Synthesis 2023; 55(16): 2439-2459
DOI: 10.1055/a-2085-3410
short review

Salient Achievements in Synthetic Organic Chemistry Enabled by Mechanochemical Activation

Eusebio Juaristi
a   Departamento de Química, Centro de Investigación y de Estudios Avanzados, 07360 Ciudad de México, Mexico
b   El Colegio Nacional, Donceles # 104, Centro Histórico, 06020 Ciudad de México, Mexico
,
C. Gabriela Avila-Ortiz
a   Departamento de Química, Centro de Investigación y de Estudios Avanzados, 07360 Ciudad de México, Mexico
› Author Affiliations
We are grateful to Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico) for financial support via grants 220945, 3240029, and A1-S-44097. We are also grateful to the Secretaría de Educación Pública-Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (SEP-CINVESTAV) Fund via grant 126.


Abstract

Although known for millennia, it is only recently that mechanochemistry has received serious attention by chemists. Indeed, during the past 15 years an extraordinary number of reports concerning solid-state chemical transformations through grinding and milling techniques have been recorded. This short review discusses the circumstances that led this renaissance, highlighting the present intense interest in so-called green chemistry, the enabling capacity of mechanochemistry to handle insoluble substrates, and the identification of the profound influence that additives can have on mechanochemically activated reactions. The core of this account focuses on salient developments in synthetic organic chemistry, especially in amino acid and peptide­ mechanosynthesis, the successful employment of mechanochemical activation in combination with asymmetric organocatalysis, the promising combination of mechanochemical activation with enzymatic and whole cell biocatalysis, the remarkable achievement of multicomponent selective reactions via complex, multistep reaction pathways, and the mechanosynthesis of representative heterocycles. The final section comments on some pending tasks in the area, such as scaling-up of milling processes to be of practical use in the chemical industry, the requirement of easier and more efficient control of reaction parameters and monitoring devices, and consequently the careful analysis of additional procedures for a proper understanding of mechanochemical phenomena.

1 Introduction

2 Brief History of Mechanochemistry

3 Milling Equipment and Reaction Parameters

4 Attributes of Mechanochemistry That Propelled Its Present Renaissance

4.1 Enormous Attention Being Presently Paid to Sustainable Chemistry

4.2 Reduced Energy Consumption

4.3 Additive-Based Mechanochemistry

4.4 Handling of Insoluble Reactants

4.5 ‘Impossible’ Reactions That Are Successful by Milling

4.6 Successful Handling of Air- and Water-Sensitive Reagents by Ball Milling

5 Salient Developments in the Mechanochemical Activation of Synthetic Organic Chemistry

5.1 Amino Acid and Peptide Mechanosynthesis

5.2 Asymmetric Organic Synthesis and Asymmetric Organocatalysis under Ball-Milling Conditions

5.3 Mechanoenzymology

5.4 Multicomponent Reactions Activated by Mechanochemistry

5.5 Mechanosynthesis of Heterocycles and Modification of Heterocycles

6 Future Directions

6.1 Scaling-Up Mechanochemical Protocols

6.2 Temperature-Controlled Mechanochemistry

6.3 Understanding Mechanochemical Transformations

6.4 Emerging Mechanochemical Techniques

7 Conclusions



Publication History

Received: 07 February 2023

Accepted after revision: 03 May 2023

Accepted Manuscript online:
03 May 2023

Article published online:
12 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • See, for example:
    • 1a James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KD. M, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC. Chem. Soc. Rev. 2012; 41: 413
    • 1b Baig RB. N, Varma RS. Chem. Soc. Rev. 2012; 41: 1559
    • 1c Wang G.-W. Chem. Soc. Rev. 2013; 42: 7668
    • 1d Stolle A, Szuppa T, Leonhardt SE. S, Ondruschka B. Chem. Soc. Rev. 2011; 40: 2317
    • 1e Boldyreva E. Chem. Soc. Rev. 2013; 42: 7719
    • 1f Mottillo C, Friščić T. Molecules 2017; 22: 144
    • 1g Lazuen Garay A, Pichon A, James SL. Chem. Soc. Rev. 2007; 36: 846
    • 1h Do J.-L, Friščić T. Synlett 2017; 28: 2066
    • 1i Friščić T, Mottillo C, Titi HM. Angew. Chem. Int. Ed. 2020; 59: 1018
    • 1j Porcheddu A, Colacino E, de Luca L, Delogu F. ACS Catal. 2020; 10: 8344
    • 2a Hernández JG, Macdonald NA. J, Mottillo C, Butler I, Friščić T. Green Chem. 2014; 16: 1087
    • 2b Hernández JG, Friščić T. Tetrahedron Lett. 2015; 56: 4253
    • 2c Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado JM, Delogu F, Dutková E, Gaffet E, Gotor FJ, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K. Chem. Soc. Rev. 2013; 42: 7571
    • 2d Virieux D, Delogu F, Porcheddu A, García F, Colacino E. J. Org. Chem. 2021; 86: 13885
    • 2e Pérez-Venegas M, Juaristi E. ACS Sustainable Chem. Eng. 2020; 8: 8881
    • 2f Galant, O.; Cerfeda, G.; McCalmont, A. S.; James, S. L.; Porcheddu, A.; Delogu, F.; Crawford, D. E.; Colacino, E.; Spatari, S. ACS Sustainable Chem. Eng. 2022, 10, 1430.
    • 2g Bento O, Luttringer F, El Dine TM, Pétry N, Bantreil X, Lamaty F. Eur. J. Org. Chem. 2022; e202101516
    • 2h Friščić T. Chem. Soc. Rev. 2012; 41: 3493
    • 2i Achar TK, Bose A, Mal P. Beilstein J. Org. Chem. 2017; 13: 1907
    • 2j Grätz S, Borchardt L. RSC Adv. 2016; 6: 64799
    • 2k Willis-Fox N, Rognin E, Aljohani TA, Daly R. Chem 2018; 4: 2499
    • 2l Muñoz-Batista MJ, Rodriguez-Padron D, Puente-Santiago AR, Luque R. ACS Sustainable Chem. Eng. 2018; 6: 9530
    • 2m Dabral S, Wotruba H, Hernández JG, Bolm C. ACS Sustainable Chem. Eng. 2018; 6: 3242
    • 2n Tan D, Loots L, Friščić T. Chem. Commun. 2016; 52: 7760
    • 2o Malca MY, Bao H, Bastaille T, Saadÿ NK, Kinsella JM, Friščić T, Moores A. Chem. Mater. 2017; 29: 7766
    • 2p Métro T.-X, Gervais C, Martinez A, Bonhomme C, Laurencin D. Angew. Chem. Int. Ed. 2017; 56: 6803
    • 3a Takacs L. Chem. Soc. Rev. 2013; 42: 7649

