Synthesis 2023; 55(18): 2860-2872
DOI: 10.1055/a-2044-2140
short review
Special Issue Electrochemical Organic Synthesis

Photoelectrochemical Cerium Catalysis via Ligand-to-Metal Charge Transfer: A Rising Frontier in Sustainable Organic Synthesis

Yuying Wang
a   Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. of China
,
Siyuan Liu
a   Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. of China
,
Jiangsheng Han
b   ShanDongWeGo Pharmaceutical CO., LTD, Weihai 264414, P. R. of China
,
Ling Wang
a   Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. of China
,
Jianbin Chen
a   Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. of China
› Author Affiliations
We greatly appreciate the financial support from the National Natural Science Foundation of China (Nos. 22171154, 22201152), the Special Funds of Taishan Scholar Project (No. tsqn202211206), the Youth Innovative Talents Recruitment and Cultivation Program of Shandong Higher Education, the Natural Science Foundation of Shandong Province (Nos. ZR2020QB008, ZR2020QB114, ZR2022QE142, and ZR2022QB215), Jinan Science and Technology Bureau (No. 2021GXRC080). The project was also supported by the Excellent Teaching Team Training Plan Project of Qilu University of Technology (Shandong Academy of Sciences) (2022JXTD020) and the Cultivating Project of Qilu University of Technology (Shandong Academy of Sciences) (2022PY002, 2022PX001, 2022PX003, 2022PY061).


Abstract

Photoelectrochemical cerium catalysis is an emerging and rapidly developing strategy in organic synthetic. A sustainable platform is being constructed by combining the concerted energy transfer from light and electricity to cerium with the ligand-to-metal charge transfer of excited state CeIV species. With this powerful strategy, hard to oxidized substrates can be activated under mild conditions, contributing to broad functional group compatibility. Such as, carboxylic acids, alcohols, and the Cl anion can deliver the corresponding radicals via formal single electron transfer (SET) with a low oxidation potential. Further cooperation with other synthetic strategies, including alkoxy radical promoted hydrogen atom transfer (HAT) and β-scission, leads to the functionalization of inert C(sp 3)–H, Si–H, and C–C bonds via a mild radical pathway. In this review, recent advances in photoelectrochemical cerium catalysis are described. More importantly, as this field features some unique advantages, but is rarely explored, we hope chemists will pay more attention to this catalytic system.

