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ABSTRACT

Fungi-derived polyketide-terpenoid hybrids are important

meroterpenoid natural products that possess diverse struc-

ture scaffolds with a broad spectrum of bioactivities. Herein,

we focus on an ever-increasing group of meroterpenoids, or-

sellinic acid-sesquiterpene hybrids comprised of biosynthetic

start unit orsellinic acid coupling to a farnesyl group or/and

its modified cyclic products. The review entails the search of

China National Knowledge Infrastructure (CNKI), Web of Sci-

ence, Science Direct, Google Scholar, and PubMed databases

up to June 2022. The key terms include “orsellinic acid”, “ses-

quiterpene”, “ascochlorin”, “ascofuranone”, and “Ascochyta

viciae”, which are combined with the structures of “ascochlor-

in” and “ascofuranone” drawn by the Reaxys and Scifinder

databases. In our search, these orsellinic acid-sesquiterpene

hybrids are mainly produced by filamentous fungi. Ascochlor-

in was the first compound reported in 1968 and isolated from

filamentous fungus Ascochyta viciae (synonym: Acremonium

egyptiacum; Acremonium sclerotigenum); to date, 71 mole-

cules are discovered from various filamentous fungi inhabit-

ing in a variety of ecological niches. As typical representatives

of the hybrid molecules, the biosynthetic pathway of asco-

furanone and ascochlorin are discussed. The group of mero-

terpenoid hybrids exhibits a broad arrange of bioactivities, as

highlighted by targeting hDHODH (human dihydroorotate

dehydrogenase) inhibition, antitrypanosomal, and antimicro-

bial activities. This review summarizes the findings related to

the structures, fungal sources, bioactivities, and their biosyn-

thesis from 1968 to June 2022.

Filamentous Fungi-Derived Orsellinic Acid-Sesquiterpene
Meroterpenoids: Fungal Sources, Chemical Structures,
Bioactivities, and Biosynthesis
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Introduction
Polyketide-terpenoid hybrids are well-known to be meroterpenoid
natural products. They are widely distributed in the fungal king-
dom, which displays potent activities and remarkable structures,
exemplified by mycophenolic acids, yanuthones, and asperni-
# Contributed equally

1110 Gao H et al. Filamentous Fungi-D
dines, as well as those that are derived from 3,5-demethylorsel-
linic acid, etc. [1–3].

Orsellinic acid-sesquiterpene meroterpenoids are a small
group of polyketide-terpenoids. The hybrids are featured by the
composition of orsellinic acid moiety and farnesyl group or/and
its folded products with diverse scaffolds mainly transformed by
terpene synthases. Without exception, the farnesyl part of all hy-
brids is attached to orsellinic acid moiety at the C-3 position (red
bond). Mainly filamentous fungi are dominant producers that can
inhabit a variety of ecological niches.
erived Orsellinic… Planta Med 2023; 89: 1110–1124 | © 2023. Thieme. All rights reserved.
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Due to their unique structures, as well as promising bioactiv-
ities, the small group of meroterpenoids has attracted considera-
ble attention from chemists and biologists. Ascochlorin was the
first example isolated from filamentous fungus Ascochyta viciae
(A. viciae) in 1968, which has been later identified as Acremonium
egyptiacum (synonym: Acremonium sclerotigenum) [4, 5]. Structur-
ally, the structures of this group are reminiscent of vitamin E (γ-
tocotrienol), the essential substance of mammalian health, and
coenzyme Q10, as well as ubiquinone derivatives [6, 7]. Bedside-
formed farnesyl variants, including monocyclic and bicyclic prod-
ucts, mediated by terpene cyclase and tailoring enzymes are re-
sponsible for further enlarging the chemical space. The sesquiter-
pene moiety is mainly decorated with etherification, acylation,
oxidation, addition, rearrangement reaction, etc. Particularly, re-
arrangement reactions result in a change in carbon frameworks.
In addition, various enzyme catalysts have been formed in nature
to act on halogens in the skeleton through oxidation, reduction,
and other strategies, playing an important role in the structural
diversity and functional enrichment of natural products. Haloge-
nation is a common modification reaction and usually occurs in
biosynthetic start unit orsellinic acid at C-5. This halogenation
process is catalyzed by the halogenase AscD, which performs or
does not perform its function, resulting in different products ob-
tained, such as compound 12 with chlorine and compound 13
without chlorine.