    • See also:
    • 3b Andersen J, Mack J. Green Chem. 2018; 20: 1435
    • 3c Xu C, De S, Balu AM, Ojeda M, Luque R. Chem. Commun. 2015; 51: 6698
    • 3d Crawford DE, Miskimmin CK. G, Albadarin AB, Walker G, James SL. Green Chem. 2017; 19: 1507
    • 3e Tan D, García F. Chem. Soc. Rev. 2019; 48: 2274
  • 4 Gomollón-Bell F. Chem. Int. 2019; 41: 12
  • 5 Rightmire NR, Hanusa TP. Dalton Trans. 2016; 45: 2352
  • 6 See, for example: Ávila-Ortiz CG, Juaristi E. Molecules 2020; 25: 3579
    • 7a Hasa D, Jones W. Adv. Drug Delivery Rev. 2017; 117: 147
    • 7b Crawford DE, Casaban J. Adv. Mater. 2016; 28: 5747
    • 7c Stolle A, Schmidt R, Jacob K. Faraday Discuss. 2014; 170: 267
    • 7d Baláž P. Mechanochemistry in Nanoscience and Minerals Engineering. Springer; Berlin: 2008
    • 7e Burmeister CF, Kwade A. Chem. Soc. Rev. 2013; 42: 7660
    • 7f Halasz I, Kimber SA. J, Beldon PJ, Belenguer AM, Adams F, Honkimäki V, Nightingale RC, Dinnebier RE, Friščić T. Nat. Protoc. 2013; 8: 1718
    • 7g For safety considerations for laboratory-scale chemical synthesis by ball milling, see: Priestley I, Battilocchio C, Iosub AV, Barreteau F, Bluck GW, Ling KB, Ingram K, Ciaccia M, Leitch JA, Browne DL. Org. Process Res. Dev. 2023; 27: 269
  • 8 Gomollón-Bell F. Chem. Eng. News 2022; 100: 21
  • 9 Toda F, Tanaka K, Hamai K. J. Chem. Soc., Perkin Trans. 1 1990; 3207
    • 10a Chauhan P, Chimni SS. Beilstein J. Org. Chem. 2012; 8: 2132
    • 10b Chauhan P, Chimni SS. Asian J. Org. Chem. 2012; 1: 138
    • 10c Kaur J, Chauhan P, Singh S, Chimni SS. Chem. Rec. 2017; 18: 137
  • 11 Thorwirth R, Bernhardt F, Stolle A, Ondruschka B, Asghari J. Chem. Eur. J. 2010; 16: 13236 ; and references therein
  • 12 Hwang S, Grätz S, Borchardt L. Chem. Commun. 2022; 58: 1661
    • 13a Fulmer DA, Shearouse WC, Medonza ST, Mack J. Green Chem. 2009; 11: 1821
    • 13b Pickhardt W, Beaković C, Mayer M, Wohlgemuth M, Kraus FJ. L, Etter M, Grätz S, Borchardt L. Angew. Chem. Int. Ed. 2022; 61: e202205003 ; and references cited therein
    • 14a Wohlgemuth M, Mayer M, Rappen M, Schmidt F, Saure R, Grätz S, Borchardt L. Angew. Chem. Int. Ed. 2022; 61: e202212694

    • See, also
    • 14b Pickhardt W, Siegfried E, Fabig S, Rappen MF, Etter M, Wohlgemuth M, Graetz S, Borchardt L. Angew. Chem. Int. Ed. 2023; 62: e202301490
    • 15a Lennox CB, Borchers TH, Gonnet L, Barrett CJ, Koenig SG, Nagapudi K, Friščić T. Chem. Sci. 2023; in press DOI: DOI: 10.1039/D3SC01591B.

