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ABSTRACT

Focal liver lesions are detected in about 15% of abdominal ul-

trasound examinations. The diagnosis of frequent benign le-

sions can be determined reliably based on the characteristic

B-mode appearance of cysts, hemangiomas, or typical focal

fatty changes. In the case of focal liver lesions which remain

unclear on B-mode ultrasound, contrast-enhanced ultrasound

(CEUS) increases diagnostic accuracy for the distinction be-

tween benign and malignant liver lesions. Artificial intelli-

gence describes applications that try to emulate human intel-

ligence, at least in subfields such as the classification of

images. Since ultrasound is considered to be a particularly ex-

aminer-dependent technique, the application of artificial in-

telligence could be an interesting approach for an objective

and accurate diagnosis. In this systematic review we analyzed

how artificial intelligence can be used to classify the benign or

malignant nature and entity of focal liver lesions on the basis

of B-mode or CEUS data. In a structured search on Scopus,

Web of Science, PubMed, and IEEE, we found 52 studies that

met the inclusion criteria. Studies showed good diagnostic

performance for both the classification as benign or malig-

nant and the differentiation of individual tumor entities. The

results could be improved by inclusion of clinical parameters

and were comparable to those of experienced investigators

in terms of diagnostic accuracy. However, due to the limited

spectrum of lesions included in the studies and a lack of inde-

pendent validation cohorts, the transfer of the results into

clinical practice is limited.

ZUSAMMENFASSUNG

Raumforderungen der Leber finden sich in ca. 15% abdomina-

ler Ultraschalluntersuchungen. Die Diagnose der meisten be-

nignen Läsionen kann bei charakteristischem Befund, z. B. bei

Zysten, Hämangiomen und typischen fokalen Fettverteilungs-

varianten, oft bereits in der B-Bild-Sonographie zuverlässig

gestellt werden. Bei unklaren Befunden erhöht der Einsatz

der Kontrastmittelsonographie (CEUS) die diagnostische

Treffsicherheit bezüglich der Unterscheidung von benignen

und malignen Leberläsionen. Künstliche Intelligenz beschreibt

Anwendungen, die versuchen, in Bereichen wie der Klassifika-

tion von Bildern humane Intelligenz nachzubilden. Da die So-

nographie als besonders untersucherabhängig gilt, könnte die
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Anwendung künstlicher Intelligenz ein interessanter Ansatz

für eine objektive und treffsichere Diagnose sein. Im Rahmen

dieser systematischen Übersichtsarbeit haben wir analysiert,

wie gut künstliche Intelligenz die Dignität und Entität von Le-

berläsionen auf Basis von B-Bild- oder CEUS-Daten bestimmen

kann. Basierend auf einer strukturierten Recherche in Scopus,

Web of Science, PubMed und IEEE fanden wir 52 Studien,

welche die Einschlusskriterien erfüllten. Es zeigte sich eine

gute diagnostische Genauigkeit sowohl für die Differenzier-

ung der Dignität als auch der verschiedener Tumorentitäten.

Die Ergebnisse ließen sich durch die zusätzliche Berücksichti-

gung klinischer Parameter verbessern und waren bezüglich

der diagnostischen Genauigkeit mit der erfahrener Untersu-

cher vergleichbar. Aufgrund des begrenzten Spektrums un-

tersuchter Läsionen und häufig fehlender unabhängiger Vali-

dierungskohorten sind die Ergebnisse jedoch nur begrenzt

auf die klinische Anwendung übertragbar.

Introduction

Focal liver lesions (FLLs) are a common finding in abdominal ultra-
sound examinations with a prevalence of approximately 15% [1].
As incidental findings, focal liver lesions are frequently benign
(e. g., cysts, hemangiomas). Sonography is particularly well suited
for the classification of focal liver lesions (FLLs) due to its wide
availability, lack of invasiveness, and low cost [2]. B-mode, in com-
bination with Doppler sonography, is sufficient for a definitive di-
agnosis in lesions like cysts, hemangiomas, and focal fatty chang-
es in the non-cirrhotic liver. In unclear cases, contrast-enhanced
ultrasound (CEUS) has a high diagnostic value (diagnostic accura-
cy: 90 %, sensitivity: 92–95 % specificity: 83–90 %) to correctly
classify tumor dignity[2, 3, 4]. Nevertheless, in some cases, the
assessment of malignancy or specific tumor entity is not possible.
In unclear cases biopsy is carried out to provide a final diagnosis
based on histology. Although imaged-guided biopsy is a low-risk
tool, as an invasive procedure it might be accompanied by pain,
bleeding, infection, or injury to other organs [5].

Artificial intelligence (AI) generally describes computational
methods that emulate human intelligence, at least in partial areas,
such as decision-making. Machine learning is a subfield of AI in
which a program is designed to learn from experience using train-
ing data. On a research level, this process has already been eval-
uated in a variety of medical fields (e. g., detection of polyps dur-
ing colonoscopy) [6, 7]. Support vector machines (SVM) and
artificial neural networks (ANN) are machine learning methods
that can be applied to evaluate image data. In detail, an SVM is a
mathematical method for dividing a set of objects into classes by
maximizing margins between groups. ANNs use a structure that is
similar to biological neural networks to classify data. Deep learn-
ing (DL) represents a subfield of ANN-based machine learning
with complex neural network architectures with multiple layers
of artificial neurons. Large amounts of data are used to train DL-
algorithms and in the case of image data, feature extraction is of-
ten implicitly done by the DL-network. DL is regarded as the cur-
rent state-of-the-art approach for AI-based image analysis.