The diverse chemical space confers a broad range of biological
activities, including antivirus, antitumor, anti-inflammatory, hy-
polipidemic, and anti-trypanosome. Because of structural similar-
ity with ubiquinone derivatives, such as decylubiquinone, the
group of meroterpenoids is highlighted by hDHODH (human di-
hydroorotate dehydrogenase) inhibiting activity. hDHODH is a
key enzyme involved in the de novo pyrimidine biosynthesis, which
is frequently overexpressed to support their growth of cancer
cells. Inhibition of hDHODH activity has been proven to validate
to suppress proliferation of cancer cells and represents a promis-
ing target for chemotherapeutic drugs [7–9]. The literature
search strategy involved the search of the Web of Science, Science
Direct, Google Scholar, PubMed, Reaxys, and Scifinder databases
up to June 2022. The significant bioactivities of some compounds
such as ascofuranone and ascochlorin have been intensively
studied, and the reviews relating to bioactivities have been sum-
marized [7,10,11].

In this review, we focus on the structure isolation, purification,
filamentous fungi sources, and biological activities of orsellinic
acid-sesquiterpene hybrids from 1968 to June 2022 (Table 1S,
Supporting Information).
Overview
Orsellinic acid-sesquiterpene hybrids are almost produced by fila-
mentous fungi. These producing fungi can widely inhabit various
ecological niches, such as marine sponge, coral, terrestrial soil,
etc. The original study of the hybrids can be traced back to 1968,
and ascochlorin represent the first compound isolated from fila-
mentous fungus A. viciae. This review summarizes that 71 orsel-
linic acid-sesquiterpene hybrids (1–71) have been isolated and
Gao H et al. Filamentous Fungi-Derived Orsellinic… Planta Med 2023; 89: 1110–1124 | © 2023
identified from filamentous fungi over the past half century (until
June 2022).

Based on the biosynthesis of the hybrids, these compounds are
classified into three groups based on cyclization of the sesquiter-
penoid part, namely, linear type, monocyclic type, and bicyclic
type.

Biosynthesis

Since 1968, orsellinic acid-sesquiterpene hybrids were continually
isolated; however, its biosynthetic pathway was not completely
analyzed until 2019.

In 2016, the biosynthetic gene cluster for LL-Z1272β (2) from
Stachybotrys bisbyi PYH05–7 was identified by Li et al. The heterol-
ogous expression in Aspergillus oryzae NSAR1 unveiled the basic
biosynthetic route of LL-Z1272β, supported by the production of
orsellinic acid and ilicicolinic acid B (5, also named as grifolic acid)
[12].

Araki et al. reported the detailed biosynthetic pathway of asco-
furanone (22) and ascochlorin (33) in A. egyptiacum in 2019
(▶ Fig. 1) [13]. Briefly, it turns out that orsellinic acid is synthe-
sized from PKS (polyketide synthase) and serves as the starting
unit of the hybrids. Then, the prenyltransferase AscA attaches a
farnesyl diphosphate (FPP) group to the orsellinic acid skeleton at
the C-3 position to form a linear meroterpenoid product, ilicico-
linic acid B (5). For this class of orsellinic acid-sesquiterpene hy-
brids, post-biosynthetic decoration included chlorination, etherifi-
cation, acylation, oxidation, and glycosylation, which increased
structural and functional diversity of the polyketide-terpenoid hy-
brids. The post-modifications also sometimes played ecological
roles, such as plant defense and inhibition of pathogen growth.
The Acremonium sp. LG0808, a producer of polyketide-terpenoid
hybrids, is a plant endophytic fungus that may interact between
plants and microbes, thereby playing a role in plant defense. The
carboxylic acid group of 5 was reduced to the aldehyde group by
AscB to produce ilicicolin B (2). Subsequent chlorination occurs at
C-5 under the catalysis of AscD and resulted in the production of
ilicicolin A (1). AscE is responsible for the epoxidation reaction be-
tween C-10′ and C-11′, thereby forming the common intermedi-
ate LL‑Z 1272α epoxide (3). Compound 3 is the common precur-
sor, as the branching point of the biosynthetic pathways of 22 and
33. 3 was first modified by terpene cyclase AscF to generate
monocyclic six-membered ring product ilicicolin C (35), and then
oxidized by AscG to give 33. In ascofuranone biosynthesis
branches, compound 3 comes through the hydroxylation at C-8′
by P450 monooxygenase to generate 23, followed by cyclization
by AscF to finally produce 22 [7].

