Hemostasis of small-intestinal diverticular bleeding with the over-the-scope clip method

Effective endoscopic hemostatic techniques for small-intestinal diverticular bleeding have not been established. While endoscopic band ligation (EBL) is reported to be effective for colonic diverticular hemorrhage, it has been reported to cause delayed perforation owing to a completely occluded ligature site and necrosis (Fig. 1) [1]. Reports of EBL in the small intestine suggest that the risk of perforation may be high because the ligature site is often ligated down to the serosa [2]. Therefore, a safe and effective hemostatic method for small-intestinal diverticular bleeding is required. It has been reported that application of an over-the-scope (OTS) clip (Fig. 2) can be useful for colonic diverticular hemorrhage [3,4], but there have been no reports of their use for small-bowel diverticular bleeding.

A 56-year-old woman presented to our hospital with gastrointestinal bleeding. A diverticulum with blood clots was detected at the distal end of the ileum on lower gastrointestinal endoscopy. No bleeding was observed after the clots had been removed, but active bleeding was observed after stimulation with a nontraumatic tube [5]. Therefore, this diverticulum
was determined to be the source of the bleeding, and hemostasis was attempted using OTS clipping. The scope was removed after a marking clip had been placed near the diverticulum, and an OTS clip was attached to the scope, which was then reinserted. The diverticulum was then inverted and sutured using the OTS clip, and hemostasis was achieved (▶ Fig. 3; ▶ Video 1). No rebleeding or perforation occurred thereafter.

With the use of an OTS clip, the ligation site is not completely occluded (▶ Fig. 4) and, although congestion is seen, necrosis and desquamation are not observed, suggesting there is a low risk of perforation. To our knowledge, this is the first report of hemostasis being achieved for a diverticular hemorrhage in the small intestine using an OTS clip.

Endoscopy_UCTN_Code_TTT_1AQ_2AZ

Competing interests

The authors declare that they have no conflict of interest.

References


Bibliography

Endoscopy 2023; 55: E1001–E1002
DOI 10.1055/a-2098-8596
ISSN 0013-726X
© 2023. The Author(s).
This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited.
(https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

The authors

Hiroshi Tanabe1, Koichiro Kawano1, Reiko Kawano1, Takao Katoh1, Katsuhisa Nishi1, Yorii Komeda2, Mamoru Takenaka2
1 Department of Gastroenterology, Hyogo Prefectural Awaji Medical Center, Sumoto, Japan
2 Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan

Corresponding author

Mamoru Takenaka, MD, PhD
Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan
mamoxyo45@gmail.com

Video 1 Hemostasis of small-intestinal diverticular bleeding is achieved with the over-the-scope clip method.

Fig. 3

▶ Video 1 Hemostasis of small-intestinal diverticular bleeding is achieved with the over-the-scope clip method.

Video 1

Hemostasis of small-intestinal diverticular bleeding is achieved with the over-the-scope clip method.

Fig. 4

▶ Fig. 4 Schema of the over-the-scope (OTS) clip method of ligation showing: a how the OTS clip blocks blood flow only in the area where the teeth meet, meaning the responsible vessel (†) is ligated, but blood flow is maintained in the surrounding vessels (*); b the sutured mucosa is congested but not dislodged, and the OTS clip remains in place.