, Halder A, Maiti D, De Sarkar S. Synthesis 2023; 55: 400
    • 9a Zhang W, Lu L, Zhang W, Wang Y, Ware S, Mondragon DJ, Rein J, Strotman N, Lehnherr D, See KA, Lin S. Nature 2022; 604: 292
    • 9b Long H, Chen T.-S, Song J, Zhu S, Xu H.-C. Nat. Commun. 2022; 13: 3945
    • 9c Yuan Y, Lei A. Acc. Chem. Res. 2019; 52: 3309
    • 9d Li Q.-Y, Cheng S.-Y, Tang H.-T, Pan YM. Green Chem. 2019; 21: 5517
    • 9e He M.-X, Mo Z.-Y, Wang Z.-Q, Cheng S.-Y, Xie R.-R, Tang H.-T, Pan YM. Org. Lett. 2020; 22: 724
    • 9f Wang ZQ, Hou C, Zhong YF, Lu YX, Mo ZY, Pan YM, Tang HT. Org. Lett. 2019; 21: 9841
    • 9g Meng XJ, Zhong PF, Wang YM, Wang HS, Tang HT, Pan YM. Adv. Synth. Catal. 2020; 362: 506
    • 9h Zhang YZ, Mo ZY, Wang HS, Wen XA, Tang HT, Pan YM. Green Chem. 2019; 21: 3807
    • 9i Mo Z.-Y, Swaroop T.-R, Tong W, Zhang Y.-Z, Tang H.-T, Pan Y.-M, Sun H.-B, Chen ZF. Green Chem. 2018; 20: 4428
    • 9j Wang Z.-Q, Meng X.-J, Li Q.-Y, Tang H.-T, Wang H.-S, Pan Y.-M. Adv. Synth. Catal. 2018; 360: 4043
    • 9k Wu J, Jin K, Wang R, Wang X, Yu X, Zhong L, Liu J. Synthesis 2023; 55: 451
  • 10 Razafindrazoto CI, Rasolonjatovo AS, Rabenjanahary TH, Randriamifidy NH, Rakotozafindrabe AL. R, Razafimahefa SH, Ramanampamonjy RM. Int. J. Infect. Dis. 2021; 107: 166
  • 11 Elinson MN, Feducovich SK, Lizunova TL, Nikishin GI. Tetrahedron 2000; 56: 3063
    • 12a Saini K, Raigar AK, Manju, Jangid DK, Mathur J, Dhadda S, Guleria A. J. Org. Chem. 2022; 87: 13734
    • 12b Dandia A, Singh R, Maheshwari S. Curr. Org. Chem. 2014; 18: 2513
    • 12c Fatiadi AJ. Synthesis 1978; 164
  • 13 Elinson MN, Fedukovich SK, Vereshchagin AN, Dorofeev AS, Dmitriev DE, Nikishin GI. Russ. Chem. Bull. 2003; 52: 2235
  • 14 Elinson MN, Fedukovich SK, Zaimovskaya TA, Vereshchagin AN, Nikishin GI. Russ. Chem. Bull. 2003; 52: 2241
    • 15a Maquoi E, Sounni NE, Devy L, Olivier F, Frankenne F, Krell H.-W, Grams F, Foidart J.-M, Noel A. Clin. Cancer Res. 2004; 10: 4038
    • 15b Breyholz H.-J, Wagner S, Faust A, Riemann B, Höltke C, Hermann S, Schober O, Schafers M, Kopka K. ChemMedChem 2010; 5: 777
  • 16 Galati EM, Monforte MT, Miceli N, Ranerill E. Farmaco 2001; 56: 459
  • 17 Dorofeeva EO, Elinson MN, Vereshchagin AN, Stepanov NO, Bushmarinov IS, Belyakov PA, Sokolova OO, Nikishin GI. RSC Adv. 2012; 2: 4444
  • 18 Vereshchagin AN, Elinson MN, Dorofeeva EO, Stepanov NO, Zaimovskaya TA, Nikishin GI. Tetrahedron 2013; 69: 1945
  • 19 Devi S, Nayak A, Mittra AS. J. Indian Chem. Soc. 1984; 61: 640
  • 20 Elinson MN, Dorofeeva EO, Vereshchagin AN, Nasybullin RF, Egorov MP. Catal. Sci. Technol. 2015; 5: 2384
  • 21 Madhu NT, Radhakrishnan PK, Grunert M, Weinberger P, Linert W. Rev. Inorg. Chem. 2003; 23: 1
    • 22a Kees KL, Fitzgerald JJ, Steiner KE, Mattes JF, Mihan B, Tosi T, Mondoro D, McCaleb ML. J. Med. Chem. 1996; 39: 3920
    • 22b Van Herk T, Brussee J, Van den Nieuwendijk AM. C. H, Van Der Klein PA. M, IJzerman AP, Stannek C, Burmeister A, Lorenzen A. J. Med. Chem. 2003; 46: 3945
    • 22c Singh P, Paul K, Holzer W. Bioorg. Med. Chem. 2006; 14: 5061
  • 23 Vereshchagin AN, Elinson MN, Dorofeeva EO, Nasybullin RF, Bushmarinov IS, Goloveshkin AS, Egorov MP. Electrochim. Acta 2015; 165: 116
  • 24 Elinson MN, Vereshchagin AN, Korshunov AD, Zaimovskaya TA, Egorov MP. Monatsh. Chem. 2018; 149: 1069
  • 25 Mohammadi AA, Makarem S, Ahdenov R, Notash NA. Mol. Diversity 2020; 24: 763