    • See, also
    • 15b Effaty F, Gonnet L, Koenig SG, Nagapudi K, Ottenwaelder X, Friščić T. Chem. Commun. 2023; 59: 1010
  • 16 Andersen JM, Mack J. Chem. Sci. 2017; 8: 5447
    • 17a Jörres M, Aceña JL, Soloshonok VA, Bolm C. ChemCatChem 2015; 7: 1265
    • 17b Jacob K, Schmidt R, Stolle A. In Ball Milling Towards Green Synthesis: Applications, Projects, Challenges . Ranu B, Stolle A. RSC; Cambridge: 2015: 34-57
    • 18a Tan D, Mottillo C, Katsenis AD, Štrukil V, Friščić T. Angew. Chem. Int. Ed. 2014; 53: 9321
    • 18b Ranu BC, Chatterjee T, Mukherjee N. In Ball Milling Towards Green Synthesis: Applications, Projects, Challenges . Ranu B, Stolle A. RSC; Cambridge: 2015: 1-33
  • 19 Friščić T. In Ball Milling Towards Green Synthesis: Applications, Projects, Challenges. Ranu B, Stolle A. RSC; Cambridge: 2015: 151-189
  • 20 Saunders GC, Wehr-Candler TT. J. Fluorine Chem. 2013; 153: 162

    • See, for example:
    • 21a Ball Milling Towards Green Synthesis: Applications, Projects, Challenges. Ranu B, Stolle A. RSC; Cambridge: 2015
    • 21b Margetić D, Štrukil V. Mechanochemical Organic Synthesis . Elsevier; Oxford: 2016
    • 21c O’Neill RT, Boulatov R. Nat. Chem. Rev. 2021; 5: 148
    • 21d Ying P, Yu J, Su W. Adv. Synth. Catal. 2021; 363: 1246
    • 21e Amrute AP, De Bellis J, Felderhoff M, Schüth F. Chem. Eur. J. 2021; 27: 6819
    • 21f Egorov IN, Santra S, Kopchuk DS, Kovalev IS, Zyryanov GV, Majee A, Ranu BC, Rusinov VL, Chupakhin ON. Green Chem. 2020; 22: 302
    • 21g Bolm C, Hernández JG. Angew. Chem. Int. Ed. 2019; 58: 3285
    • 21h Bolm C, Hernandez JG. ChemSusChem 2018; 11: 1410
    • 21i Štrukil V. Synlett 2018; 29: 1281
    • 21j Machuca E, Juaristi E. In Ball Milling Towards Green Synthesis: Applications, Projects, Challenges . Ranu B, Stolle A. RSC; Cambridge: 2015: 81-95
    • 21k Kubota K, Ito H. Trends Chem. 2020; 2: 1066
    • 21l Leitch JA, Browne DL. Chem. Eur. J. 2021; 27: 9721
    • 21m Leonardi M, Villacampa M, Menéndez JC. Chem. Sci. 2018; 9: 2042
    • 21n Boldyreva E. Faraday Discuss. 2022; 241: 9
    • 21o Margetić D. Pure Appl. Chem. 2023; 95: 315
  • 22 Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; Oxford: 1998
  • 23 Friščić T, Childs SL, Rizvi SA. A, Jones W. CrystEngComm 2009; 11: 418
  • 24 Sheldon RA. Green Chem. 2017; 19: 18
  • 25 Howard JL, Cao Q, Browne DL. Chem. Sci. 2018; 9: 3080
  • 26 Sheldon RA. Green Chem. 2005; 7: 267
  • 27 Ardila-Fierro KJ, Hernández JG. ChemSusChem 2021; 14: 2145
    • 28a Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
    • 28b Hernández JG, Avila-Ortiz CG, Juaristi E. Useful Chemical Activation Alternatives in Solvent-Free Organic Reactions . In Comprehensive Organic Synthesis, 2nd ed., Vol. 9. Molander GA, Knochel P. Elsevier; Oxford: 2014: 287-314
    • 29a Constable DJ. C, Jiménez-González C, Henderson RK. Org. Process Res. Dev. 2007; 11: 133
    • 29b Jiménez-González C, Constable DJ. C, Ponder CS. Chem. Soc. Rev. 2012; 41: 1485
    • 29c Dunn PJ. Chem. Soc. Rev. 2012; 41: 1452
    • 29d Leitch JA, Smallman HR, Browne DL. J. Org. Chem. 2021; 86: 14095
    • 30a Hernández JG, Bolm C. J. Org. Chem. 2017; 82: 4007

