Synthesis 2023; 55(18): 2833-2842
DOI: 10.1055/a-2020-8923
short review
Special Issue Electrochemical Organic Synthesis

Recent Advances in Electro- or Photochemical Driven Transformations via Cleavage of the C–N Bond of Quaternary Ammonium Salts

Xiaohui Chen
a   School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, P. R. of China
,
Neng-Zhong Wang
b   Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, P. R. of China
,
Ya-Min Cheng
c   College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. of China
,
Xianqiang Kong
a   School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, P. R. of China
,
Zhong-Yan Cao
c   College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. of China
› Author Affiliations
We thank the funding from the National Natural Science Foundation of China (NSFC) (22102012, 22202021, 22272011, and 22201062), Changzhou Science and Technology Plan Applied Basic Research Project (CJ20210159, CJ20210129, and CZ20220022), Natural Science Foundation of Henan Province (K22029Y), the Jiangsu Higher Education­ Institutions of China (22KJA150001, 21KJD530003, 21KJB530013), and the opening funding of Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University (2022NPRD02).


Abstract

Selective functionalization via cleavage of the C–N bond of amines has proven to be challenging partly because of its relatively high bond dissociation energy, even though amines are abundant and readily available. To meet this challenge, many new transformations based on the pre-activation of the C–N bond before the cleavage have been developed. Among them, the conversion of amines into quaternary ammonium salts has certain advantages, such as easy preparation from primary, secondary, or tertiary amines, as well as stable storage and usage. Although transition metal catalysis has been frequently applied for developing new transformations via oxidative addition of the C–N bond of quaternary ammonium salts, recent studies have shown a new dimension by using green electro- or photochemical tools. In this short review, recent advances in electro-, photo-, or photoelectrochemical driven synthetic applications of quaternary ammonium salts have been summarized and discussed.

1 Introduction

2 Electrochemical Driven Transformations

3 Photochemical Driven Transformations

4 Photoelectrochemical Driven Transformations

5 Conclusion and Outlook



Publication History

Received: 30 December 2022

Accepted after revision: 26 January 2023

Accepted Manuscript online:
26 January 2023

Article published online:
01 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Ouyang K, Hao W, Zhang W.-X, Xi Z. Chem. Rev. 2015; 115: 12045
    • 2b Wang Q, Su Y, Li L, Huang H. Chem. Soc. Rev. 2016; 45: 1257
    • 2c Dherange BD, Yuan M, Kelly CB, Reiher CA, Grosanu C, Berger KJ, Gutierrez O, Levin MD. J. Am. Chem. Soc. 2023; 145: 17
    • 3a Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 3b Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 4a Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
    • 4b Fumagalli G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
    • 4c Song F, Gou T, Wang B.-Q, Shi Z.-J. Chem. Soc. Rev. 2018; 47: 7078
    • 5a Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 5b Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
  • 6 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
    • 7a Galli C. Chem. Rev. 1988; 88: 765
    • 7b Mo F, Qiu D, Zhang L, Wang J. Chem. Rev. 2021; 121: 5741
  • 8 Rössler SL, Jelier BJ, Magnier E, Dagousset G, Carreira EM, Togni A. Angew. Chem. Int. Ed. 2020; 59: 9264
    • 9a Li G, Chen Y, Xia J.-B. Chin. J. Org. Chem. 2018; 38: 1949
    • 9b Wang Z.-X, Yang B. Org. Biomol. Chem. 2020; 18: 1057
    • 9c Wang C. Chem. Pharm. Bull. 2020; 68: 683
    • 9d García-Cárceles J, Bahou KA, Bower JF. ACS Catal. 2020; 10: 12738
    • 9e Wang Y, Li F, Zeng Q. Acta Chim. Sin. 2022; 80: 386
  • 10 Wenkert E, Han A.-L, Jenny C.-J. J. Chem. Soc., Chem. Commun. 1988; 975