AI could potentially improve the assessment of FLL dignity and
entity by sonography. In such a scenario, the investigator could
benefit from a more objective AI assessment and the comparabil-
ity of results might be better. AI algorithms with good discrimina-
tory ability regarding entities that are difficult to distinguish for
humans would be particularly helpful.

In recent years, several papers have been published on this to-
pic [6]. In this systematic review, we summarize the available data
on the assessment of dignity and entity of FLLs by B-mode and
CEUS using AI methods. The diagnostic value of those methods is
discussed from a clinician’s perspective. A special focus was
placed on diagnostic accuracies and whether these can be im-
proved by adding clinical parameters. In addition, comparative
data between AI-based approaches and physicians was collected
and assessed. Although individual reviews on this topic already ex-
ist, our study represents the first systematic and most compre-
hensive review [6, 7].

Methods

Search strategy

For this systematic review, articles on the characterization of FLLs
by sonography were selected in the Scopus, Web of Science,
PubMed, and IEEE databases. The literature search was conducted
on 12/31/2021 according to the a priori defined search criteria.
The following search terms were used: “artificial intelligence”, “ma-
chine learning”, “neural network”, “deep learning”, “computer-as-
sisted”, “computer-aided”, “ultrasound”, “sonograph”, “ultrasono-
graphy”, “liver”, “hepat”, “lesion”, “tumor”, “carcinoma”, “mass”,
“focal.” The detailed and complete search terms can be found in
the supplemental data. The inclusion and exclusion criteria were
determined a priori. Only articles from the years 2000 to 2021
were considered, as older articles mostly used algorithms that are
outdated from today's perspective. Only articles that addressed liv-
er tumor classification and/or diagnosis of a specific liver tumor
entity either by B-mode and/or CEUS using artificial intelligence in
humans were considered. Articles that did not report the diagnos-
tic accuracy of AI-based classification of images were excluded. In
addition, only original English language full-text articles or congress
contributions with sufficient information were included.

Data extraction

Two authors (MV and DJ) independently performed the data ex-
traction and quality assessment. Any disagreements were dis-
cussed and clarified in consensus with a third author. The extrac-
ted data included authors, title, year of publication, study design
(mono- or multicentric), number of cases and mode of ultra-
sound (B-mode and/or CEUS). Diagnostic accuracy, sensitivity,
specificity, and AUC (area under the curve) for lesion dignity
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and/or specific tumor entities were recorded. Regarding AI, in-
formation on the extracted image features and algorithm that
was used was collected. If multiple AI algorithms were used in
one study, only the one with the best performance with respect
to overall diagnostic accuracy was considered.

Quality Assessment

The quality of the studies was evaluated using the Quality Assess-
ment of Diagnostic Accuracy Studies (QUADAS-2) tool [8]. Four
scenarios were assessed by QUADAS-2: 1) Differentiation of
benign and malignant liver lesions (tumor dignity) using AI on
B-mode ultrasound; 2) Diagnosis of specific tumor entities using
AI on B-mode ultrasound 3) Differentiation of benign and malig-
nant liver lesions (tumor dignity) using AI on CEUS 4) Diagnosis
of specific tumor entities using AI on CEUS. The focus of the QUA-
DAS-2 tool is the detection of a possible bias and the applicability
of studies. For the assessment of a potential bias, the articles were
examined using 12 signaling questions regarding patient selec-
tion, index test, reference standard, and flow and timing [8]. Ac-
cording to the recommendations of QUADAS-2, these signaling
questions were adapted with regard to our research question.
For concerns of applicability, the following criteria were added:
1) Are at least the diagnoses of cyst (B-mode only), FNH, heman-
gioma, HCC, and metastasis included? (Patient selection) 2) Has
the AI been verified using an independent data set? (Index test)
3) Were diagnoses based on pathology or CT/MRI or clinical fol-
low-up for more than 6months? (Reference standard). The full ad-
justments and detailed results can be found in the supplemental
data (supplemental Tab. 1–4).

Results

Literature search

A total of 660 articles were found during the literature search in
PubMed, Web of Science, Scopus, and IEEE, with 152 duplicates.
During the screening of abstracts, 184 articles were excluded be-
cause they were not original works (▶ Fig. 1) (e. g., reviews). An
additional 260 studies were not included because our research
question was not addressed. During the full-text analysis of 64
studies, 7 further articles were removed because of the imaging
modality used (computed tomography, endosonography, or
shear wave elastography). One study investigated the detection
of tumors only, one article investigated splenic lesions in dogs,
and one study did not report the accuracy of AI-based image clas-
sification alone (only in combination with clinical data). Addition-
ally, two duplicate studies were removed. Finally, 52 articles re-
mained for the final analysis. Of these, 32 studies investigated
FLLs using B-mode ultrasound (10x dignity, 25x diagnosis) and
21 studies using CE ultrasound (8x dignity, 13x diagnosis).

