Synthesis 2023; 55(16): 2561-2569
DOI: 10.1055/a-2065-3169
paper

An Efficient Route towards Quinazolinone Derivatives via I2/DMSO-Promoted Oxidative Decarboxylation of α-Amino Acids and Subsequent Oxidative Annulation Reaction

Surya Kanta Samanta
,
Financial support from the Science and Engineering Research Board (SERB), New Delhi (Grant No: CRG/2021/002889) is most gratefully acknowledged. S.K.S. gratefully thanks the Council of Scientific and Industrial Research, New Delhi for financial support in the form of a Junior Research Fellowship (CSIR-JRF).


Abstract

An efficient and straightforward strategy to synthesize a wide range of quinazolinone derivatives from commercially inexpensive 2-aminobenzamides and various amino acids via molecular iodine promoted oxidative decarboxylation of α-amino acids, followed by oxidative cyclization reaction, is revealed. Operational simplicity, consistent yield, functional group tolerance and sustainability are the other noteworthy features of the reaction. A large number of quinazolinone derivatives were conveniently prepared employing the current strategy. The synthesis of other related heteroarenes, such as benzoxazole and benzothiazole derivatives, following the same reaction conditions broadens the scope of the method.

Supporting Information



Publication History

Received: 16 December 2022

Accepted after revision: 29 March 2023

Accepted Manuscript online:
29 March 2023

Article published online:
02 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
    • 2a Liu J.-F, Kaselj M, Isome Y, Ye P, Sargent K, Sprague K, Cherrak D, Wilson CJ, Si Y, Yohannes D, Ng S.-C. J. Comb. Chem. 2006; 8: 7
    • 2b Michael JP. Nat. Prod. Rep. 2008; 25: 166
    • 2c Michael JP. Nat. Prod. Rep. 2003; 20: 476
    • 2d Reddy BV. S, Reddy DM, Reddy GN, Reddy MR, Reddy VK. Eur. J. Org. Chem. 2015; 8018
    • 2e Kshirsagar UA. Org. Biomol. Chem. 2015; 13: 9336
    • 3a Demeunynck M, Baussanne I. Curr. Med. Chem. 2013; 20: 794
    • 3b Khan I, Ibrar A, Abbas N, Saeed A. Eur. J. Med. Chem. 2014; 76: 193
    • 3c Long S, Resende DI. S. P, Kijjoa A, Silva AM. S, Pina A, Fernández-Marcelo T, Helena Vasconcelos M, Sousa E, Pinto MM. M. Mar. Drugs 2018; 16: 1
    • 3d Auti PS, George G, Paul AT. RSC Adv. 2020; 10: 41353
  • 4 Sharma M, Chauhan K, Shivahare R, Vishwakarma P, Suthar MK, Sharma A, Gupta S, Saxena JK, Lal J, Chandra P, Kumar B, Chauhan PM. S. J. Med. Chem. 2013; 56: 4374
  • 5 Jafari E, Khajouei MR, Hassanzadeh F, Hakimelahi GH, Khodarahmi GA. Res. Pharm. Sci. 2016; 11: 1
    • 6a Khodarahmi GA, Khajouei MR, Hakimelahi GH, Abedi D, Jafari E, Hassanzadeh F. Res. Pharm. Sci. 2012; 7: 151
    • 6b Gatadi S, Lakshmi TV, Nanduri S. Eur. J. Med. Chem. 2019; 170: 157
  • 7 Nandwana NK, Singh RP, Patel OP. S, Dhiman S, Saini HK, Jha PN, Kumar A. ACS Omega 2018; 3: 16338
  • 8 Shalaby AA, El-Khamry AM. A, Shiba SA, Ahmed AA. A. E. A, Hanafi AA. Arch. Pharm. 2000; 333: 365
    • 9a Abuelizz HA, Marzouk M, Ghabbour H, Al-Salahi R. Saudi Pharm. J. 2017; 25: 1047
    • 9b Dohle W, Jourdan FL, Menchon G, Prota AE, Foster PA, Mannion P, Hamel E, Thomas MP, Kasprzyk PG, Ferrandis E, Steinmetz MO, Leese MP, Potter BV. L. J. Med. Chem. 2018; 61: 1031
    • 10a Laleu B, Akao Y, Ochida A, Duffy S, Lucantoni L, Shackleford DM, Chen G, Katneni K, Chiu FC. K, White KL, Chen X, Sturm A, Dechering KJ, Crespo B, Sanz LM, Wang B, Wittlin S, Charman SA, Avery VM, Cho N, Kamaura M. J. Med. Chem. 2021; 64: 12582
    • 10b Zhu S, Wang J, Chandrashekar G, Smith E, Liu X, Zhang Y. Eur. J. Med. Chem. 2010; 45: 3864