    • See also:
    • 30b Wollenhaupt M, Krupička M, Marx D. ChemPhysChem 2015; 16: 1593
    • 31a Krenz J, Simcox N, Tepe JS, Simpson CD. ACS Sustainable Chem. Eng. 2016; 4: 4021
    • 31b Clarke CJ, Tu W.-C, Levers O, Bröhl A, Hallett JP. Chem. Rev. 2018; 118: 747
    • 32a Reichardt C. Org. Process Res. Dev. 2007; 11: 105
    • 32b Reichardt C. J. Org. Chem. 2022; 87: 1616
    • 33a Toda F. Acc. Chem. Res. 1995; 28: 480
    • 33b Metzger JO. Angew. Chem. Int. Ed. 1998; 37: 2975
    • 33c Kaupp G. Organic Solid-State Reactions . In Encyclopedia of Physical Organic Chemistry . Wang Z, Wille U, Juaristi E. John Wiley & Sons; Hoboken NJ: 2017: 737-816
  • 34 Martins MA. P, Frizzo CP, Moreira DN, Buriol L, Machado P. Chem. Rev. 2009; 109: 4140
  • 35 O’Brien M, Denton R, Ley SV. Synthesis 2011; 1157
  • 36 Stolle A. In Ball Milling Towards Green Synthesis: Applications Projects Challenges . Stolle A, Ranu BC. RSC; Cambridge: 2015: 241-270
    • 37a Schneider F, Ondruschka B. ChemSusChem 2008; 1: 622
    • 37b Schneider F, Szuppa T, Stolle A, Ondruschka B, Hopf H. Green Chem. 2009; 11: 1894
    • 37c Schneider F, Stolle A, Ondruschka B, Hopf H. Org. Process Res. Dev. 2009; 13: 44
    • 38a Yuan W, Lazuen-Garay A, Pichon A, Clowes R, Wood CD, Cooper AI, James SL. CrystEngComm 2010; 12: 4063
    • 38b Trotzki R, Hoffmann MM, Ondruschka B. Green Chem. 2008; 10: 767
  • 39 Mateti S, Mathesh M, Liu Z, Tao T, Ramireddy T, Glushenkov AM, Yang W, Chen YI. Chem. Commun. 2021; 57: 1080
    • 40a Shan N, Toda F, Jones W. Chem. Commun. 2002; 2372
    • 40b Trask AV, Motherwell WD. S, Jones W. Chem. Commun. 2004; 890
    • 40c Friščić T, Trask AV, Jones W, Motherwell WD. S. Angew. Chem. Int. Ed. 2006; 45: 7546
    • 40d Braga D, Curzi M, Johansson A, Polito M, Rubini K, Grepioni F. Angew. Chem. Int. Ed. 2006; 45: 142

      Liquid-assisted grinding (LAG):
    • 41a Friščić T, Jones W. Cryst. Growth. Des. 2009; 9: 1621

    • Kneading:
    • 41b Braga D, Giaffreda SL, Grepioni F, Pettersen A, Maini L, Curzi M, Polito M. Dalton Trans. 2006; 1249

    • Ion- and liquid-assisted grinding (ILAG):
    • 41c Friščić T, Reid DG, Halasz I, Stein RS, Dinnebier RE, Duer MJ. Angew. Chem. Int. Ed. 2010; 49: 712

    • Polymer-assisted grinding (POLAG):
    • 41d Hasa D, Schneider Rauber G, Voinovich D, Jones W. Angew. Chem. Int. Ed. 2015; 54: 7371

    • Seeding-assisted grinding (SEAG):
    • 41e Cinčić D, Brekalo I, Kaitner B. Cryst. Growth Des. 2012; 12: 44
  • 42 Štrukil V, Igrc MD, Fábián L, Eckert-Maksić M, Childs SL, Reid DG, Duer MJ, Halasz I, Mottillo C, Friščić T. Green Chem. 2012; 14: 2462
  • 43 Howard JL, Sagatov Y, Repusseau L, Schotten C, Browne DL. Green Chem. 2017; 19: 2798
  • 44 Bowmaker GA. Chem. Commun. 2013; 49: 334
    • 45a Landeros JM, Juaristi E. Eur. J. Org. Chem. 2017; 687
    • 45b Anselmi M, Stavole P, Boanini E, Bigi A, Juaristi E, Gentilucci L. Future Med. Chem. 2020; 12: 479
  • 46 Giri N, Bowen C, Vyle JS, James SL. Green Chem. 2008; 10: 627
  • 47 Wang G.-W, Komatsu K, Murata Y, Shiro M. Nature 1997; 387: 583
  • 48 Tanaka K. Solvent-Free Organic Synthesis, 2nd ed. Wiley-VCH; Weinheim: 2008
  • 49 Seo T, Toyoshima N, Kubota K, Ito H. J. Am. Chem. Soc. 2021; 143: 6165
    • 50a Do J.-L, Friščić T. ACS Cent. Sci. 2017; 3: 13
    • 50b Cuccu F, De Luca L, Delogu F, Colacino E, Solin N, Mocci R, Porcheddu A. ChemSusChem 2022; 15: e202200362
  • 51 See also: Bettens T, Alonso M, Geerlings P, De Proft F. J. Org. Chem. 2023; 88: 2046
  • 52 Beedle AE. M, Mora M, Davis CT, Snijders AP, Stirnemann G, Garcia-Manyes S. Nat. Commun. 2018; 9: 3155
    • 53a Kubota K, Takahashi R, Ito H. Chem. Sci. 2019; 10: 5837
    • 53b Kubota K, Takahashi R, Uesugi M, Ito H. ACS Sustainable Chem. Eng. 2020; 8: 16577
    • 53c Cao Q, Howard JL, Wheatley E, Browne DL. Angew. Chem. Int. Ed. 2018; 57: 11339
    • 53d Cao Q, Stark RT, Fallis IA, Browne DL. ChemSusChem 2019; 12: 2554
    • 53e Yin J, Stark RT, Fallis IA, Browne DL. J. Org. Chem. 2020; 85: 2347
    • 54a Shao Q.-L, Jiang Z.-J, Su W.-K. Tetrahedron Lett. 2018; 59: 2277
    • 54b Waddell DC, Clark TD, Mack J. Tetrahedron Lett. 2012; 53: 4510
    • 55a Jones AC, Leitch JA, Raby-Buck SE, Browne DL. Nat. Synth. 2022; 1: 763

