Synlett 2024; 35(02): 165-182
DOI: 10.1055/a-2089-4934
account

Comparison of Diastereoselective ortho-Metalations and C–H ­Activations of Chiral Ferrocenes

Tomáš Čarný
,
This work was supported by the Vedecká Grantová Agentúra (Slovak Grant Agency, VEGA; grant no. VEGA 1/0804/21), and by the Operation Program of Integrated Infrastructure for the project, UpScale of Comenius University Capacities and Competence in Research, Development and Innovation, ITMS2014+: 313021BUZ3, co-financed by the European Regional Development Fund.


Abstract

Chiral ferrocene derivatives possessing a planar stereogenic unit are important as chiral catalysts and materials. The principle method to obtain 1,2-disubstituted planarly chiral ferrocenes is base-mediated ortho-metalation performed on a chiral ferrocene derivative, typically using organolithium bases. A multitude of chiral ligands and other useful compounds have been synthesized by using this methodology. Newer methodologies employing transition-metal-catalyzed C–H bond activation strategies complement ortho-metalation methods and affords access to different types of planar chiral ferrocene derivatives.

1 Introduction

2 Base-Mediated ortho-Deprotonations

3 Diastereoselective C–H Activations

4 Examples of Enantioselective C–H Activations

5 Conclusions



Publication History

Received: 20 April 2023

Accepted after revision: 09 May 2023

Accepted Manuscript online:
09 May 2023

Article published online:
16 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Dai L.-X, Hou X.-L. Chiral Ferrocenes in Asymmetric Catalysis . Wiley-VCH; Weinheim: 2010
  • 2 Fabre B. Acc. Chem. Res. 2010; 43: 1509
  • 3 Yuan K, Yousefalizadeh G, Saraci F, Peng T, Kozin I, Stamplecoskie KG, Wang S. Inorg. Chem. 2018; 57: 14698
  • 4 Bennett TL. R, Wilkinson LA, Lok JM. A, O’Toole RC. P, Long NJ. Organometallics 2021; 40: 1156
  • 5 Štepnička P. Ferrocenes: Ligands, Materials and Biomolecules. Wiley; Chichester: 2008
  • 6 Patra M, Gasser G. Nat. Rev. Chem. 2017; 1: 66
  • 7 Gao D.-W, Gu Q, Zheng C, You S.-L. Acc. Chem. Res. 2017; 50: 351
  • 8 Gu Q, You S.-L. Planar Chirality via C(sp2)–H Activation Involved in Stereodiscriminant Step. In C-H Activation for Asymmetric Synthesis. Wiley; Weinheim: 2019: 131-150
  • 9 Blaser HU, Brieden W, Pugin B, Spindler F, Studer M, Togni A. Top. Catal. 2002; 19: 3
  • 10 Blaser H.-U, Pugin B, Spindler F. J. Mol. Catal. A: Chem. 2005; 231: 1
  • 11 Ruble JC, Latham HA, Fu GC. J. Am. Chem. Soc. 1997; 119: 1492
  • 12 Tao B, Lo MM. C, Fu GC. J. Am. Chem. Soc. 2001; 123: 353
  • 13 Fu GC. Acc. Chem. Res. 2004; 37: 542
  • 14 Deng W.-P, Hou X.-L, Dai L.-X. Tetrahedron: Asymmetry 1999; 10: 4689
  • 15 Nishibayashi Y, Segava K, Ohe K, Uemura S. Organometallics 1995; 14: 5486
  • 16 Manoury E, Fossey JS, Aït-Haddou H, Daran J.-C, Balavoine GG. A. Organometallics 2000; 19: 3736