General approach of the identified studies using arti-
ficial intelligence

All studies followed a similar pattern (▶ Fig. 2). The first step com-
prised image optimization followed by manual or automated seg-
mentation. Subsequently, while some studies used raw image

data, others extracted specific image features to be analyzed by
the AI algorithm. In the case of CEUS, some studies extracted time
intensity curves (TIC). Examples of extracted B-mode data are con-
tour properties and gray level features. Most often, a whole array of
different features was extracted automatically by specific algo-
rithms. Afterwards, feature selection was performed to reduce the
number of collected features (in some studies several thousands) to
a level the AI algorithm could work with efficiently. Few studies
(B-mode only) considered additional clinical data for the classifica-
tion process. Finally, the actual classification algorithm was applied,
whereby ANNs and SVMs were used most often. AI was usually
trained with the majority of images (about 80%), followed by vali-
dation and testing with the remaining images from a database or
cohort of patients. Many studies used x-fold cross-validation, a
method in which the data are split into different training and valida-
tion sets repeatedly. External testing cohorts were rarely used.

Artificial intelligence for the differentiation of benign and
malignant liver lesions on B-mode ultrasound

We found ten studies using AI classification of B-mode ultrasound
images to differentiate benign from malignant FLLs [9, 10, 11, 12,
13, 14, 15, 16, 17, 18]. Studies were published between 2003

▶ Fig. 1 Flowchart of the identification and selection process of
studies. IEEE = Institute of Electrical and Electronics Engineers,
US = ultrasound, CT = computed tomography, EUS = endoscopic
ultrasound, SWE= shear wave elastography, CEUS: contrast-en-
hanced US.
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and 2021 (90% from 2015 or later). Two studies were multicentric
[15, 17]. Case numbers ranged from 101 to 23,756. Most studies
(9 out of 10) included patients with hemangiomas and HCCs.
FNHs were only considered in three studies. Where indicated,
multiple different ultrasound machines were employed. Four
studies extracted image features. All ten studies used an ANN to
classify data (mainly convolutional neural networks (CNN), n = 8).
The diagnostic accuracy for the assessment of tumor dignity
ranged from 68.5 % to 94.8 % (▶ Fig. 3). Yang et al. exclusively
conducted external testing with an independent patient cohort,
the results of which did not substantially differ from internal test-
ing [15]. Data are summarized in ▶ Table 1.

Artificial intelligence for the differentiation of specific tumor
entities in B-mode ultrasound

The database search revealed 25 studies using AI on B-mode ima-
ges to diagnose specific tumor entities [19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 11, 30, 31, 32, 13, 33, 34, 35, 36, 37, 16, 17, 38,
39]. Studies were published between 2003 and 2021, including
six with a multicentric design [17, 20, 21, 29, 31, 32]. Case num-
bers ranged from 51 to 3,873. Tumor entities differed substantial-
ly between the studies. Regarding ultrasound devices, a wide
range from a single machine to multiple devices from different
manufacturers was found. In 16 studies texture features were ex-
tracted, and in 9 AI obtained raw images. The most common algo-
rithm used was an ANN (n = 17, mainly CNN (n = 8)). Furthermore,
SVMs (n = 7) and logistic regression (n = 1) were applied to classify
data. Diagnostic accuracies ranged from 69.0 % to 98.6 %
(▶ Fig. 3). Two studies used an internal and external testing co-
hort: Tiyarattanachai et al. observed hardly any differences be-

tween the two [32], whereas Ren et al. saw a noticeable decrease
in diagnostic accuracy (internal testing: 79 %, external testing:
69%) [29]. Data are summarized in ▶ Table 2.

Artificial intelligence for the differentiation between benign
and malignant liver lesions on CEUS

Eight studies using AI classification of CEUS data to differentiate be-
nign from malignant FLLs published between 2014 and 2021 were
found [40, 41, 42, 43, 44, 45, 46, 47]. Only one study was multicen-
tric [45]. Most had a small sample size with a range from 26 to 363
cases and all but one performed their examinations with a single ul-
trasound device. The remaining study used two machines from the
same manufacturer [43]. Feature extraction was applied in all but
one study and TIC data was used exclusively in two. Half of the stud-
ies employed an SVM and three an ANN to classify lesions. The re-
ported overall diagnostic accuracy ranged from 81.1 % to 91.6 %
(▶ Fig. 3). Data are summarized in ▶ Table3.

Artificial intelligence for the differentiation of specific tumor
entities on CEUS

Thirteen studies evaluated AI-based classification of different FLL
entities with CEUS data [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60]. The number of cases ranged from 37 to 527, the majority
of studies (9/13) included more than 100. Only three studies in-
cluded FNHs, hemangiomas, HCCs, and metastases in their analy-
sis. Six studies used a single, three used multiple ultrasound devi-
ces with the remaining four not disclosing this information. CEUS
features were extracted in all studies, two of them analyzed TICs
only. ANNs were most commonly used for FLL classification (58%),
followed by SVMs (30%). Diagnostic accuracy ranged from 64.0 %
to 98.3 % (▶ Fig. 3). Data are summarized in ▶ Table 4.

Impact of the inclusion of clinical data on the diagnostic ac-
curacy of artificial intelligence

Four studies investigated whether the additional consideration of
clinical parameters to B-mode images is able to increase the diag-

▶ Fig. 3 Overview of diagnostic accuracies. Each dot represents the
reported diagnostic accuracy of a single study. For the study by Sri-
tunyarat et al. (B-mode – entity), only values of external testing
were available. Therefore, these are not shown here.