1 Introduction

2 Activation of Carboxylic Acids

3 Activation of Alcohols

3.1 Alkoxy Radical Involved Hydrogen Atom Transfer

3.2 Alkoxy Radical Promoted β-Scission

4 Formal Single-Electron Oxidation of Cl Anion

5 Conclusions and Outlook



Publication History

Received: 18 January 2023

Accepted after revision: 28 February 2023

Accepted Manuscript online:
28 February 2023

Article published online:
06 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Qiao Y, Schelter EJ. Acc. Chem. Res. 2018; 51: 2926
    • 1b Ameen I, Tripathi AK, Mishra RL, Siddiqui A, Tripathi UN. J. Saudi Chem. Soc. 2019; 23: 725
    • 1c Glaser F, Wenger OS. Coord. Chem. Rev. 2020; 405: 213129
  • 2 George NC, Denault KA, Seshadri R. Annu. Rev. Mater. Res. 2013; 43: 481
    • 3a Luche J.-L. J. Am. Chem. Soc. 1978; 100: 2226
    • 3b Gemal AL, Luche J.-L. J. Am. Chem. Soc. 1981; 103: 5454
    • 3c Hazin PN, Bruno JW. Organometallics 1987; 6: 913
    • 3d Kunkely H, Vogler A. Inorg. Chem. Commun. 2006; 9: 1387
    • 3e Harada T, Hasegawa R, Nishiyama K. Chem. Lett. 2014; 43: 1496
    • 4a So Y.-M, Leung W.-H. Coord. Chem. Rev. 2017; 340: 172
    • 4b Wu X.-P, Gagliardi L, Truhlar DG. J. Am. Chem. Soc. 2018; 140: 7904
    • 4c Liu H, Yu J, Qiu C, Yu R, Li S, Cheng J, Wang J, Si Z, Yang S. Funct. Mater. Lett. 2021; 14: 2130097
  • 5 Yin H, Carroll PJ, Anna JM, Schelter EJ. J. Am. Chem. Soc. 2015; 137: 9234
    • 6a Nair V, Balagopal L, Rajan R, Mathew J. Acc. Chem. Res. 2004; 37: 21
    • 6b Maulide N, Vanherck J.-C, Gautier A, Marko IE. Acc. Chem. Res. 2007; 40: 381
    • 6c Nair V, Deepthi A. Chem. Rev. 2007; 107: 1862
    • 6d Sridharan V, Menéndez JC. Chem. Rev. 2010; 110: 3805
  • 7 Guo J.-J, Hu A, Chen Y, Sun J, Tang H, Zuo Z. Angew. Chem. Int. Ed. 2016; 55: 15319
  • 8 Hu A, Guo J.-J, Pan H, Tang H, Gao Z, Zuo Z. J. Am. Chem. Soc. 2018; 140: 1612
  • 9 Gavelle S, Innocent M, Aubineau T, Guérinot A. Adv. Synth. Catal. 2022; 364: 4189
  • 10 Friedrich J, Schneider D, Bock L, Maichle-Mössmer C, Anwander R. Inorg. Chem. 2017; 56: 8114
  • 11 Crabtree RH. Chem. Rev. 1995; 95: 987
  • 12 Hu A, Guo J.-J, Pan H, Zuo Z. Science 2018; 361: 668
  • 13 Yang Q, Wang Y.-H, Qiao Y, Gau M, Carroll PJ, Walsh PJ, Schelter EJ. Science 2021; 372: 847
  • 14 An Q, Xing Y.-Y, Pu R, Jia M, Chen Y, Hu A, Zhang S.-Q, Yu N, Du J, Zhang Y, Chen J, Liu W, Hong X, Zuo Z. J. Am. Chem. Soc. 2023; 145: 359
    • 15a Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 15b Waldvogel SR, Lips S, Selt M, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 15c Karkas MD. Chem. Soc. Rev. 2018; 47: 5786
    • 15d Sauer GS, Lin S. ACS Catal. 2018; 8: 5175
    • 15e Tang S, Liu Y, Lei A. Chemistry 2018; 4: 27
    • 15f Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
    • 15g Chen J, Lv S, Tian S. ChemSusChem 2019; 12: 115
    • 15h Han X, Wang K, Zhang G, Gao W, Chen J. Adv. Synth. Catal. 2019; 361: 2804
    • 15i Tian S, Jia X, Wang L, Li B, Liu S, Ma L, Gao W, Wei Y, Chen J. Chem. Commun. 2019; 55: 12104
    • 15j Zhang P, Chen J, Gao W, Xiao Y, Liu C, Xu S, Yan X, Qin D. Molecules 2019; 24: 696
    • 15k Kingston C, Palkowitz MD, Baran PS. Acc. Chem. Res. 2020; 53: 72
    • 15l Little RD. J. Org. Chem. 2020; 85: 13375
    • 15m Heard DM, Lennox AJ. J. Angew. Chem. Int. Ed. 2020; 59: 18866
    • 15n Lv S, Han X, Wang J.-Y, Zhou M, Wu Y, Ma L, Niu L, Gao W, Zhou J, Hu W, Cui Y, Chen J. Angew. Chem. Int. Ed. 2020; 59: 11583
    • 15o Shi SH, Liang Y, Jiao N. Chem. Rev. 2021; 121: 485
    • 15p Ma C, Fang P, Liu D, Jiao KJ, Gao P, Qiu H, Mei T. Chem. Sci. 2021; 12: 12866
    • 15q Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
    • 15r Yuan Y, Yang J, Lei A. Chem. Soc. Rev. 2021; 50: 10058
    • 15s Beil SB, Pollok D, Waldvogel SR. Angew. Chem. Int. Ed. 2021; 60: 14750
    • 15t Tanbouza N, Petti A, Leech MC, Caron L, Walsh JM, Lam K, Ollevier T. Org. Lett. 2022; 24: 4665
    • 15u Guo H, Liu Y, Wen C, Wan JP. Green Chem. 2022; 24: 5058
    • 15v Wang K, Liu X, Yang S, Tian Y, Zhou M, Zhou J, Jia X, Li B, Liu S, Chen J. Org. Lett. 2022; 24: 3471
    • 15w Liu S, Lu Y, Sun S, Wang H, Gao W, Wang Y, Jia X, Chen J. Green Synth. Catal. 2023; 4: 71

      For reviews, see:
    • 16a Syroeshkin MA, Kuriakose F, Saverina EA, Timofeeva VA, Egorov MP, Alabugin IV. Angew. Chem. Int. Ed. 2019; 58: 5532
    • 16b Barham JP, Konig B. Angew. Chem. Int. Ed. 2020; 59: 11732
    • 16c Qiu Y, Scheremetjew A, Finger LH, Ackermann L. Chem. Eur. J. 2020; 26: 3241
    • 16d Wu Y.-C, Song R.-J, Li J.-H. Org. Chem. Front. 2020; 7: 1895
    • 16e Wu S, Kaur J, Karl TA, Tian X, Barham JP. Angew. Chem. Int. Ed. 2022; 61: e202107811

