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Organothiocyanates and selenocyanates stood out over

the last two decades as high-profile targets in synthetic or-

ganic chemistry. These classes of molecules, which have

been known since the 1930s, have been the object of a re-

cent revival of interest, especially regarding their synthe-

sis.1 The SCN and SeCN moieties are indeed of notable im-

portance. In addition to be found in several bioactive natu-

ral products, which exhibit interesting anticancer and

antibacterial activities for most of them, they are important

synthetic linchpin to access other biorelevant sulfur- and

selenium-containing functional groups. In this context, and

even though the formation of C(sp3)–SCN and C(sp3)–SeCN

bonds has been well documented, a simple observation

strikes: enantioselective thiocyanation and selenocyanation

reactions, i.e., the direct introduction of the SCN or SeCN

moieties on a carbon center in an enantioselective fashion,

have long remained a challenge to be overcome. Several ex-

amples have been reported to access chiral organic thiocya-

nates for natural products synthesis endeavors, via SN2 nuc-

leophilic substitutions with SCN nucleophiles on already

chiral nonracemic substrates.2 Along with these develop-

ments, an early report from Falck and co-workers describes

the diastereoselective -thiocyanation of chiral N-acyl ox-

azolidinones using Evan’s protocol.3

This spotlight highlights the first works recently report-

ed in the field of direct enantioselective catalytic thiocyana-

tions and selenocyanations and aims at stressing out the

potential of these new approaches for the future develop-

ment of original tools towards the asymmetric synthesis of

thio- and selenocyanated derivatives.

In 2013, Della Sala described the very first enantioselec-

tive thiocyanation through the desymmetrization of the

meso-aziridine 1 in the presence of TMSNCS and an equim-

olar mixture of two phosphate salts Cat1a and Cat1b (Table

1A).4 Albeit a quantitative yield, the only example of chiral

thiocyanate product 2 is obtained with a moderate 42% en-

antiomeric excess. Nakamura et al. later reported a similar

approach on N-(sulfonyl)aziridines 3, using the chiral calci-

um imidazoline–phosphate complex Cat2 as a catalyst (Ta-

ble 1B).5 The pyridinyl moiety on the sulfonyl group plays a

critical role in the stereoselectivity of the reaction by coor-

dinating to the Ca2+ cation and allows for the formation of

cyclic thiocyanates 4 with good to excellent enantioselec-
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tivities. To the best of our knowledge, these two previous

approaches are the only asymmetric nucleophilic thiocya-

nations reported so far, despite SCN nucleophiles being

widely used for the synthesis of organothiocyanates.1 After

these pioneer works, the group of Chen demonstrated that

N-thiocyanatoimide reagents could be successfully used for

the organocatalyzed enantioselective thiocyanation of eno-

lates. In 2018, they developed the synthesis of -thiocyana-

to--keto esters 6 employing the quinidine derivative Cat3a

as the catalyst in the presence of N-thiocyanatophthalimide

Ia6 (Table 1C).7 The reaction furnishes the products with

high yields and moderate to excellent enantioselectivities

(36–94% ee) and represents the first enantioselective elec-

trophilic thiocyanation. This approach has then been suc-

cessfully extended to the -thiocyanation of other enolates

derived from oxindoles 7 (Table 1D) and alkylidene -keto

esters 9 (Table 1E).8–10 In line with these developments, the

first enantioselective selenocyanation was described in

2020.11 In the presence of a Ni(II)-bisoxazoline complex and

the selenocyanating reagent II derived from saccharin (Ta-

ble 1F), the enantioenriched organoselenocyanate products

12 are obtained in good yields and overall satisfactory en-

antioselectivities (70–92% ee). While these last strategies

used enolate nucleophiles to react with the electrophilic N-

SCN and N-SeCN partners, the group of Zhao designed in

2019 the thiocyanating cyclization of alkenes in the pres-

ence of a selenide catalyst, a Lewis acid and N-thiocyanato-

saccharin Ic.12,13 Two examples are described with the chiral

selenide Cat4, affording the chiral thiocyanates 15 and 16

with high yields, but low to moderate enantioselectivities.

In summary, the last years have witnessed the emer-

gence of unprecedented synthetic strategies for enantiose-

lective thiocyanation and selenocyanation reactions. A key

aspect of these breakthroughs has been the design of origi-

nal electrophilic reagents well suited for organo- and Lewis

acid catalyzed transformations, although limited, as of now,

to the reaction with enolate nucleophiles to achieve high

enantioselectivities. Therefore, these recent advances will

undoubtedly spark in the next few years the development

of new approaches for enantioselective thiocyanation and

selenocyanation transformations.

Table 1  Overview of the Reported Asymmetric Thio- and Selenocyanation Approaches

(A) Desymmetrization of meso-Aziridines in the Presence of 
Nucleophilic TMSNCS4

Della Sala, 2013: the first enantioselective thiocyanation strategy 
reported.
• reaction in the presence of a calcium phosphate and a potassi-

um phosphate (1:1 mixture)
• complementary activity of the two salts: the calcium phos-

phate Cat1a enhances the reactivity, while the magnesium 
phosphate Cat1b is essential for the enantioinduction

• one single example of chiral thiocyanate is reported, with a 
moderate enantioselectivity (42% ee)

(B) Desymmetrization of meso-N-(Sulfonyl)aziridines5

Nakamura et al., 2014: highly enantioselective thiocyanation ap-
proach using a nucleophilic reagent.
• calcium imidazoline-phosphate salt Cat2 as a catalyst
• 2-pyridinylsulfonyl moiety as stereocontrolling group via coor-

dination to the Ca2+ cation
• low ee with the phosphoric acid alone
• other enantiomer accessible with the magnesium phosphate 

salt (Mg2+ instead of Ca2+ in Cat2, –72% ee)

(C) Organocatalyzed -Thiocyanation of Cyclic -Keto Esters7

Chen at al., 2018: enantioselective thiocyanation using an elec-
trophilic source.
• new electrophilic reagent: N-thiocyanatophthalimide Ia6

• bifunctional quinidine derivative Cat3a as catalyst
• 6′-OH on catalyst turned out to be critical for enantioinduction,
• lower enantioselectivity on substrates with a 6- or 7-membered 

ring

N

O R

Cat1a (2.5 mol%)
Cat1b (2.5 mol%)

TMSNCS (1.5 equiv.)