▶ Fig. 2 General schematic of studies investigating AI-based classi-
fication of FLLs.
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nostic accuracy of AI-based classification [12, 15, 29, 39]. There
was no data on this for CEUS. In all studies diagnostic accuracy
could be improved. The effect was particularly pronounced in
the study by Sato et al., in which the diagnostic accuracy in-
creased from 68.5 % to 96.3 % [12]. Yang et al. were able to show
that knowledge of the presence of hepatitis or tumor disease sig-
nificantly improves the differentiation between benign and malig-
nant lesions [15]. Zhou et al. were able to show that the consid-
eration of CA-19–9 (OR 24.85) enhances the differentiation
between HCC and other malignant processes of the liver almost
as well as the AI algorithm itself (OR 29.52) [39]. Data are sum-
marized in ▶ Table 5.

Diagnostic performance of artificial intelligence in compari-
son to ultrasound professionals

A total of seven B-mode and CEUS studies compared the diagnos-
tic accuracy of AI algorithms to radiologists interpreting the same
cases [51, 42, 53, 57, 45, 14, 15]. Additional clinical information
was available to radiologists in some of the studies. AI matched
the diagnostic performance of experts in five studies and signifi-

cantly outperformed beginners in two studies and experts in one
study. Hu et al. reported that the diagnostic accuracy of less ex-
perienced examiners improved when combined with AI, while
the diagnostic accuracy of experts worsened [51]. Data are sum-
marized in ▶ Table 6.

Quality assessment using QUADAS-2

All studies were reviewed for potential bias and applicability con-
cerns using QUADAS-2. In general, most studies did not provide
all the information needed to assess the risk of bias. For example,
the domain “patient selection” remained unclear for most stud-
ies, as it was not evident from the articles whether patients were
recruited consecutively or not. Using all available information, the
risk of bias was considered to be low (▶ Fig. 4a). In contrast, ap-
plicability was a concern for most studies (▶ Fig. 4b). In the do-
main "patient selection", it was noticeable that the majority of
studies did not include FNHs in their analysis. Furthermore, only
a few studies validated the diagnostic accuracy of their AI algo-
rithm with an independent data set, which decreases the applic-
ability of the index test. There were similar results concerning

▶ Table 1 Summary of B-mode studies on lesion dignity. Studies are sorted alphabetically. Only the best diagnostic accuracy within one study with-
out the consideration of clinical parameters is shown. Diagnostic accuracies are only comparable to a limited extent due to different testing measures
and selection of diagnoses. 1: When the number of patients was not available, the number of images was used. 2: Value was estimated from a graph.
3: Values for external testing. 4: Retrospectively calculated diagnostic accuracy from sensitivity, specificity, and prevalence or positive/negative pre-
dictive values. ABS = abscess, AML = angiomyolipoma, ANN= artificial neural network, BEN =benign lesions, CCC = cholangiocarcinoma, CINO= cir-
rhotic nodule, FFD = focal fat deposition, FFS = focal fatty sparing, FNH= focal nodular hyperplasia, HCC= hepatocellular carcinoma, HEM=heman-
gioma, MAL =malignant lesions, MET =metastasis, N/A = not available, OBL = other benign lesions, OML = other malignant lesions.

Author Cases Diagnoses Feature ex-
traction

AI Accuracy
(in %)

Sensitivity
(in %)

Specificity
(in %)

AUC

Acharya et al. 2018 101 ABS, CYST,
HCC, HEM, MET

yes ANN 93.0 90.8 97.4 N/A

Hassan et al. 2021 3521 BEN, MAL yes ANN ~922 N/A N/A N/A

Ryu et al. 2021 3873 CYST, HCC,
HEM, MET

no ANN 90.4 95.0 86.0 0.970

Sato et al. 2021 1080 ABS, AML, CCC,
CYST, FFD, FFL,
FNH, HCC,
HEM, MET, OBL

no ANN 68.5 67.3 69.8 0.721

Tiyarattanachai et al. 2019 683 CYST, HCC,
HEM, FFD, FFS

no ANN 81 76 85 0.890

Xi et al. 2021 596 ABS, ADEN,
CINO, CYST,
FFD, FNH, HCC,
HEM, OBL, OML

no ANN 84 N/A N/A 0.830

Yang et al. 2020 206251 ABS, AML, CCC,
ECH, FFS, FNH,
HCC, HEM,
MET, OBL, OML

yes ANN 76.74

(75.1)3/4
80.5
(77.4)3

60.1
(67.4)3

0.779
(0.805)3

Yamakawa et al. 2019 324 CYST, HCC,
HEM, MET

no ANN 94.8 93.8 95.2 N/A

Yamakawa et al. 2021 23756 CYST, HCC,
HEM, MET

no ANN 94.3 82.9 96.7 N/A

Yoshida et al. 2003 44 HCC, HEM, MET yes ANN N/A N/A N/A 0.92
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▶ Table 2 Summary of B-mode studies on the assessment of tumor entity. Studies are sorted alphabetically. Only the best diagnostic accuracy within
one study without the consideration of clinical parameters is shown. Diagnostic accuracies are only comparable to a limited extent due to different
testing measures and selection of diagnoses. 1: When the number of patients was not available, the number of images was used. 2: Values for external
testing. 3: Retrospectively calculated diagnostic accuracy from sensitivity, specificity, and prevalence or positive/negative predictive values.
ABS = abscess, AML = angiomyolipoma, ANN= artificial neural network, BEN =benign lesions, CCC = cholangiocarcinoma, CINO= cirrhotic nodule,
FFD = focal fat deposition, FFS = focal fatty sparing, FNH= focal nodular hyperplasia, HCC= hepatocellular carcinoma, HEM=hemangioma, ICC= in-
trahepatic cholangiocarcinoma, MAL =malignant lesions, MET =metastasis, N/A = not available, OBL = other benign lesions, OML = other malignant
lesions, SVM: support vector machine.