Linear Type

The linear type contains 21 molecules (1–21) in which the farnesyl
group is formed to the linear sesquiterpene attached to orsellinic
acid at C-3. Compounds 1 and 2 are the first reported cases be-
longing to this type. The linear ones are always co-isolated with
other structure types and are usually considered as the biosyn-
thetic precursors.

LL‑Z 1272α (1) and LL‑Z 1272β (2) (▶ Fig. 2), as anti-Tetrahyme-
na pyriformis compounds, were originally isolated from filamen-
tous fungi Fusarium sp. LL‑Z 1272 in 1969. At the same time, or-
1111. Thieme. All rights reserved.



▶ Fig. 1 The biosynthesis of ascofuranone (22) and ascochlorin (33). Enzymes are abbreviated as follows: PKS, polyketide synthase; PT, prenyl-
transferase; Red, reductase; Hal, halogenase; TPC, terpene cyclase; Dh, dehydrogenase; MO, monooxygenase; Epo, epoxidase [13].

▶ Fig. 2 Structures of compounds 1–4. The red bond is to easily draw a distinction between PKS unit and terpene unit and to highlight the coupling
position of two precursor units (the same below).
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sellinic acid was co-isolated from fermentation extracts [14]. Sub-
sequently, both compounds were isolated from Cylindrocladium
ilicicola strain MFC-870 and named ilicicolin A and ilicicolin B,
respectively [15,16]. Both compounds were also discovered in
several filamentous fungi of different genus, such as Acremonium,
Cylindrocarpon, Nectria, and Neonectria [17–24].

Compound 1 can inhibit the proliferation of lymphocytic leu-
kemia Jurkat cells at 10 µM with an inhibition rate of 71.43% [25].
Guo et al. reported that 1 showed an antitumor effect by inhib-
iting the signal pathway of enhancer of zeste homolog 2 [26].
Compound 2 showed testosterone-5α-reductase (T-5α-reduc-
tase) inhibitory activity on rat prostate with an IC50 value of
0.36mM [20] and antitrypanosomal activity toward Trypanosoma
brucei brucei strain GUTat 3.1 and Trypanosoma brucei rhodesiense
strain STIB900 with IC50 values of 49 and 59 nM, respectively [27].
T-5α-reductase is one of the important drug targets for benign
prostatic hyperplasia by inhibiting the transformation of testos-
terone to dihydrotestosterone [28–31]. Compound 2 also exhib-
1112 Gao H et al. Filamentous Fungi-D
ited antibacterial activity against Bacillus subtilis and methicillin-
resistant Staphylococcus aureus (MRSA) with IC50 values of 1.06
and 0.74 µM, respectively [23], and moderate antifungal activity
against Ustilago violacea and Fusarium oxysporum with inhibition
zones of 4 and 5mm [32].

LL‑Z 1272α epoxide (3) (▶ Fig. 2) was isolated as a precursor of
ascochlorin from A. viciae J-29 in 2009 [33]. Compound 3 was the
epoxidation product of 1. Both Microcera sp. BCC 17074 and
A. sclerotigenum GXIMD 02501 produced 3 [18,34]. It showed
weak cytotoxic activity and potent hDHODH inhibition with an
IC50 value of 1.6 µM [18].

Ilicicolinic acid A (4) (▶ Fig. 2) and ilicicolinic acid B (5)
(▶ Fig. 3) were first isolated from Cylindrocarpon sp. in 1993 [35].
Afterward, chemical studies were performed on Neonectria disco-
phora SNB-CN63, which led to the isolation of ilicicolinic acids A,
C–G (6−10), and ilicicolinol (11) (▶ Fig. 3) [19,36]. According to
the Markovnikov orientation, compound 6 might be an H2O addi-
erived Orsellinic… Planta Med 2023; 89: 1110–1124 | © 2023. Thieme. All rights reserved.



▶ Fig. 3 Structures of compounds 5–11.

▶ Fig. 4 Structures of compounds 12–15.
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tion product of 4. However, C-7′ configurations of 8 and 9 were
unassigned.