  • 17 Bolm C, Hermanns N, Hildebrand JP, Muñiz K. Angew. Chem. Int. Ed. 2000; 39: 3465
  • 18 Diab L, Gouygou M, Manoury E, Kalck P, Urrutigoïty M. Tetrahedron Lett. 2008; 49: 5186
  • 19 Togni A, Breutel C, Schnyder A, Spindler F, Landert H, Tijani A. J. Am. Chem. Soc. 1994; 116: 4062
  • 20 Arrayas RG, Adrio J, Carretero JC. Angew. Chem. Int. Ed. 2006; 45: 7674
  • 21 Dai LX, Tu T, You SL, Deng WP, Hou XL. Acc. Chem. Res. 2003; 36: 659
  • 22 Kumar S, Helt J.-CP, Autschbach J, Detty MR. Organometallics 2009; 28: 3426
  • 23 Wang J, Zhu Z.-H, Chen M.-W, Chen Q.-A, Zhou Y.-G. Angew. Chem. Int. Ed. 2019; 58: 1813
  • 24 López LA, López E. Dalton Trans. 2015; 10128
  • 25 Liu C.-X, Gu Q, You S.-L. Trends Chem. 2020; 2: 737
  • 26 Pandey S, Sárosi MB, Lönnecke P, Hey-Hawkins E. Eur. J. Inorg. Chem. 2017; 256
  • 27 Nie H, Yao L, Li B, Zhang S, Chen W. Organometallics 2014; 33: 2109
  • 28 Gschwend B, Pugin B, Bertogg A, Pfaltz A. Chem. Eur. J. 2009; 15: 12993
  • 29 Fukuzawa S.-i, Yamamoto M, Hosaka M, Kikuchi S. Eur. J. Org. Chem. 2007; 5540
  • 30 Almássy A, Škvorcová A, Horváth B, Bilčík F, Bariak V, Rakovský E, Šebesta R. Eur. J. Org. Chem. 2013; 111
  • 31 Almássy A, Rakovský E, Malastová A, Sorádová Z, Šebesta R. J. Organomet. Chem. 2016; 805: 130
  • 32 Škvorcová A, Šebesta R. Org. Biomol. Chem. 2014; 12: 132
  • 33 Ganter C, Wagner T. Chem. Ber. 1995; 128: 1157
  • 34 Widhalm M, Nettekoven U, Mereiter K. Tetrahedron: Asymmetry 1999; 10: 4369
  • 35 Kitzler R, Xiao L, Weissensteiner W. Tetrahedron: Asymmetry 2000; 11: 3459
  • 36 Xiao L, Kitzler R, Weissensteiner W. J. Org. Chem. 2001; 66: 8912
  • 37 Song J.-H, Cho D.-J, Jeon S.-J, Kim Y.-H, Kim T.-J, Jeong JH. Inorg. Chem. 1999; 38: 893
  • 38 Ahern T, Müller-Bunz H, Guiry PJ. J. Org. Chem. 2006; 71: 7596
  • 39 Neel M, Panossian A, Voituriez A, Marinetti A. J. Organomet. Chem. 2012; 716: 187
  • 40 Šebesta R, Almassy A, Císařová I, Toma Š. Tetrahedron: Asymmetry 2006; 17: 2531
  • 41 Almassy A, Barta K, Francio G, Šebesta R, Leitner W, Toma Š. Tetrahedron: Asymmetry 2007; 18: 1893
  • 42 Csizmadiová J, Mečiarová M, Rakovský E, Horváth B, Šebesta R. Eur. J. Org. Chem. 2011; 6110
  • 43 Richards CJ, Damalidis T, Hibbs DE, Hursthouse MB. Synlett 1995; 74
  • 44 Sammakia T, Latham HA, Schaad DR. J. Org. Chem. 1995; 60: 10
  • 45 Nishibayashi Y, Uemura S. Synlett 1995; 79
  • 46 Peters R, Fischer DF. Org. Lett. 2005; 7: 4137
  • 47 Vinci D, Mateus N, Wu X, Hancock F, Steiner A, Xiao J. Org. Lett. 2006; 8: 215
  • 48 Dietz C, Jouikov V, Jurkschat K. Organometallics 2013; 32: 5906
  • 49 Metallinos C, John J, Nelson J, Dudding T, Belding L. Adv. Synth. Catal. 2013; 355: 1211
  • 50 Sánchez-Rodríguez EP, Hochberger-Roa F, Corona-Sánchez R, Barquera-Lozada JE, Toscano RA, Urrutigoïty M, Gouygou M, Ortega-Alfaro MC, López-Cortés JG. Dalton Trans. 2017; 1510