    • 26a Williams RM, Cox RJ. Acc. Chem. Res. 2003; 36: 127
    • 26b Cui C.-B, Kakeya H, Osada H. Tetrahedron 1996; 52: 12651
    • 27a Xi Y.-K, Zhang H, Li R.-X, Kang S.-Y, Li J, Li Y. Chem. Eur. J. 2019; 25: 3005
    • 27b Yadav A, Banerjee J, Arupula SK, Mobin SM, Samanta S. Asian J. Org. Chem. 2018; 7: 1595
  • 28 Elinson MN, Ilovaisky AI, Dorofeev AS, Merkulova VM, Stepanov NO, Miloserdov FM, Ogibin YN, Nikishin GI. Tetrahedron 2007; 63: 10543
  • 29 Darvish ZM, Mirza B, Makarem S. J. Heterocycl. Chem. 2017; 54: 1763
  • 30 Makarem S, Karimi P. Monatsh. Chem. 2019; 150: 2053
  • 31 Makarem S. J. Heterocycl. Chem. 2020; 57: 1599
  • 32 Elinson MN, Ilovaisky AI, Merkulova VM, Demchuk DV, Belyakov PA, Ogibin YN, Nikishin GI. Electrochim. Acta 2008; 53: 8346
  • 33 Foloppe N, Fisher LM, Howes R, Potter A, Robertson AG. S, Surgenor AE. Bioorg. Med. Chem. 2006; 14: 4792
  • 34 Elinson MN, Dorofeev AS, Miloserdov FM, Nikishin GI. Mol. Diversity 2009; 13: 47
  • 35 Magedov IV, Manpadi M, Ogasawara MA, Dhawan AS, Rodelj S, Van Slambrouck S, Steelant WF. A, Evdokimov NM, Uglinskii PY, Elias EM, Knee EJ, Tongwa P, Antipin MY, Kornienko A. J. Med. Chem. 2008; 51: 2561
  • 36 Elinson MN, Merkulova VM, Ilovaisky AI, Demchuk DV, Belyakov PA, Nikishin GI. Mol. Diversity 2010; 14: 833
  • 37 Alam S, Sarkar Z, Islam A. J. Chem. Sci. 2004; 116: 29
  • 38 Makarem S, Fakhari AR, Mohammadi AA. Ind. Eng. Chem. Res. 2012; 51: 2200
    • 40a Low-Beinart L, Sun X, Sidman E, Kesharwani T. Tetrahedron Lett. 2013; 54: 1344
    • 40b Chen Y, Liu X, Lee M, Huang C, Inoyatov I, Chen Z, Perl AC, Hersh WH. Chem. Eur. J. 2013; 19: 9795
  • 41 Tao X, Cheng J, Nishiyama S, Yamamura S. Tetrahedron 1994; 50: 2017
  • 42 Ogamino T, Ohnishi S, Ishikawa Y, Sugai T, Obata R, Nishiyama S. Sci. Technol. Adv. Mater. 2006; 7: 175
  • 43 Amano Y, Nishiyama S. Tetrahedron Lett. 2006; 47: 6505
  • 44 Yu K, Kong X, Yang J, Li G, Xu B, Chen Q. J. Org. Chem. 2021; 86: 917
  • 45 Hua J, Fang Z, Bian M, Ma T, Yang M, Xu J, Liu C, He W, Zhu N, Yang Z, Guo K. ChemSusChem 2020; 13: 2053
  • 46 Raji Reddy C, Kolgave DH. J. Org. Chem. 2021; 86: 17071
  • 47 Zhang C, Bu F, Zeng C, Wang D, Lu L, Zhang H, Lei A. CCS Chem. 2021; 3: 1404
  • 48 Li N, Shi Z, Yuan Y, Li Z, Ye K.-Y. Org. Chem. Front. 2022; 9: 6586
  • 49 Lin L, Liang Q, Kong X, Chen Q, Xu B. J. Org. Chem. 2020; 85: 15708
  • 50 Yang W.-C, Zhang M.-M, Sun Y, Chen C.-Y, Wang L. Org. Lett. 2021; 23: 6691
  • 51 Zuo H.-D, Hao W.-J, Zhu C.-F, Guo C, Tu S.-J, Jiang B. Org. Lett. 2020; 22: 4471
  • 52 Li L, Hou Z.-W, Li P, Wang L. J. Org. Chem. 2022; 87: 8697
  • 53 Honjo E, Kutsumura N, Ishikawa Y, Nishiyama S. Tetrahedron 2008; 64: 9495
  • 54 Vereshchagin AN, Elinson MN, Dorofeeva EO, Zaimovskaya TA, Stepanov NO, Gorbunov SV, Belyakov PA, Nikishin GI. Tetrahedron 2012; 68: 1198
  • 55 Elinson MN, Ryzhkova YE, Vereshchagin AN, Ryzhkov FV, Egorov MP. J. Heterocycl. Chem. 2021; 58: 1484
  • 56 Ryzhkova YE, Elinson MN, Vereshchagin AN, Karpenko KA, Ryzhkov FV, Ushakov IE, Egorov MP. Chemistry 2022; 4: 615
  • 57 Mo K, Zhou X, Wu J, Zhao Y. Org. Lett. 2022; 24: 2788
  • 58 Mo K., Zhou X., Wu J., Zhao Y. J. Org. Chem. 2022, 87, 16106
  • 59 Lan J, Li S, Lin K, Zhou P, Chen W, Gao L, Zhu T. Org. Biomol. Chem. 2022; 20: 3475
  • 60 Wei W, Scheremetjew A, Ackermann L. Chem. Sci. 2022; 13: 2783
  • 61 Shi Z, Wang W.-Z, Li N, Yuan Y, Ye K.-Y. Org. Lett. 2022; 24: 6321