Antimicrobial activities of compounds 4–11 were evaluated.
Compound 4 was found to be selective activity with a minimum
inhibitory concentration (MIC) value of 1 µg/mL against Escherich-
ia coli. (ATCC 25922). Compounds 8 and 9 were found to be selec-
tive in activity against microbial pathogen Trichophyton rubrum
SNB‑TR1 with MIC values of 8 and 8 µg/mL. Compounds 6, 7, and
11 showed weak antimicrobial activity against T. rubrum SNB‑TR1,
S. aureus ATCC29213, and MRSA ATCC33591, while compound 10
exhibited no antimicrobial activity (MIC>128 µg/mL) [19,36].
Comprehensive analysis of the structure-activity relationships
suggested that the presence of the chlorine atom was important
to exert antimicrobial activities.

Chlorocylindrocarpol (12) (▶ Fig. 4) was discovered from ma-
rine sponge-derived Acremonium sp. in 2009 [37,38]. Cylindrocar-
pol (13) (▶ Fig. 4) was isolated from Cylindrocarpon lucidum (MF
5710) in 1996 [39]. Subsequently, 12 and 13 were also found in
Acremonium sp., Microcera sp. BCC 17074, and A. sclerotigenum
GXIMD 02501 [18,34,37]. Compound 12 exhibited stronger anti-
tumor activity against the MCF-7 cell line (breast cancer) with an
IC50 value of 6.2 µg/mL, comparable to doxorubicin (IC50=8.6 µg/
mL) [34]. It also displayed weak anti-inflammatory activity to in-
Gao H et al. Filamentous Fungi-Derived Orsellinic… Planta Med 2023; 89: 1110–1124 | © 2023
hibit the production of NO and IL-6 [37]. Compound 13 showed
weak inhibitory activity (MIC=77 µM) against farnesyl-protein
transferase (FPTase), which is a potential target for anticancer
drugs [39]. Recently, 12 and 13 are reported to show hDHODH in-
hibitory activity with IC50 values of 3.7 and 5.0 µM, respectively
[18]. Nectchlorin B (14) (▶ Fig. 4) was a methoxy adduct from
compound 12. It was isolated from Microcera sp. BCC 17074 and
showed weak cytotoxicity [34].

Acremochlorins I–M (15–19) (▶ Fig. 4 and 5) were identified as
hDHODH inhibitors from coral-derived fungus A. sclerotigenum
GXIMD 02501. They showed hDHODH inhibition with the IC50 val-
ues of 9.3, 7.9, 0.39, 0.50, and 0.52 µM, respectively. They also
exhibited potent antiproliferative activity against MDA‑MB‑231
and MDA‑MB‑468 cell lines, with the IC50 values ranging from 1.7
to 12 µM, except 15 and 16 (IC50>60 µM) [18].

10′-hydroxyilicicolinic acid D (20) (▶ Fig. 6) was initially iso-
lated from Cylindrocarpon sp. SY-39 in 2018 and displayed antimi-
crobial activity against S. aureus (MIC=5.0 µg/mL) [40]. Cylindro-
carpol dimer (21) (▶ Fig. 7) was reported as a fungal metabolite,
but its origin had not been identified; 21 showed hDHODH en-
zyme inhibition with an IC50 value of 2.03 µM and anti-prolifera-
tion effects toward T lymphocyte cells with an IC50 value of
9.32 µM [41].
1113. Thieme. All rights reserved.



▶ Fig. 5 Structures of compounds 16–19.

▶ Fig. 6 Structures of compounds 20 and 21.

▶ Fig. 7 Structures of compounds 22–28.
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Monocyclic Type

Most of these groups are distributed in monocyclic type, in which
the farnesyl group was formed to the monocyclic sesquiterpene
scaffold. In the group, a variety of cyclization patterns and post-
modifications increased greatly the structure diversity. A total of
1114 Gao H et al. Filamentous Fungi-D
46 molecules (22–67) are included in the group, and 33 repre-
sents the first case of the group. Abundant cyclization patterns
are endowed with significant activities.

Ascofuranone (22) (▶ Fig. 7) was initially isolated from A. viciae
in 1972 [38,42]. Afterward, compound 22 appeared again in Acre-
erived Orsellinic… Planta Med 2023; 89: 1110–1124 | © 2023. Thieme. All rights reserved.