    • For recent work on Negishi cross-coupling under mechanochemical conditions, see:
    • 55b Čarný T, Peňaška T, Andrejčák S, Šebesta R. Chem. Eur. J. 2022; 28: e202202040
    • 56a Harrowfield JM, Hart RJ, Whitaker CR. Aust. J. Chem. 2001; 54: 423
    • 56b Birke V, Schütt C, Burmeier H, Ruck WK. L. Fresenius Environ. Bull. 2011; 20: 2794
    • 56c Speight IR, Hanusa TP. Molecules 2020; 25: 570
    • 56d Takahashi R, Hu A, Gao P, Gao Y, Pang Y, Seo T, Jiang J, Maeda S, Takaya H, Kubota K, Ito H. Nat. Commun. 2021; 12: 6691
    • 56e Pfennig VS, Villella RC, Nikodemus J, Bolm C. Angew. Chem. Int. Ed. 2022; 61: e202116514

    • See also:
    • 56f O’Brien CJ, Nicewicz DS. Synlett 2021; 32: 814
    • 56g Gao Y, Kubota K, Ito H. Angew. Chem. Int. Ed. 2023; 62: e202217723
    • 57a Takahashi R, Seo T, Kubota K, Ito H. ACS Catal. 2021; 11: 14803
    • 57b Seo T, Kubota K, Ito H. J. Am. Chem. Soc. 2020; 142: 9884
    • 57c Seo T, Ishiyama T, Kubota K, Ito H. Chem. Sci. 2019; 10: 8202

      For some examples of induction-heated ball milling as a promising asset for mechanochemical reactions, see:
    • 58a Andersen J, Starbuck H, Current T, Martin S, Mack J. Green Chem. 2021; 23: 8501
    • 58b Bolt RR. A, Raby-Buck SE, Ingram K, Leitch JA, Browne DL. Angew. Chem. Int. Ed. 2022; 61: e202210508

      For salient reviews, see:
    • 59a Gellman SH. Acc. Chem. Res. 1998; 31: 173
    • 59b Miller SJ. Acc. Chem. Res. 2004; 37: 601
    • 59c Wennemers H. Chem. Commun. 2011; 47: 12036
    • 59d Avila-Ortiz CG, Pérez-Venegas M, Vargas-Caporali J, Juaristi E. Tetrahedron Lett. 2019; 60: 1749
    • 59e Triandafillidi I, Voutyritsa E, Kokotos CG. Phys. Sci. Rev. 2020; 5: 20180086
    • 59f Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Chem. Rev. 2020; 120: 11479
  • 60 Strecker A. Justus Liebigs Ann. Chem. 1850; 75: 27
  • 61 Zuend SJ, Coughlin MP, Lalonde MP, Jacobsen EN. Nature 2009; 461: 968
  • 62 Hernández JG, Turberg M, Schiffers I, Bolm C. Chem. Eur. J. 2016; 22: 14513
  • 63 Nun P, Pérez V, Calmés M, Martinez J, Lamaty F. Chem. Eur. J. 2012; 18: 3773
  • 64 Declerck V, Nun P, Martinez J, Lamaty F. Angew. Chem. Int. Ed. 2009; 48: 9318
    • 65a Métro T.-X, Colacino E, Martinez J, Lamaty F. In Ball Milling Towards Green Synthesis: Applications, Projects, Challenges . Ranu B, Stolle A. RSC; Cambridge: 2015: 114-150
    • 65b Maurin O, Verdié P, Subra G, Lamaty F, Martinez J, Métro T.-X. Beilstein J. Org. Chem. 2017; 13: 2087
    • 66a Enantioselective Synthesis of β-Amino Acids . Juaristi E. Wiley-VCH; New York: 1997
    • 66b Enantioselective Synthesis of β-Amino Acids, 2nd ed. Juaristi E, Soloshonok V. Wiley; New York: 2005
  • 67 Hernández JG, Juaristi E. J. Org. Chem. 2010; 75: 7107
    • 68a Yang Y. In Side Reactions in Peptide Synthesis . Elsevier; Amsterdam: 2016: 257-292
    • 68b Hernández JG, Ardila-Fierro KJ, Crawford D, James SL, Bolm C. Green Chem. 2017; 19: 2620
    • 68c Gómez-Carpintero J, Sánchez JD, González JF, Menéndez JC. J. Org. Chem. 2021; 86: 14232
    • 69a Bonnamour J, Métro T.-X, Martinez J, Lamaty F. Green Chem. 2013; 15: 1116

    • See also:
    • 69b Lavayssiere M, Lamaty F. Chem. Commun. 2023; 59: 3442
  • 70 Popovic S, Bieraugel H, Detz RJ, Kluwer AM, Koole JA. A, Streefkerk DE, Hiemstra H, van Maarseveen JH. Chem. Eur. J. 2013; 19: 16934
    • 71a Yeboue Y, Jean M, Subra G, Martinez J, Lamaty F, Métro T.-X. Org. Lett. 2021; 23: 631
    • 71b Yeboue Y, Rguioueg N, Subra G, Martinez J, Lamaty F, Metro T.-X. Eur. J. Org. Chem. 2022; e202100839
  • 72 Štrukil V, Bartolec B, Portada T, Dilović I, Halasz I, Margetić D. Chem. Commun. 2012; 48: 12100
  • 73 Gonnet L, Tintillier T, Venturini N, Konnert L, Hernandez J.-F, Lamaty F, Laconde G, Martinez J, Colacino E. ACS Sustainable Chem. Eng. 2017; 5: 2936
  • 74 Stolar T, Grubešić S, Cindro N, Meštrović E, Užarević K, Hernández JG. Angew. Chem. Int. Ed. 2021; 60: 12727
  • 75 Hernández JG, Juaristi E. Chem. Commun. 2012; 48: 5396
    • 76a List B, Lerner RA, Barbas CF. III. J. Am. Chem. Soc. 2000; 122: 2395
    • 76b Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243