    • 10c Yang B, Wu Q, Huan X, Wang Y, Sun Y, Yang Y, Liu T, Wang X, Chen L, Xiong B, Zhao D, Miao Z, Chen D. Bioorg. Med. Chem. Lett. 2021; 33: 127749
  • 11 Fröhlich T, Reiter C, Ibrahim MM, Beutel J, Hutterer C, Zeitträger I, Bahsi H, Leidenberger M, Friedrich O, Kappes B, Efferth T, Marschall M, Tsogoeva SB. ACS Omega 2017; 2: 2422
  • 12 OuYang Y, Wang C, Zhao B, Xiong H, Xiao Z, Zhang B, Zheng P, Hu J, Gao Y, Zhang M, Zhu W, Xu S. New J. Chem. 2018; 42: 17203
    • 13a He L, Li H, Chen J, Wu X.-F. RSC Adv. 2014; 4: 12065
    • 13b Picos-Corrales LA, Sarmiento-Sánchez JI. Chem. Heterocycl. Compd. 2018; 54: 762
    • 14a Connolly DJ, Cusack D, O’Sullivan TP, Guiry PJ. Tetrahedron 2005; 61: 10153
    • 14b Mitobe Y, Ito S, Mizutani T, Nagase T, Sato N, Tokita S. Bioorg. Med. Chem. Lett. 2009; 19: 4075
  • 15 Purandare AV, Gao A, Wan H, Somerville J, Burke C, Seachord C, Vaccaro W, Wityak J, Poss MA. Bioorg. Med. Chem. Lett. 2005; 15: 2669
  • 16 Potewar TM, Nadaf RN, Daniel T, Lahoti RJ, Srinivasan KV. Synth. Commun. 2005; 35: 231
  • 17 Wei H, Li T, Zhou Y, Zhou L, Zeng Q. Synthesis 2013; 45: 3349
  • 18 Nguyen TB, Ermolenko L, Al-Mourabit A. Green Chem. 2013; 15: 2713
  • 19 Ge W, Zhu X, Wei Y. RSC Adv. 2013; 3: 10817
  • 20 Wu X.-F, He L, Neumann H, Beller M. Chem. Eur. J. 2013; 19: 12635
  • 21 Jiang X, Tang T, Wang J.-M, Chen Z, Zhu Y.-M, Ji S.-J. J. Org. Chem. 2014; 79: 5082
  • 22 Li Q, Huang Y, Chen T, Zhou Y, Xu Q, Yin S.-F, Han L.-B. Org. Lett. 2014; 16: 3672
  • 23 Zhao D, Wang T, Li J.-X. Chem. Commun. 2014; 50: 6471
  • 24 Li Z, Dong J, Chen X, Li Q, Zhou Y, Yin S.-F. J. Org. Chem. 2015; 80: 9392
    • 25a Mohammed S, Vishwakarma RA, Bharate SB. J. Org. Chem. 2015; 80: 6915
    • 25b Teng Q.-H, Sun Y, Yao Y, Tang H.-T, Li J.-R, Pan Y.-M. ChemElectroChem 2019; 6: 3120
    • 25c Tian Q, Zhang J, Xu L, Wei Y. Mol. Catal. 2021; 500: 111345
    • 26a Savarimuthu SA, Leo Prakash GD, Thomas A, Gandhi T, Bera MK. Org. Biomol. Chem. 2020; 18: 3552
    • 26b De R, Bera MK. Synth. Commun. 2020; 50: 1780
    • 27a Samanta SK, Bera MK. Org. Biomol. Chem. 2019; 17: 6441
    • 27b Samanta SK, Sarkar R, Bera MK. Tetrahedron 2021; 94: 132310
    • 27c Samanta SK, Sarkar R, Sengupta U, Das S, Ganguly D, Hasija A, Chopra D, Bera MK. Org. Biomol. Chem. 2022; 20: 4650
    • 28a Žmitek K, Zupan M, Stavber S, Iskra J. Org. Lett. 2006; 8: 2491
    • 28b Žmitek K, Zupan M, Stavber S, Iskra J. J. Org. Chem. 2007; 72: 6534
    • 29a Parvatkar PT, Parameswaran PS, Tilve SG. Chem. Eur. J. 2012; 18: 5460
    • 29b Jadhav PM, Rode AB, Kótai L, Pawar RP, Tekale SU. New J. Chem. 2021; 45: 16389
    • 29c Monga A, Bagchi S, Sharma A. New J. Chem. 2018; 42: 1551
  • 30 Rahman M, Mukherjee A, Kovalev IS, Kopchuk DS, Zyryanov GV, Tsurkan MV, Majee A, Ranu BC, Charushin VN, Chupakhin ON, Santra S. Adv. Synth. Catal. 2019; 361: 2160
  • 31 Xu W, Fu H. J. Org. Chem. 2011; 76: 3846
  • 32 Singh P, Kaur N, Banerjee P. J. Org. Chem. 2020; 85: 3393
  • 33 Malasala S, Gour J, Ahmad MN, Gatadi S, Shukla M, Kaul G, Dasgupta A, Madhavi YV, Chopra S, Nanduri S. RSC Adv. 2020; 10: 43533
  • 34 Subba Reddy BV, Narasimhulu G, Umadevi N, Yadav JS. Synlett 2012; 23: 1364
  • 35 Dabiri M, Lehi NF, Movahed SK, Khavasi HR. Org. Biomol. Chem. 2017; 15: 6264
    • 36a Cheng Y, Xiang J.-C, Wang Z.-X, Ma J.-T, Wang M, Tang B.-C, Wu Y.-D, Zhu Y.-P, Wu A.-X. Adv. Synth. Catal. 2018; 360: 550
    • 36b Xiang J.-C, Wang M, Cheng Y, Wu A.-X. Org. Lett. 2016; 18: 24
    • 36c Xiang J.-C, Cheng Y, Wang Z.-X, Ma J.-T, Wang M, Tang B.-C, Wu Y.-D, Wu A.-X. Org. Lett. 2017; 19: 2997