      For research works, see:
    • 17a Arnaboldi S, Benincori T, Penoni A, Vaghi L, Cirilli R, Abbate S, Longhi G, Mazzeo G, Grecchi S, Panigati M, Mussini PR. Chem. Sci. 2019; 10: 2708
    • 17b Beranek R. Angew. Chem. Int. Ed. 2019; 58: 16724
    • 17c Yan H, Hou Z.-W, Xu H.-C. Angew. Chem. Int. Ed. 2019; 58: 4592
    • 17d Huang H, Strater ZM, Rauch M, Shee J, Sisto TJ, Nuckolls C, Lambert TH. Angew. Chem. Int. Ed. 2019; 58: 13318
    • 17e Huang H, Lambert TH. Angew. Chem. Int. Ed. 2020; 59: 658
    • 17f Huang H, Strater ZM, Lambert TH. J. Am. Chem. Soc. 2020; 142: 1698
    • 17g Kim H, Kim H, Lambert TH, Lin S. J. Am. Chem. Soc. 2020; 142: 2087
    • 17h Zhang W, Carpenter KL, Lin S. Angew. Chem. Int. Ed. 2020; 59: 409
    • 17i Capaldo L, Quadri LL, Merli D, Ravelli D. Chem. Commun. 2021; 57: 4424
    • 17j Hou ZW, Xu H.-C. ChemElectroChem 2021; 8: 1571
    • 17k Targos K, Williams OP. Z, Wickens K. J. Am. Chem. Soc. 2021; 143: 4125
    • 17l Shen T, Lambert TH. Science 2021; 371: 620
    • 17m Huang H, Lambert TH. Angew. Chem. Int. Ed. 2021; 60: 11163
    • 18a Scheffold R, Orlinski R. J. Am. Chem. Soc. 1983; 105: 7200
    • 18b Wang F, Stahl SS. Angew. Chem. Int. Ed. 2019; 58: 6385
    • 19a Zhang G, Kim G, Choi W. Energy Environ. Sci. 2014; 7: 954
    • 19b Juliá F. ChemCatChem 2022; 14: e202200916
    • 20a Hu A, Chen Y, Guo J.-J, Yu N, An Q, Zuo Z. J. Am. Chem. Soc. 2018; 140: 13580
    • 20b Zhang K, Chang L, An Q, Wang X, Zuo Z. J. Am. Chem. Soc. 2019; 141: 10556
    • 20c Shirase S, Tamaki S, Shinohara K, Hirosawa K, Tsurugi H, Satoh T, Mashima K. J. Am. Chem. Soc. 2020; 142: 5668
    • 20d Abderrazak Y, Bhattacharyya A, Reiser O. Angew. Chem. Int. Ed. 2021; 60: 21100
  • 21 Varenikov A, Shapiro E, Gandelman M. Chem. Rev. 2021; 121: 412
  • 22 Kolbe H. Justus Liebigs Ann. Chem. 1848; 64: 339
  • 24 Minisci F, Bernardi R, Bertini F, Galli R, Perchinummo M. Tetrahedron 1971; 27: 3575
    • 25a Minisci F, Galli R, Malatesta V, Caronna T. Tetrahedron 1970; 26: 4083
    • 25b Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
  • 26 Lai X.-L, Shu X.-M, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2020; 59: 10626
  • 27 Yang K, Lu J, Li L, Luo S, Fu N. Chem. Eur. J. 2022; 28: e202202370
    • 28a Sbei N, Hardwick T, Ahmed N. ACS Sustainable Chem. Eng. 2021; 9: 6148
    • 28b Zhang W, Hong N, Song L, Fu N. Chem. Rec. 2021; 21: 2574
    • 28c Zhang S, Findlater M. Chem. Eur. J. 2022; 28: e202201152
    • 29a Cai C.-Y, Wu Z.-J, Liu J.-Y, Chen M, Song J, Xu H.-C. Nat. Commun. 2021; 12: 3745
    • 29b Huang H, Steiniger KA, Lambert TH. J. Am. Chem. Soc. 2022; 144: 12567
  • 30 Xiang J, Shang M, Kawamata Y, Lundberg H, Reisberg SH, Chen M, Mykhailiuk P, Beutner G, Collins MR, Davies A, Del Bel M, Gallego GM, Spangler JE, Starr J, Yang S, Blackmond DG, Baran PS. Nature 2019; 573: 398
  • 31 Wang Y, Li L, Fu N. ACS Catal. 2022; 12: 10661
    • 32a Chang X, Zhang Q, Guo C. Angew. Chem. Int. Ed. 2020; 59: 12612
    • 32b Margarita C, Lundberg H. Catalysts 2020; 10: 982
    • 32c Chakraborty P, Mandal R, Garg N, Sundararaju B. Coord. Chem. Rev. 2021; 444: 214065