Author Cases Diagnoses Feature ex-
traction

AI Accuracy
(in %)

Sensitivity
(in %)

Specificity
(in %)

AUC

Balasubramanian et al. 2017 1601 N/A yes ANN 84.63 N/A N/A N/A

Hassan et al. 20154 1101 CYST,HCC,
HEM

yes SVM 96.5 97.6 92.5 N/A

Hassan et al. 20174 110 CYST, HCC,
HEM

no ANN 97.2 98 95.7 N/A

Hwang et al. 2015 115 CYST, HEM,
MAL

yes ANN 98.13 N/A N/A N/A

Lee et al. 2011 102 CYST, HEM,
MAL

yes SVM 83.3 66.7 83.3 0.77

Mao et al. 2021 114 HCC, ICC,
MET

yes Other 84.3 76.8 88.0 0.816

Mitrea et al. 2019 300 HCC, HEM yes ANN 85.4 78.0 82.9 0.805

Mittal et al. 20114 176 CYST, HCC,
HEM, MET

yes ANN 86.4 N/A N/A N/A

Peng et al. 2022 589 INF, MAL yes SVM 79.1 86.3 45.2 0.745

Qiu et al. 20114 2561 HCC, HEM yes SVM 96.93 N/A N/A N/A

Ren et al. 2021 188 CCC, HCC yes SVM 79.0
(69.2)2

90.0
(66.7)2

75.0
(70.0)2

0.843
(0.730)2

Ryu et al. 2021 3873 CYST, HCC,
HEM, MET

no ANN 82.2 86.7 89.7 0.947

Schmauch et al. 20194 544 CYST, FNH,
HCC, HEM,
MET

no ANN N/A N/A N/A (0.891)2

Sritunyarat et al. 2020 157 CYST, HCC,
HEM, FFD,
FFS

no ANN (95.0)2 (87.0)2 (97.0)2 N/A

Tiyarattanachai et al. 2019 683 CYST, HCC,
HEM, FFD,
FFS

no ANN 69 N/A N/A N/A

Tiyarattanachai et al. 2021 3872 CYST, HCC,
HEM, FFD,
FFS

no ANN 95.4
(95.3)2

83.9
(84.9)2

97.1
(97.1)2

N/A

Virmani et al. 20134 1081 CYST, HCC,
HEM, MET

yes ANN 87.7 N/A N/A N/A

Virmani et al. 2013 51 HCC, MET yes SVM 91.6 N/A N/A N/A

Virmani et al. 20134 1081 CYST, HCC,
HEM, MET

yes SVM 87.2 N/A N/A N/A

Virmani et al. 2014 1081 CYST, HCC,
HEM, MET

yes ANN 95.0 N/A N/A N/A

Xu et al. 2020 79 ABS, HCC yes ANN 83.8 N/A N/A N/A

Yamakawa et al. 2019 324 CYST, HCC,
HEM, MET

no ANN 88.0 80.4 96.0 N/A

Yamakawa et al. 2021 23756 CYST, HCC,
HEM, MET

no ANN 91.1 N/A N/A N/A
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bias and applicability for the subgroups B-mode, CEUS, tumor dig-
nity and tumor entity. More detailed information and the assess-
ments of individual studies are included in the supplemental data
(Supplemental Fig. 1 and Supplemental Tab. 1–4).

Discussion

Sonography can be used to reliably determine the dignity and en-
tity of many focal liver lesions. However, even with the use of
CEUS, not every lesion can be classified correctly. Since AI-based
applications have found their way into many scientific fields, there
is reasonable hope, that AI could also help to improve ultrasound-
based diagnosis of FLLs and potentially avoid the need for addi-
tional imaging and invasive procedures. The aim of this systematic
review was to analyze studies in which the dignity or entity of FLLs
was assessed by AI, using B-mode or CEUS data. For this purpose,
52 articles found using a structured literature search approach
were analyzed systematically in order to answer the following
questions:

How powerful is artificial intelligence for the classifi-
cation of liver tumors?

Diagnostic accuracy describes the fraction of cases which are as-
signed the correct diagnosis based on the test procedure. Typical-
ly, diagnostic accuracy of more than 80% is considered good and
more than 90% excellent [61].

Half of the B-mode studies assessing FLL dignity reported ex-
cellent diagnostic accuracy, and a further 20 % of the studies
showed good performance (range: 68.5% to 94.8 %). The impact
of lesion size on diagnostic accuracy, sensitivity, specificity, and
AUC was investigated in one study with no significant differences
between sizes 1.1–2.0 cm, 2.1–5.0 cm, and > 5.0 cm [15]. Yama-
kawa et al. reported higher accuracies for cysts (99.0 %) and he-
mangiomas (91.0 %) in comparison to HCCs (67.5 %) and liver me-
tastases (62.8 %) on B-mode [17]. A different study did not
observe differences between these entities [31]. Studies that ana-
lyzed CEUS data to classify FLL-dignity all showed good (50%) or
excellent (50 %) diagnostic performance.