CCl3CH3, N2 
–20 °C, 8 h

NH

O

R
SCN

1 2, 100%
42% ee

1 example

Ph

Ph

O

O

P
O

O

Cat1a, M = Ca2+ 
Cat1b, M = Mg2+

R = 3,5-(NO2)2C6H3

M

2

N

X X

SCNHN

O

O

P
O

O

N

N

Ph

Ph

Ca OMe

Cat2

Cat2 (5 mol%)
TMSNCS (1.2 equiv)

4 Å MS, PhMe, Ar
–20 °C to r.t., 24–72 h

4, 52–99%
64–92% ee
5 examples

X = (CH2)1–3, (CH)2, 1,2-C6H4

3

SO2(2-Pyr) SO2(2-Pyr)

S
O

O

MeO

N

O

O

SCN

Ia

X

O

CO2R

R1 Cat3a (10–20 mol%)
Ia (1.5 equiv)

CH2Cl2 or 1,1-DCE
 Ar, –78 °C, 1 h

X

O

CO2R

SCN

R1

R1 = Cl, Br, Ph, C=CPh
X = (CH2)1–3, (CMe2)
R = Ad, t-Bu, Et

6, 78–99% 
36–94% ee

16 examples

O

N

N

ArOH

Cat3a 
(Ar = 2,4,6-Me3C6H2)

5
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(D) Organocatalyzed Thiocyanation of Oxindoles8

Chen at al., 2019: extension of their previously reported strategy 
to the thiocyanation of 3-aryl oxindoles 7.
• N-thiocyanatophthalimide Ia as an electrophilic reagent
• 2-naphtol as a key additive for the enantioselectivity (self-as-

sembly with catalyst via H-bonding)
• lower enantioselectivity (56–80% ee) with electron-withdraw-
ing groups on either aryl moieties (R1 or R2)

(E) Organocatalyzed Tandem oxa-Michael/Thiocyanation Se-
quence on Alkylidene -Keto Esters9

Chen et al., 2022: thiocyanation of oxa-Michael enolate interme-
diates en route to -SCN flavanones.
• N-thiocyanatosuccinimide Ib10 as SCN source
• 1 example of selenocyanation in the presence of N-selenocy-

anatosaccharin II (62% yield, 91% ee)

(F) Nickel-Catalyzed -Selenocyanation of -Keto Esters11

Chen et al., 2020: first enantioselective selenocyanation reaction.
• new reagent: N-selenocyanatosaccharin II
• tridentate dibenzofuran bisoxazoline ligand L1 for Ni(II) catalyst
• lower enantioselectivity with less bulky substituents on the es-

ter (t-Bu 45% ee, Me 13% ee)
• 0% ee with 5-membered-ring substrates

(G) Thiocyanocyclizations of alkenes.12

Zhao et al., 2019: only approach using nucleophilic partners other 
than enolates.
• chiral Lewis basic selenide Cat4 as catalyst
• activation of N-thiocyanatosaccharin Ic13 by Lewis acidic BF3
• formation of a thiiranium ion intermediate from the alkene and 

subsequent cyclization
• two enantioselective examples, with low to moderate ees

N
O

Boc
N

O

Boc

R1
NCS

R1

R2

R2
Cat3a (12.5 mol%)

2-naphthol (12.5 mol%)
Ia (1.4 equiv) 

CH2Cl2, Ar
–78 °C, 1 h

8, 85–99%
56–88% ee

15 examples

7
R1, R2 = H, EDG, EWG

O

N

N

ArOH

Cat3a
(Ar = 2,4,6-Me3C6H2)

OH O

CO2R2

R3 i.  Cat3b (20 mol%)
9:1 PhCF3/PhCl, Ar

r.t., 8–156 h

ii.  Ib (2.0 equiv) 
DABCO (1.2 equiv) 

Ar, r.t., 6–12 h

O

O

CO2R2
R3

SCN

R1 = H, Me, Cl
R2 = Me, Et, t-Bu 
R3 = aryl

10, 65–99%
85–97% ee

18 examples

O

N

N

ArOH

Cat3b 
(Ar = 4-MeC6H4)

R1 R1

9

N

O

O

SCN

Ib

O

CO2AdR

Ni(OTf)2 (10 mol%)
L1 (10 mol%) 
II (1.2 equiv)

MeCN (5 equiv) 

CH2Cl2, Ar
–78 °C, 16 h

O
CO2Ad

SeCN

12, 59–93%
70–92% ee

15 examples

11
R = H, EDG, EWG

O

O
N N

O

Ph PhL1

R

N
S

O

O

SeCN

O

II

Ph

OH

N
S

O

O

SCN

O

Ic

NHTf

Se

Me

OMe

Cat4 (20 mol%)
Ic (1.5 equiv.)

BF3·OEt2 (2.0 equiv)

CH2Cl2, air, dark 
–78 °C, 12 h O

NCS

Ph

13

16, 88%
46% ee

1 example

Cat4

n-Bu

NsN

15, 85%
16% ee

1 example

14

Ns
Nn-Bu

NCS

or or

H
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