    • 32d Yamamoto K, Kuriyama M, Onomura O. Curr. Opin. Electrochem. 2021; 28: 100714
    • 33a Cai C.-Y, Lai X.-L, Wang Y, Hu H.-H, Song J, Yang Y, Wang C, Xu H.-C. Nat. Catal. 2022; 5: 943
    • 33b Fan W, Zhao X, Deng Y, Chen P, Wang F, Liu G. J. Am. Chem. Soc. 2022; 144: 21674
    • 33c Yuan Y, Yang J, Zhang J. Chem. Sci. 2023; 14: 705
  • 34 Lai X.-L, Chen M, Wang Y, Song J, Xu H.-C. J. Am. Chem. Soc. 2022; 144: 20201
  • 35 Yang K, Wang Y, Luo S, Fu N. Chem. Eur. J. 2023; in press DOI: 10.1002/chem.202203962.
  • 37 Galeotti M, Salamone M, Bietti M. Chem. Soc. Rev. 2022; 51: 2171
    • 38a Griller D, Howard JA, Marriott PR, Scaiano JC. J. Am. Chem. Soc. 1981; 103: 619
    • 38b Avila D, Brown C, Ingold J, Lusztyk J. J. Am. Chem. Soc. 1993; 115: 466
    • 38c Pischel U, Nau WM. J. Am. Chem. Soc. 2001; 123: 9728
    • 38d Finn M, Friedline R, Suleman NK, Wohl CJ, Tanko JM. J. Am. Chem. Soc. 2004; 126: 7578
    • 39a Tsentalovich YP, Kulik LV, Gritsan NP, Yurkovskaya AV. J. Phys. Chem. A. 1998; 102: 7975
    • 39b Weber M, Fischer H. J. Am. Chem. Soc. 1999; 121: 7381
    • 40a Langkopf E, Schinze D. Chem. Rev. 1995; 95: 1375
    • 40b Tamao K, Uchida M, Izumizawa T, Furukawa K, Yamaguchi S. J. Am. Chem. Soc. 1996; 118: 11974
    • 40c Lu G, Usta H, Risko C, Wang L, Facchetti A, Ratner M, Marks TJ. J. Am. Chem. Soc. 2008; 130: 7670
    • 40d Franz AK, Wilson SO. J. Med. Chem. 2013; 56: 388
    • 40e Komiyama T, Minami Y, Hiyama T. ACS Catal. 2016; 7: 631
    • 40f Ramesh R, Reddy DS. J. Med. Chem. 2018; 61: 3779
  • 41 Blanksby S, Ellison GB. E. Acc. Chem. Res. 2003; 36: 255
  • 42 Cekovic Z. Tetrahedron 2003; 59: 8073
  • 43 Jiang Y, Xu K, Zeng C. CCS Chem. 2022; 4: 1796
  • 44 Wang X.-y, Guerzo DA, Schmehl RH. J. Photochem. Photobiol., C. 2004; 5: 55
  • 45 Xu P, López-Rojas P, Ritter T. J. Am. Chem. Soc. 2021; 143: 5349
  • 46 Tan Z, He X, Xu K, Zeng C. ChemSusChem 2022; 15: e202102360
  • 47 Tan Z, Jiang Y, Xu K, Zeng C. J. Catal. 2023; 417: 473
  • 49 Yamamoto K, Toguchi H, Kuriyama M, Watanabe S, Iwasaki F, Onomura O. J. Org. Chem. 2021; 86: 16177
  • 50 Yang Z, Yang D, Zhang J, Tan C, Li J, Wang S, Zhang H, Huang Z, Lei A. J. Am. Chem. Soc. 2022; 144: 13895
  • 51 Xu J, Cai H, Shen J, Shen C, Wu J, Zhang P, Liu X. J. Org. Chem. 2021; 86: 17816
  • 52 Shao D, Wu Y, Hu S, Gao W, Du Y, Jia X, Liu S, Zhou M, Chen J. ACS Sustainable Chem. Eng. 2022; 10: 10294
    • 53a Buxton GV, Bydder M, Salmon GA. J. Chem. Soc., Faraday Trans. 1998; 94: 653
    • 53b Lei Y, Cheng S, Luo N, Yang X, An T. Environ. Sci. Technol. 2019; 53: 11170
    • 54a Lummiss JA. M, Morse PD, Beingessner RL, Jamison TF. Chem. Rec. 2017; 17: 667
    • 54b Brandão P, Pineiro M, Pinhoe Melo TM. V. D. Eur. J. Org. Chem. 2019; 2019: 7188
    • 54c Horáková P, Kočí K. Molecules 2022; 27: 8536
    • 55a Rodrigo S, Gunasekera D, Mahajan JP, Luo L. Curr. Opin. Electrochem. 2021; 28: 100712
    • 55b Jamshidi M, Fastie C, Hilt G. Synthesis 2022; 54: 4661
    • 55c Zhong J, Ding C, Kim H, McCallum T, Ye K. Green Synth. Catal. 2022; 3: 4661