When assessing specific tumor entities based on the B-mode
image, accuracies ranged from 69.0 % to 98.6 %. 40 % of studies
reported good and a further 40 % reported excellent diagnostic

▶ Table 2 (Continuation)

Author Cases Diagnoses Feature ex-
traction

AI Accuracy
(in %)

Sensitivity
(in %)

Specificity
(in %)

AUC

Zhang et al. 20104 2801 CYST, HCC,
HEM

yes ANN 98.63 N/A N/A N/A

Zhou et al. 2021 172 HCC, OML no ANN 78.43 57.1 91.3 0.74

▶ Table 3 Summary of CEUS studies on tumor dignity. Studies are sorted alphabetically. Only the best diagnostic accuracy within one study without
the consideration of clinical parameters is shown (values for sensitivity, specificity, and AUC are reported for the method with the best diagnostic
accuracy). Diagnostic accuracies are only comparable to a limited extent due to different testing measures and selection of diagnoses. 1: Including
clips which could not be analyzed by AI. ABS = abscess, ANN = artificial neural network, BEN =benign lesions, FFS = focal fatty sparing, FNH= focal
nodular hyperplasia, HCC= hepatocellular carcinoma, HEM=hemangioma, MAL =malignant lesions, MET =metastasis, N/A = not available,
SVM= support vector machine, TIC = time intensity curve.

Author Cases Diagnoses Feature ex-
traction

AI Accuracy
in %

Sensitivity
in %

Specificity
in %

AUC

Guo et al. 2017 93 BEN, MAL yes Other 90.4 93.6 89.3 0.95

Guo et al. 2018 83 CCC, FNH, HCC,
HEM, MET,

yes Other 90.4 93.6 86.9 0.97

Hu et al. 2021 363 BEN, MAL no ANN 91.0 92.7 85.1 0.93

Kondo et al. 2017 94 FNH, HCC, HEM,
MET

Yes
(TIC)

SVM 91.6 94.0 90.3 N/A

Qian et al. 2017 93 BEN, MAL yes SVM 89.4 89.7 89.8 0.96

Ta et al. 2018 105 BEN, MAL Yes
(+TIC)

ANN&SVM 81.1
(73.3)1

90.0 (83.3)1 71.1 (62.7)1 0.88

Wu et al. 2014 26 ABS, FFS, HCC,
HEM, MET

Yes
(TIC)

ANN 86.4 83.3 87.5 N/A

Zhang et al. 2021 153 BEN, MAL yes SVM 88.2 86.9 89.4 0.9
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accuracy. In CEUS studies regarding the differentiation of FLL enti-
ties, all but one (92%) showed at least good performance with six
reporting excellent accuracy.

In order to measure diagnostic accuracy as exactly as possible,
AI-based classification algorithms should ideally be evaluated by
means of external validation. This requires the use of an indepen-
dent test set of patients, which the AI has not been trained on
(even partially). Only five B-mode studies and one CEUS-based
study performed external validation. Two of these studies compar-
ed the diagnostic accuracies with their internal set (the AI had also
been trained on) and found no significant differences [15, 32]. The
other two studies found a deterioration of diagnostic accuracy
when using an external set [29, 60]. The remaining two B-mode
studies did not test on the internal set, and, therefore, a compari-
son was not possible [30, 31]. These differing results for the exter-
nal validation cohort might be due to a considerable variation in
case numbers (3872 and 20,625 [32, 15] vs. 188 and 186 cases
[29, 60]). Alternatively, the conflicting results could originate from
unknown random or systematic differences between the internal
and the validation data set.

Can the potency of artificial intelligence be improved
by adding clinical parameters?

Clinical data indicate pre-test probability and should, therefore,
always be considered by physicians when making a diagnosis.

Somewhat surprisingly, only four B-mode studies considered this
approach for their AI algorithms. All of them were able to show
that the diagnostic accuracy of AI-based FLL classification can be
improved by adding clinical parameters. Among other things,
gender, age, and a positive history of hepatitis or cancer had a sig-
nificant impact on diagnostic accuracy. In the multivariate analy-
sis, some parameters (e. g., CA19–9) were almost as relevant for
the correct classification as the interpretation of image data itself
[39]. Sato et al. achieved the highest diagnostic accuracy among
the aforementioned studies with the combination of B-mode im-
age data and clinical parameters [12].

Artificial intelligence vs. human intelligence –which is
better?

A total of seven studies (2x B-mode, 5x CEUS) compared physi-
cians’ diagnostic performance with that of their AI algorithms. Ac-
cording to the results, AI performed as well as experienced radiol-
ogists in five studies and better in one study. However, in the
latter study the human diagnostic accuracy was low (ACC 69.5 %)
[15]. Another study reported that the availability of AI-based clas-
sification improved the diagnostic accuracy of less experienced
examiners but was a setback for experts [51]. These results are re-
markable, even more so knowing that physicians had an advan-
tage by having insight into the clinical parameters in three of the
studies.

▶ Table 4 Summary of CEUS studies on the assessment of tumor entity. Studies are sorted alphabetically. Only the best diagnostic accuracy within
one study without the consideration of clinical parameters is shown (values for sensitivity, specificity, and AUC are reported for the method with the
best diagnostic accuracy). Diagnostic accuracies are only comparable to a limited extent due to different testing measures and selection of diagno-
ses. 1: Values for external testing; ADEN= adenoma, ANN= artificial neural network, BEN= benign lesions, FFC = focal fatty change, FNH= focal nod-
ular hyperplasia, HCC= hepatocellular carcinoma, HEM= hemangioma, MAL =malignant lesions, MET =metastasis, N/A = not available, SVM: support
vector machine, TIC = time intensity curve.