  • 51 Riant O, Samuel O, Flessner T, Taudien S, Kagan HB. J. Org. Chem. 1997; 62: 6733
  • 52 Balavoine GG. A, Daran JC, Iftime G, Manoury E, Moreau-Bossuet C. J. Organomet. Chem. 1998; 567: 191
  • 53 Wölfle H, Kopacka H, Wurst K, Ongania K.-H, Görtz H.-H, Preishuber-Pflügl P, Bildstein B. J. Organomet. Chem. 2006; 691: 1197
  • 54 Mamane V. Tetrahedron: Asymmetry 2010; 21: 1019
  • 55 Kausch-Busies N, Neudörfl JM, Wefelmeier P, Prokop A, Kühn H, Schmalz H.-G. Eur. J. Org. Chem. 2011; 4634
  • 56 Enders D, Peters R, Lochtman R, Runsink J. Synlett 1997; 1462
  • 57 Enders D, Peters R, Lochtman R, Runsink J. Eur. J. Org. Chem. 2000; 2839
  • 58 Enders D, Klumpen T. J. Organomet. Chem. 2001; 637-639: 698
  • 59 Enders D, Klumpen T, Raabe G. Synlett 2003; 1198
  • 60 Dieter E, Jonas EA, Klumpen T. Eur. J. Org. Chem. 2009; 2149
  • 61 Bariak V, Malastová A, Almássy A, Šebesta R. Chem. Eur. J. 2015; 21: 13445
  • 62 Ueberbacher BJ, Griengl H, Weber H. Chem. Commun. 2008; 3287
  • 63 Philipova I, Stavrakov G, Chimov A, Nikolova R, Shivachev B, Dimitrov V. Tetrahedron: Asymmetry 2011; 22: 970
  • 64 Stavrakov G, Philipova I, Ivanova B, Dimitrov V. Tetrahedron: Asymmetry 2010; 21: 1845
  • 65 Rebière F, Riant O, Ricard L, Kagan HB. Angew. Chem. Int. Ed. Engl. 1993; 32: 568
  • 66 Riant O, Argouarch G, Guillaneux D, Samuel O, Kagan HB. J. Org. Chem. 1998; 63: 3511
  • 67 Lagneau NM, Chen Y, Robben PM, Sin H.-S, Takasu K, Chen J.-S, Robinson PD, Hua DH. Tetrahedron 1998; 54: 7301
  • 68 Argouarch G, Samuel O, Riant O, Daran J.-C, Kagan HB. Eur. J. Org. Chem. 2000; 2893
  • 69 Lotz M, Kramer G, Knochel P. Chem. Commun. 2002; 2546
  • 70 Lotz M, Polborn K, Knochel P. Angew. Chem. Int. Ed. 2002; 41: 4708
  • 71 Priego J, Garcia Mancheno O, Cabrera S, Gomez Arrayas R, Llamas T, Carretero JC. Chem. Commun. 2002; 8: 2512
  • 72 Ravutsov M, Dobrikov GM, Dangalov M, Nikolova R, Dimitrov V, Mazzeo G, Longhi G, Abbate S, Paoloni L, Fusè M, Barone V. Organometallics 2021; 40: 578
  • 73 Sreeshailam A, Dayaker G, Ramana DV, Chevallier F, Roisnel T, Komagawa S, Takita R, Uchiyama M, Krishna PR, Mongin F. RSC Adv. 2012; 2: 7030
  • 74 Jendralla H, Paulus E. Synlett 1997; 471
  • 75 Laufer RS, Veith U, Taylor NJ, Snieckus V. Org. Lett. 2000; 2: 629
  • 76 Laufer R, Veith U, Taylor NJ, Snieckus V. Can. J. Chem. 2006; 84: 356
  • 77 Metallinos C, Szillat H, Taylor NJ, Snieckus V. Adv. Synth. Catal. 2003; 345: 370
  • 78 Steffen P, Unkelbach C, Christmann M, Hiller W, Strohmann C. Angew. Chem. Int. Ed. 2013; 52: 9836
  • 79 Xia J.-B, You S.-L. Organometallics 2007; 26: 4869
  • 80 Takebayashi S, Shizuno T, Otani T, Shibata T. Beilstein J. Org. Chem. 2012; 8: 1844
  • 81 Schmiel D, Butenschön H. Eur. J. Org. Chem. 2017; 3041
  • 82 Schmiel D, Butenschön H. Organometallics 2017; 36: 4979