    • For selected reviews, see:
    • 11a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 11b Tang S, Liu Y, Lei A. Chem 2018; 4: 27
    • 11c Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
    • 11d Siu JC, Fu NK, Lin S. Acc. Chem. Res. 2020; 53: 547
    • 11e Yu Y, Guo P, Zhong J.-S, Yuan Y, Ye K.-Y. Org. Chem. Front. 2020; 7: 131
    • 11f Ma C, Fang P, Liu Z, Xu S, Xu K, Cheng X, Lei A, Xu H, Zeng CC, Mei T.-S. Sci. Bull. 2021; 66: 2412
    • 11g He W.-M, Cui X. Chin. Chem. Lett. 2021; 32: 1589
    • 11h Huang B, Sun Z, Sun G. eScience 2022; 2: 243
    • 12a Emmert B. Ber. Dtsch. Chem. Ges. 1909; 42: 1507
    • 12b Emmert B. Ber. Dtsch. Chem. Ges. 1909; 42: 1997
    • 12c Emmert B. Ber. Dtsch. Chem. Ges. 1912; 45: 430
  • 13 Annibaletto J, Jacob C, Theunissen C. Org. Lett. 2022; 24: 4170
    • 14a Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
    • 14b Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
    • 14c Narayanam JM. R, Tucker JW, Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
    • 15a Mfuh AM, Doyle JD, Chhetri B, Arman HD, Larionov OV. J. Am. Chem. Soc. 2016; 138: 2985
    • 15b Liao L, Cao G, Ye J, Sun G, Zhou W, Gui Y, Yan S, Shen G, Yu D.-G. J. Am. Chem. Soc. 2018; 140: 17338
    • 15c Jin S, Dang H, Haug G, He R, Nguyen VD, Arman HD, Schanze KS, Larionov OV. J. Am. Chem. Soc. 2020; 142: 1603
    • 16a Kong X, Chen X, Chen Y, Cao Z.-Y. J. Org. Chem. 2022; 87: 7013
    • 16b He H.-D, Zhang Z, Tang H, Xu Y, Xu X, Cao Z, Xu H, Li Y. Org. Chem. Front. 2022; 9: 4875
    • 16c Zhang Z, Feng Y, Ruan Z, Xu Y, Cao Z.-Y, Li M.-H, Wang C. Chem. Commun. 2022; 58: 11709
    • 16d Kong X, Chen Y, Liu Q, Wang W, Zhang S, Zhang Q, Chen X, Xu Y.-Q, Cao Z.-Y. Org. Lett. 2023; 25: 581
    • 17a Southworth BC, Osteryoung R, Fleischer KD, Nachod FC. Anal. Chem. 1961; 33: 208
    • 17b Ross SD, Finkelstein M, Petersen RC. J. Am. Chem. Soc. 1960; 82: 1582
    • 17c Mayell JS, Bard AJ. J. Am. Chem. Soc. 1963; 85: 421
    • 17d Ross SD, Finkelstein M, Petersen RC. J. Am. Chem. Soc. 1970; 92: 6003
  • 18 Yang D.-T, Zhu M, Schiffer ZJ, Williams K, Song X, Liu X, Manthiram K. ACS Catal. 2019; 9: 4699
  • 19 Kong X, Lin L, Chen Q, Xu B. Org. Chem. Front. 2021; 8: 702
    • 20a Kong X, Wang Y, Chen Y, Chen X, Lin L, Cao Z.-Y. Org. Chem. Front. 2022; 9: 1288

    • For other recent cyanations, see:
    • 20b Zhang H, Zhou Y, Tian P, Jiang C. Org. Lett. 2019; 21: 1921
    • 20c Zhou L, Wei S, Lei Z, Zhu G, Zhang Z. Chem. Eur. J. 2021; 27: 7103
    • 20d Zhang G, Huang P, Li Z, Guo J, Pei Y, Li M, Ding W, Wu J. Cell Rep. Phys. Sci. 2022; 3: 101104
    • 20e Hu D, Zhang Y, Li J, Liang K, Xia C. Chem. Commun. 2023; 59: 462
    • 20f Yu Y, Jiang Y, Wu S, Shi Z, Wu J, Yuan Y, Ye K. Chin. Chem. Lett. 2022; 33: 2009
  • 21 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
    • 22a Goossen LJ, Rudolphi F, Oppel C, Rodríguez N. Angew. Chem. Int. Ed. 2008; 47: 3043