    • For a recent review, see:
    • 76c Juaristi E. Tetrahedron 2021; 88: 132143
  • 77 See, for example: Enders D, Grondal C, Huettl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570
    • 78a Rodríguez B, Rantanen T, Bolm C. Angew. Chem. Int. Ed. 2006; 45: 6924
    • 78b Rodríguez B, Bruckmann A, Bolm C. Chem. Eur. J. 2007; 13: 4710
  • 79 Guillena G, Hita MC, Nájera C, Viózquez SF. Tetrahedron: Asymmetry 2007; 18: 2300
    • 80a Hernández JG, Juaristi E. J. Org. Chem. 2011; 76: 1464
    • 80b Hernández JG, Juaristi E. Tetrahedron 2011; 67: 6953
  • 81 Hernández JG, García-López V, Juaristi E. Tetrahedron 2012; 68: 92
    • 82a Machuca E, Juaristi E. Tetrahedron Lett. 2015; 56: 1144
    • 82b Machuca E, Rojas Y, Juaristi E. Asian J. Org. Chem. 2015; 4: 46
  • 83 Zhang Z, Dong Y.-W, Wang G.-W, Komatsu K. Synlett 2004; 61
  • 84 Veverková E, Poláčková V, Liptáková L, Kázmerová E, Mečiarová M, Toma Š, Šebesta R. ChemCatChem 2012; 4: 1013
  • 85 Wang Y.-F, Chen R.-X, Wang K, Zhang B.-B, Li Z.-B, Xu D.-Q. Green Chem. 2012; 14: 893
  • 86 Jörres M, Mersmann S, Raabe G, Bolm C. Green Chem. 2013; 15: 612
    • 87a Krištofíková D, Mečiarová M, Rakovský E, Šebesta R. ACS Sustainable Chem. Eng. 2020; 8: 14417
    • 87b Némethová V, Krištofíková D, Mečiarová M, Šebesta R. Chem. Rec. 2023; 23: e202200283
  • 88 Mack J, Shumba M. Green Chem. 2007; 9: 328
  • 89 Williams MT. J, Morrill LC, Browne DL. ACS Sustainable Chem. Eng. 2020; 8: 17876
  • 90 Veverková E, Modrocká V, Šebesta R. Eur. J. Org. Chem. 2017; 1191
  • 91 Wang Y, Wang H, Jiang Y, Zhang C, Shao J, Xu D. Green Chem. 2017; 19: 1674
  • 92 Peňaška T, Modrocká V, Stankovianska K, Mečiarová M, Rakovský E, Šebesta R. ChemSusChem 2022; 15: e202200028
  • 93 Spinella S, Ganesh M, Lo Re G, Zhang S, Raquez J.-M, Dubois P, Gross RA. Green Chem. 2015; 17: 4146
  • 94 Hernández JG, Frings M, Bolm C. ChemCatChem 2016; 8: 1769
  • 95 Pérez-Venegas M, Juaristi E. ChemSusChem 2021; 14: 2682
    • 96a Pérez-Venegas M, Reyes-Rangel G, Neri A, Escalante J, Juaristi E. Beilstein J. Org. Chem. 2017; 13: 1728
    • 96b Pérez-Venegas M, Juaristi E. Tetrahedron 2018; 74: 6453
    • 96c Pérez-Venegas M, Rodríguez-Treviño AM, Juaristi E. ChemCatChem 2020; 12: 1782
    • 96d Gamboa-Velázquez G, Juaristi E. ACS Org. Inorg. Au 2022; 2: 343
    • 96e Shahmohammadi S, Faragó T, Palkó M, Forró E. Molecules 2022; 27: 2600
  • 97 Juaristi E. Introduction to Stereochemistry and Conformational Analysis, Chap. 7. Wiley; New York: 1991. See, for example: 106-128
    • 98a Weißbach U, Dabral S, Konert L, Bolm C, Hernández JG. Beilstein J. Org. Chem. 2017; 13: 1788
    • 98b Jiang L, Ye L.-d, Gu J.-l, Su W.-k, Ye W.-t. J. Chem. Technol. Biotechnol. 2019; 94: 2555
  • 99 Ardila-Fierro KJ, Crawford DE, Körner A, James SL, Bolm C, Hernández JG. Green Chem. 2018; 20: 1262
    • 100a Hammerer F, Loots L, Do J.-L, Therien JP. D, Nickels CW, Friščić T, Auclair K. Angew. Chem. Int. Ed. 2018; 57: 2621
    • 100b Therien JP. D, Hammerer F, Friščić T, Auclair K. ChemSusChem 2019; 12: 3481
    • 100c Hammerer F, Ostadjoo S, Friščić T, Auclair K. ChemSusChem 2020; 13: 106
    • 100d Hammerer F, Ostadjoo S, Dietrich K, Dumont M.-J, Del Rio LF, Friščić T, Auclair K. Green Chem. 2020; 22: 3877
    • 101a Kaabel S, Therien JP. D, Deschênes CE, Duncan D, Friščić T, Auclair K. Proc. Natl. Acad. Sci. U. S. A. 2021; 118: e2026452118