  • 83 Kong W.-J, Shao Q, Li M.-H, Zhou Z.-L, Xu H, Dai H.-X, Yu J.-Q. Organometallics 2018; 37: 2832
  • 84 Huang D.-Y, Yao Q.-J, Zhang S, Xu X.-T, Zhang K, Shi B.-F. Org. Lett. 2019; 21: 951
  • 85 Liu L, Song H, Liu Y.-H, Wu L.-S, Shi B.-F. ACS Catal. 2020; 10: 7117
  • 86 Plevová K, Mudráková B, Rakovský E, Šebesta R. J. Org. Chem. 2019; 84: 7312
  • 87 Gao D.-W, Shi Y.-C, Gu Q, Zhao Z.-L, You S.-L. J. Am. Chem. Soc. 2013; 135: 86
  • 88 Plevová K, Kisszékelyi P, Vargová D, Andrejčák S, Tóth V, Fertáľ L, Rakovský E, Filo J, Šebesta R. Chem. Eur. J. 2021; 27: 15501
  • 89 Gao D.-W, Gu Q, You S.-L. J. Am. Chem. Soc. 2016; 138: 2544
  • 90 Cai Z.-J, Liu C.-X, Gu Q, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2019; 58: 2149
  • 91 Wang Y, Ban Y, Wang B, Li H, Gong C, Wang Y, Wang F, Li D, Yang J. Chem. Asian J. 2022; e202201180
  • 92 An Y, Zhang X.-Y, Ding Y.-N, Li Y, Liu X.-Y, Liang Y.-M. Org. Lett. 2022; 24: 7294
  • 93 Zhang P.-C, Li Y.-L, He J, Wu H.-H, Li Z, Zhang J. Nat. Commun. 2021; 12: 4609
  • 94 Sokolov VI, Troitskaya LL, Reutov OA. J. Organomet. Chem. 1977; 133: C28
  • 95 Jautze S, Seiler P, Peters R. Angew. Chem. Int. Ed. 2007; 46: 1260
  • 96 Jautze S, Seiler P, Peters R. Chem. Eur. J. 2008; 14: 1430
  • 97 Jautze S, Diethelm S, Frey W, Peters R. Organometallics 2009; 28: 2001
  • 98 Arthurs RA, Hughes DL, Richards CJ. Organometallics 2019; 21: 4271
  • 99 Arthurs RA, Ismail M, Prior CC, Oganesyan VS, Horton PN, Coles SJ, Richards CJ. Chem. Eur. J. 2016; 22: 3065
  • 100 Xiang J.-C, Wu Z.-J, Gu Q, You S.-L. J. Org. Chem. 2019; 84: 13144
  • 101 Riant O, Samuel O, Kagan HB. J. Am. Chem. Soc. 1993; 115: 5835
  • 102 Shirafuji T, Odaira A, Yamamoto Y, Nozaki H. Bull. Chem. Soc. Jpn. 1972; 45: 2884
  • 103 Huang Y, Pi C, Cui X, Wu Y. Adv. Synth. Catal. 2020; 362: 1385
  • 104 Lou S.-J, Zhuo Q, Nishiura M, Luo G, Hou Z. J. Am. Chem. Soc. 2021; 143: 2470
  • 105 Song GO W. W. N, Hou Z. J. Am. Chem. Soc. 2014; 136: 12209
  • 106 Lou S.-J, Mo Z, Nishiura M, Hou Z. J. Am. Chem. Soc. 2020; 142: 1200
  • 107 Zhan G, Teng H.-L, Luo Y, Lou S.-J, Nishiura M, Hou Z. Angew. Chem. Int. Ed. 2018; 57: 12342
  • 108 Jia L, Liu X, Zhang A.-A, Wang T, Hua Y, Li H, Liu L. Chem. Commun. 2020; 56: 1737
  • 109 Chen H, Wang Y.-X, Luan Y.-X, Ye M. Angew. Chem. Int. Ed. 2020; 59: 9428
  • 110 Wang Q, Nie Y.-H, Liu C.-X, Zhang W.-W, Wu Z.-J, Gu Q, Zheng C, You S.-L. ACS Catal. 2022; 12: 3083
  • 111 Mou Q, Zhao R, Niu R, Fukagawa S, Shigeno T, Yoshino T, Matsunaga S, Sun B. Org. Chem. Front. 2021; 8: 6923
  • 112 Cao F, Chen Q, Shan H, Ling L, Hu J, Zhang H. J. Org. Chem. 2022; 87: 479
  • 113 Cunningham L, Wang Y, Nottingham C, Pagsulingan J, Jaouen G, McGlinchey MJ, Guiry PJ. ChemBioChem 2020; 21: 2974
  • 114 Liu C.-X, Xie P.-P, Zhao F, Wang Q, Feng Z, Wang H, Zheng C, You S.-L. J. Am. Chem. Soc. 2023; 145: 4765