Author Cases Diagnoses Feature ex-
traction

AI Accuracy
in %

Sensitivity
in %

Specificity
in %

AUC

Căleanu et al. 2014 37 FNH, HCC, HEM,
MET

yes SVM 64.0 N/A N/A N/A

Căleanu et al. 2021 91 FNH, HCC, HEM,
MET

yes
(TIC)

ANN 95.7 N/A N/A N/A

De Senneville et al. 2020 47 ADEN, FNH yes Other 95.9 93.4 97.6 0.97

Hu et al. 2019 527 N/A yes ANN 85–88 89–94 67–70 0.89

Huang et al. 2020 342 FNH, HCC yes SVM 94.4 94.8 93.6 N/A

Li et al. 2021 226 FNH, HCC yes SVM N/A 76.6 80.5 0.86

Liang et al. 2016 353 FNH, HCC, HEM yes Other 84.8 N/A N/A N/A

Shiraishi et al. 2008 103 HCC, HEM, MET yes ANN 88.3 N/A N/A N/A

Sîrbu et al. 2020 95 FNH, HCC, HEM,
MET

N/A ANN 95.7 N/A N/A N/A

Streba et al. 2012 112 FFC, HCC, HEM,
MET

Yes
(TIC)

ANN 87.1 93.2 89.7 N/A

Sugimoto et al. 2009 137 HCC, HEM, MET yes ANN 94.2 N/A N/A N/A

Sugimoto et al. 2010 137 HCC, HEM, MET yes ANN 88.3 N/A N/A N/A

Zhou et al. 2021 186 FNH, HCC yes SVM 98.3
(96.7)1

98.1
(98.7)1

98.6
(94.7)1

N/A
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Ta et al. observed that radiologists were able to successfully
analyze (not classify) CEUS data more often (inexperienced:
95.2 %, experienced 97.1 %) than their AI algorithms (90.5 %)
[45]. An inability to analyze cases was the result of poor image
quality, contrast agent enhancement, or small size of the FLL
(< 1 cm). When taking these unclassifiable lesions into account,
the diagnostic accuracy of the AI-based approach dropped from
81.1 % to 73.3 % (for radiologists: inexperienced: 68.6 %, experi-

enced 79.0 %). Whether the accuracies reported in other studies
were calculated with this consideration in mind is doubtful.

It can be concluded that AI classification of FLLs is able to
achieve diagnostic accuracies comparable to experienced human
observers under rather artificial study conditions. There is not en-
ough data to make reasonable conclusions about the differences
in diagnostic performance between AI and humans in a real-world
setting.

▶ Table 6 Summary of studies comparing the performance of AI with physician-based decisions. 1: TIC analysis. 2: Additional clinical information. N/
A = not available.

Author Mode ACC (expert) p ACC (beginner) p ACC
(AI)

Conclusion

Hu et al. 2019 CEUS N/A N/A N/A N/A 85–88 AI was a setback for
experts

Hu et al. 20212 CEUS 87.5 0.256 83.0 0.021 91.0 AI matched experts

Li et al. 2021 CEUS 0.84 (AUC) N/A N/A N/A 0.86 (AUC) AI matched experts

Streba et al. 20121 CEUS N/A 0.225 N/A N/A 87.1 AI matched experts

Ta et al. 2018 CEUS 81.4 N/A 72.0 N/A 81.1 AI matched experts,
better than beginners

Xi et al. 20212 B-mode 80.0 (1x)
73.0 (1x)

0.18 N/A N/A 84.0 AI matched experts

Yang et al. 20202 B-mode 69.5 < 0.01 64.7 < 0.01 84.7 AI better than experts

▶ Table 5 Summary of B-mode studies adding clinical data to AI analysis. 1: retrospectively calculated diagnostic accuracy from sensitivity, specifi-
city, and prevalence or positive/negative predictive values.

Study Mode ACC
without clinical
data

ACC
with
clinical data

Clinical and sonographic parameters
(odds ratio)

Sato et al. 2022 B-mode / Dignity 68.5% 96.3 % Clinical parameters
Age, gender, AST, ALT, platelet count, albumin

Yang et al. 2020 B-mode / Dignity 76.7%1 87.0 %1 OR for malignant lesions:
Hypoechoic halo
(18.389 [9.921–34.084])
History of extrahepatic tumor (16.17 [9.311–28.065])
History of hepatitis
(11.736 [7.857–17.529])
Age > 65y
(3.323 [2.096–5.269])
Male gender
(2.303 [1.629–3.256])
Intratumoral vascularity
(1.911 [1.344–2.717])

Ren et al. 2021 B-mode / entity 78.95 % 86.8 % Clinical parameters
Age, gender, history of hepatitis, AFP, ALT, AST, TB, CB, UCB,
size of lesion

Zhou et al. 2021 B-mode / entity
(HCC vs. other ma-
lignancies)

57.1% 78.6 % OR for non-HCC malignancies
CA19–9
(24.85 [6.10–101.25])
Female gender
(3.72 [1.17–11.9])
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What are the concerns and limitations for the use of
artificial intelligence to classify FLLs?