    • See also:
    • 101b Kaabel S, Arciszewski J, Borchers TH, Therien JP. D, Friščić T, Auclair K. ChemSusChem 2023; 16: e202201613
  • 102 Shoda S.-I, Uyama H, Kadokawa J.-I, Kimura S, Kobayashi S. Chem. Rev. 2016; 116: 2307 ; and references therein
  • 103 Arciszewski J, Auclair K. ChemSusChem 2022; 15: e202102084

    • See also:
    • 104a Ambrose-Dempster E, Leipold L, Dobrijevic D, Bawn M, Carter EM, Stojanovski G, Sheppard TD, Jeffries J, Ward JM, Hailes HC. RSC Adv. 2023; 13: 9954
    • 104b Zhou J, Hsu T.-G, Wang J. Angew. Chem. Int. Ed. 2023; 62: e202300768
  • 105 Carter EM, Ambrose-Dempster E, Ward JM, Sheppard TD, Hailes HC. Green Chem. 2022; 24: 3662

    • For example a recent report on structure-based redesign of the enzymic cavity yielding variants with improved substrate selectivity in the sulfoxidation of prochiral sulfides, see:
    • 106a Kratky J, Eggerichs D, Heine T, Hofmann S, Sowa P, Weiße RH, Tischler D, Sträter N. Angew. Chem. Int. Ed. 2023; 62: e202300657

    • See also:
    • 106b Burke AJ, Lister TM, Marshall JR, Brown MJ. B, Lloyd R, Green AP, Turner NJ. ChemCatChem 2023; 15: e202300256
  • 107 Cossy J. Tetrahedron 2022; 123: 132966

    • See, for example:
    • 108a Xia Y, Li F, Zhang X, Balamkundu S, Tang F, Hu S, Lescar J, Tam JP, Liu C.-F. J. Am. Chem. Soc. 2023; 145: 6838
    • 108b Wu R, Li F, Cui X, Li Z, Ma C, Jiang H, Zhang L, Zhang Y.-H, Zhao T, Zhang Y, Li Y, Chen H, Zhu Z. Angew. Chem. Int. Ed. 2023; 62: e202218387

    • See, also:
    • 108c González-Granda S, Albarrán-Velo J, Lavandera I, Gotor-Fernández V. Chem. Rev. 2023; 123: 5297
  • 109 Guo F, Berglund P. Green Chem. 2017; 19: 333
  • 110 Dichtel WR, Miljanić O. Š, Zhang W, Spruell JM, Patel K, Aprahamian I, Heath JR, Stoddart JF. Acc. Chem. Res. 2008; 41: 1750
  • 111 Estévez V, Villacampa M, Menéndez JC. Chem. Commun. 2013; 49: 591
    • 112a Koopmanschap G, Ruijter E, Orru RV. A. Beilstein J. Org. Chem. 2014; 10: 544
    • 112b Shaabani S, Dömling A. Angew. Chem. Int. Ed. 2018; 57: 16266
    • 112c Contreras-Cruz DA, Sánchez-Carmona MA, Vengoechea-Gómez FA, Peña-Ortiz D, Miranda LD. Tetrahedron 2017; 73: 6146
    • 112d Ricardo MG, Vasco AV, Rivera DG, Wessjohann LA. Org. Lett. 2019; 21: 7307
    • 112e Flores-Reyes JC, Islas-Jacome A, González-Zamora E. Org. Chem. Front. 2021; 8: 5460
  • 113 Polindara-García LA, Juaristi E. Eur. J. Org. Chem. 2016; 1095
  • 114 Loudet A, Burgess K. Chem. Rev. 2007; 107: 4891
  • 115 Kolemen S, Akkaya EU. Coord. Chem. Rev. 2018; 354: 121
  • 116 Liebeskind LS, Srogl J. J. Am. Chem. Soc. 2000; 122: 11260
    • 117a Pérez-Venegas M, Arbeloa T, Bañuelos J, López-Arbeloa I, Lozoya-Pérez NE, Franco B, Mora-Montes HM, Belmonte-Vázquez JL, Bautista-Hernández CI, Peña-Cabrera E, Juaristi E. Eur. J. Org. Chem. 2021; 253
    • 117b Arroyo-Córdoba IJ, Gamboa-Velázquez G, Avila-Ortiz CG, Leyva-Ramírez MA, Cortez-Picasso MT, García-Revilla MA, Ramírez-Ornelas DE, Peña-Cabrera E, Juaristi E. ChemistryOpen 2022; 11: e202200197
  • 119 Krauskopf F, Truong K.-N, Rissanen K, Bolm C. Org. Lett. 2021; 23: 2699
  • 120 Colacino E, Porcheddu A, Charnay C, Delogu F. React. Chem. Eng. 2019; 4: 1179 ; and references cited therein
    • 121a Konnert L, Reneaud B, de Figueiredo RM, Campagne J.-M, Lamaty F, Martinez J, Colacino E. J. Org. Chem. 2014; 79: 10132
    • 121b Konnert L, Dimassi M, Gonnet L, Lamaty F, Martinez J, Colacino E. RSC Adv. 2016; 6: 36978
  • 122 Musaev DG, Liebeskind LS. Organometallics 2009; 28: 4639
  • 123 Pérez-Venegas M, Villanueva-Hernández MN, Peña-Cabrera E, Juaristi E. Organometallics 2020; 39: 2561
  • 124 Beaucage SL, Caruthers MH. Tetrahedron Lett. 1981; 22: 1859
  • 125 Johnston C, Hardacre C, Migaud ME. Chem: Methods 2021; 1: 382
    • 126a Crawford DE, Casaban J, Haydon R, Giri N, McNally T, James SL. Chem. Sci. 2015; 6: 1645
    • 126b Cao Q, Crawford DE, Shi C, James SL. Angew. Chem. Int. Ed. 2020; 59: 4478
  • 127 Crawford DE. Beilstein J. Org. Chem. 2017; 13: 65
    • 128a Crawford DE, Porcheddu A, McCalmont AS, Delogu F, James SL, Colacino E. ACS Sustainable Chem. Eng. 2020; 8: 12230
    • 128b Sharma P, Vetter C, Ponnusamy E, Colacino E. ACS Sustainable Chem. Eng. 2022; 10: 5110
  • 129 Xu J, Duan X, Zhang P, Niu Q, Dai S. ChemSusChem 2022; 15: e202201576
  • 130 Yeboue Y, Gallard B, Le Moigne N, Jean M, Lamaty F, Martinez J, Métro T.-X. ACS Sustainable Chem. Eng. 2018; 6: 16001
  • 131 Michalchuk AA. L, Tumanov IA, Drebushchak VA, Boldyreva EV. Faraday Discuss. 2014; 170: 311
  • 132 Kaupp G, Naimi-Jamal MR, Stepanenko V. Chem. Eur. J. 2003; 9: 4156
  • 133 Kumar N, Biswas K. Rev. Sci. Instrum. 2015; 86: 83903
  • 134 http://www.glenmills.com (accessed Jan 2, 2023)
  • 135 For additional examples of mechanochemical reactions via a high-temperature ball-milling technique using a heat gun, see: Gao, Y.; Feng, C.; Seo, T.; Kubota, K.; Ito, H. Chem. Sci. 2022, 13, 430.