    • See also:
    • 22b Shang R, Fu Y, Li J.-B, Zhang S.-L, Guo Q.-X, Liu L. J. Am. Chem. Soc. 2009; 131: 5738
    • 23a Chu L, Lipshultz JM, MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 7929
    • 23b Cheng W.-M, Shang R, Yu H.-Z, Fu Y. Chem. Eur. J. 2015; 21: 13191
    • 23c Zhu D.-L, Wu Q, Young DJ, Wang H, Ren Z.-G, Li H.-X. Org. Lett. 2020; 22: 6832
    • 23d Bai D, Guo Y, Ma D, Guo X, Wu H. Org. Lett. 2023; 25: 533
  • 24 Kong X, Chen Y, Chen X, Lu Z.-X, Wang W, Ni S.-F, Cao Z.-Y. Org. Lett. 2022; 24: 2137
    • 25a Kabi A, Clay PG. Radiat. Res. 1968; 34: 680

    • See also:
    • 25b Bobrowski K. J. Phys. Chem. 1981; 85: 382
    • 26a Kerzig C, Guo X, Wenger OS. J. Am. Chem. Soc. 2019; 141: 2122

    • For a recent example to form benzylic radical, see:
    • 26b Xiang P, Sun K, Wang S, Chen X, Qu L, Yu B. Chin. Chem. Lett. 2022; 33: 5074
  • 27 Noto N, Saito S. ACS Catal. 2022; 12: 15400
  • 28 Veatch AM, Liu S, Alexanian EJ. Angew. Chem. Int. Ed. 2022; 61: e202210772
  • 29 Brunet J.-J, Sidot C, Caubere P. Tetrahedron Lett. 1981; 22: 1013

    • For recent selected reviews, see:
    • 30a Barham JP, Konig B. Angew. Chem. Int. Ed. 2020; 59: 11732
    • 30b Liu JJ, Lu LX, Wood D, Lin S. ACS Cent. Sci. 2020; 6: 1317
    • 30c Yang G, Wang Y, Qiu Y. Chin. J. Org. Chem. 2021; 41: 3935
  • 31 Moutet J.-C, Reverdy G. Tetrahedron Lett. 1979; 20: 2389

    • For recent selected examples, see:
    • 32a Huang H, Strater ZM, Rauch M, Shee J, Sisto TJ, Nuckolls C, Lambert TH. Angew. Chem. Int. Ed. 2019; 58: 13318
    • 32b Yan H, Hou ZW, Xu HC. Angew. Chem. Int. Ed. 2019; 58: 4592
    • 32c Qiu YA, Scheremetjew A, Finger LH, Ackermann L. Chem. Eur. J. 2020; 26: 3241
    • 32d Zhang W, Carpenter KL, Lin S. Angew. Chem. Int. Ed. 2020; 59: 409
    • 33a Wang F, Stahl SS. Angew. Chem. Int. Ed. 2019; 58: 6385
    • 33b Niu L, Jiang C, Liang Y, Liu D, Bu F, Shi R, Chen H, Chowdhury AD, Lei A. J. Am. Chem. Soc. 2020; 142: 17693
    • 33c Xu H.-C, Xu F, Lai X.-L. Synlett 2021; 32: 369
    • 34a Li TF, Kasahara T, He JF, Dettelbach KE, Sammis GM, Berlinguette CP. Nat. Commun. 2017; 8: 390
    • 34b Zhang L, Liardet L, Luo J, Ren D, Grätzel M, Hu X. Nat. Catal. 2019; 2: 366
  • 35 Yan H, Song J, Zhu S, Xu H.-C. CCS Chem. 2021; 3: 317
  • 36 Chernowsky CP, Chmiel AF, Wickens ZK. Angew. Chem. Int. Ed. 2021; 60: 21418