General concerns about the use of AI in the medical field include
the protection of patients’ individual rights and personal informa-
tion, especially if data are not being analyzed on site. Another cri-
tical aspect of the methods discussed in this article is their black-
box nature. There is often no easy way to interpret or explain the
produced results. Providers of AI-based classification systems will
need to ensure that their technological approach is as transparent
and reliable as possible. A recent research topic called explainable
AI is trying to resolve this issue [62]. Liability concerns will prob-
ably be the biggest obstacle keeping AI from implementation in
clinical practice.

A limitation of the studies included in this systematic review is
that image acquisition was often performed on only one type of
ultrasound machine, raising doubts about a possible transfer to
general clinical usage. Furthermore, most studies included a lim-
ited spectrum of different FLL entities in their analysis, which re-
duces the applicability for clinical practice. For example, FNHs
were included only in a minority of B-mode studies (11 %), even
though they are one of the most common FLLs. While this might
seem understandable, since the diagnosis of FNH is not based on
B-mode ultrasound, but rather is a domain of CEUS, it certainly
leads to a selection bias and raises doubts about the significance
of the reported diagnostic accuracies.

A major limitation of almost all studies we reviewed is the lack
of a sufficiently large database. The number of images an AI meth-
od is trained on directly affects its diagnostic performance. Most
studies, therefore, used augmentation techniques, such as mirror-
ing or rotation of images, which cannot fully compensate for a
lack of real data. In addition, these small data sets lead to limita-
tions concerning the testing process. As mentioned above, an in-
dependent patient cohort was not used for testing in the majority
of studies. Testing can be performed by splitting all images into a
training/validation and test data set. This can lead to images from
one patient ending up in both data sets, therefore resulting in an
overestimation of testing accuracy. The issue can be addressed by
splitting patients (and not images) into groups. A CEUS-based
study, which compared the two approaches, observed a drop in
diagnostic accuracy from 95.7 % to 56% [49]. Although this pro-

nounced deterioration of accuracy can certainly not be general-
ized, it must be assumed that some of the reported results are
overrated. This is especially true for small studies with a homoge-
nous set of data or patients.

Another key issue is that all studies needed intervention by
healthcare professionals not only to perform ultrasound scans,
but also to process the collected data further (e. g., demarcation
of the regions of interest (ROI)). This puts a significant part of di-
agnostic ultrasound, i. e., differentiating the FLL from the liver par-
enchyma, back into human hands. Some studies have tried to
solve this problem by developing algorithms that are able to iden-
tify the ROI. Liang et al. trained an AI algorithm to track FLLs and
their corresponding ROIs in CEUS clips automatically [54]. None-
theless, they needed a physician with CEUS experience to identify
the ROI at the start of the clip.With this approach, they were able
to achieve diagnostic accuracies similar to studies with manual
ROI placement (84.8 % for the differentiation of FLL entities and
92.7 % to distinguish benign from malignant FLLs). Also, there
are studies that are solely focused on the detection of FLLs and
not their classification (and were therefore disregarded for the
purpose of this review). They have shown promising results, indi-
cating that solutions addressing this issue seem possible [63]. For
the implementation of AI techniques in the clinical routine, a com-
bination of both techniques (detection and classification) would
be ideal, as this would eliminate possible bias introduced by the
examiner.

In summary, although the diagnostic capabilities of AI for the
diagnosis of FLLs are almost all reported to be good or excellent,
among other concerns, the lack of independent test sets and the
exclusion of common FLL entities in almost all studies severely
limit the real-world applicability of these data. Therefore, the
pathway towards the implementation of AI in clinical ultrasound
of the liver has many hurdles to overcome. User-friendly AI-based
tools, which are built into ultrasound devices for specific ques-
tions such as “is this a malignant liver lesion?” could be a starting
point. Ideally, real-world data from the application of these tools
would be used to further improve AI performance in a continuous
learning approach. Data protection concerns will limit this kind of
feedback loop to clinical trials. Therefore, large multicenter co-
horts will be necessary to improve AI-based ultrasound tech-
niques before a significant impact on clinical practice seems feasi-

▶ Fig. 4 QUADAS-2 overview. a) Risk of bias for all studies (light gray: low risk, dark gray: high risk, white: unclear risk). b) Applicability concerns for
all studies (light gray: low level of concerns, dark gray: high level of concerns, white: unclear level of concerns).
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ble. In the long term, AI-based approaches will need to integrate
data frommultiple sources such as ultrasound, radiology, histopa-
thology, laboratory tests, and clinical information to make a diag-
nosis [64]. As for now and the near future, the only viable field of
use for AI in clinical ultrasound seems to be to support (especially
inexperienced) physicians in their decision making.

A limitation of our review is the heterogeneity of the studies.
Heterogeneity was observed in all study parts, starting with the
selection of patients or image databases. Differences continued
with respect to the pre-processing of images, extracted image
features, and types of AI that were used (e. g., CNN or SVM). Final-
ly, as outlined above, testing of the diagnostic performance varied
significantly. These differences severely limit the comparability of
studies included in this systematic review.

Conclusion and Outlook

Data on the AI-based classification of ultrasound imaging of FLLs
are promising. The diagnostic performance of AI-based classifica-
tion should be improved by adding clinical data. AI could serve as
a supportive system for ultrasound examinations of the liver,
especially for inexperienced examiners. The main weaknesses of
the available studies are the limited spectrum of FLL entities and
the lack of external validation. Moreover, in addition to technical
hurdles, regulatory hurdles must be overcome for a successful
transfer of the technology to clinical practice. Large, cross-center
ultrasound image databases could help to improve the diagnostic
capabilities of AI-based classification systems.
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