    • For salient reports on temperature controlled mechanochemistry, see:
    • 136a Immohr S, Felderhoff M, Weidenthaler C, Schuth F. Angew. Chem. Int. Ed. 2013; 52: 12688
    • 136b Schmidt R, Burmeister CF, Balaž M, Kwade A, Stolle A. Org. Process Res. Dev. 2015; 19: 427
    • 136c Užarević K, Štrukil V, Mottillo C, Julien PA, Puškarić A, Friščić T, Halasz I. Cryst. Growth Des. 2016; 16: 2342
    • 136d Fischer F, Wenzel K.-J, Rademann K, Emmerling F. Phys. Chem. Chem. Phys. 2016; 18: 23320
    • 136e Cindro N, Tireli M, Karadeniz B, Mrla T, Užarević K. ACS Sustainable Chem. Eng. 2019; 7: 16301
    • 136f Andersen JM, Starbuck HF. J. Org. Chem. 2021; 86: 13983
    • 137a Carta M, Colacino E, Delogu F, Porcheddu A. Phys. Chem. Chem. Phys. 2020; 22: 14489
    • 137b Traversari G, Porcheddu A, Pia G, Delogu F, Cincotti A. Phys. Chem. Chem. Phys. 2021; 23: 229
  • 138 Cintas P, Tagliapietra S, Caporaso M, Tabasso S, Cravotto G. Ultrason. Sonochem. 2015; 25: 8
    • 139a Lukin S, Germann LS, Friščić T, Halasz I. Acc. Chem. Res. 2022; 55: 1262
    • 139b Julien PA, Friščić T. Cryst. Growth Des. 2022; 22: 5726
  • 140 Martinez V, Stolar T, Karadeniz B, Brekalo I, Užarević K. Nat. Rev. Chem. 2023; 7: 51
    • 141a Hernández JG. Beilstein J. Org. Chem. 2017; 13: 1463
    • 141b Baier DM, Spula C, Fanenstich S, Graetz S, Borchardt L. Angew. Chem. Int. Ed. 2023; 62: e202218719
  • 142 Schumacher C, Hernández JG, Bolm C. Angew. Chem. Int. Ed. 2020; 59: 16357
    • 143a Kubota K, Pang Y, Miura A, Ito H. Science 2019; 366: 1500
    • 143b Nothling MD, Daniels JE, Fillbrook LL, Vo Y, Beves JE, McCamey DR, Stenzel MH. Angew. Chem. Int. Ed. 2023; 62: e202218955
    • 143c Ding R, Liu Q, Zheng L. Chem. Eur. J. 2023; 29: 20220379
  • 144 Cravotto G, Calcio Gaudino E, Cintas P. Chem. Soc. Rev. 2013; 42: 7521
  • 145 Gao P, Jiang J, Maeda S, Kubota K, Ito H. Angew. Chem. Int. Ed. 2022; 61: e202207118