▶ Fig. 8 Structures of compounds 29–36.
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monium sp., Paecilomyces variotii INA-199, Verticillium hemipterige-
num BCC 2370, and Nectria sp (HIL Y 90 3333) [37,43–47]. The
detailed and impressive bioactivities will be discussed below.

Ascofuranol (23) (▶ Fig. 7) was discovered from A. viciae Libert
in 1973 [48] and coexisted with its derivatives in several filamen-
tous fungi such as Acremonium sp. (J05B-1-F-3), A. sclerotigenum
GXIMD 02501, and V. hemipterigenum BCC 2370 [18,37,44].
Compound 23 exhibited weak anti-inflammatory activity [37]
and hDHODH inhibition with an IC50 value of 0.72 µM, as well as
moderate cytotoxic activity against MDA‑MB‑231 and MDA-MB-
468 cell lines with IC50 values of 12 and 11 µM, respectively [18].

Ilicicolinal derivatives, ilicicolinal (24), and ilicicolinals B–I (25–
32) (▶ Fig. 7 and 8), together with compounds 4–11, were ob-
tained from N. discophora SNB-CN63 [19]. Structurally, 24 and 25
are isomers; the furan ring in 24 is formed by the ether bond be-
tween C-3 and C-4, while that of 25 is due to etherification be-
tween C-2 and C-3. Compounds 26–28 possess a five-membered
ring-containing sesquiterpene scaffold. Compounds 29–30 have a
pyranoid ring formed between C-3 and C-4, while the formation
of the pyranoid ring in 31 and 32 occurs between C-2 and C-3.
Antimicrobial activities studies showed that 25–27 and 32 were
selectively active with MIC values ranging from 8 to 16 µg/mL on
two pathogens, S. aureus ATCC29213 and MRSA ATCC33591,
while 24 and 28–31 were inactive (MIC≥128 µg/mL) [19]. Com-
parison of 24 and 25 suggests a formation pattern of ether was
crucial for the antimicrobial activity.

Ascochlorin (33) (▶ Fig. 8) was originally purified from A. viciae
in 1968, and the partial structure was determined [4]. Its struc-
ture was finally elucidated by a combination of X‑ray crystallogra-
phy and physicochemical methods in 1969 [49]. Subsequent me-
tabolite ilicicolin D (C. ilicicola MFC-870) and LL‑Z 1272γ (Fusarium
sp. LL‑Z 1272) were confirmed to be identical to ascochlorin by
comparisons of NMR, IR, TLC, and mixed melting point determina-
tion [14–16,21].

Compounds 22 and 33 are representative molecules of the hy-
brids and exhibited impressive and diverse bioactivities, which
have been well-documented in previous reviews [5,7,10,37,48,
Gao H et al. Filamentous Fungi-Derived Orsellinic… Planta Med 2023; 89: 1110–1124 | © 2023
50–87]. Gao et al. reviewed antitumor activity, mechanisms, and
antitumor drug targets of compounds 22 and 33 in 2020 [7]. As
reviewed, 22 is a unique target for the treatment of African trypa-
nosomiasis [10,85,88–94]. Briefly, compound 22 was found to be
an inhibitor of TAO ubiquinol oxidase [54], recombinant Trypano-
soma vivax alternative oxidase with a Ki value of 0.40 nM, and rTAO
inhibitor with an IC50 value of 1.3 nM [66,69, 95–104]. Potent in-
hibitory activity of trypanosomal glycerol kinase and TAO of T.b.
brucei for 22 were described in 2019 [105]. In addition, 22 and
33 showed inhibitory activity against Cryptosporidium parvum
AOX (alternative oxidase) with IC50 values of 0.3 and 500 nM, re-
spectively [68], potent sensitivity of recombinant Sauromatum
guttatum AOX with IC50 values of 0.06 and 7 nM and native Arum
maculatum AOX with IC50 values of 0.16 and 70 nM [106–108]; 33
was also reported to show specific inhibitory effect toward mito-
chondrial cytochrome bc1 complex [109] and a recombinant AOX
inhibitor expressed in E. coli membranes 7.4 ± 3 nM [110].

Compounds 22 and 33 also showed antimicrobial activities.
Both compounds exhibited moderate fungicidal activity against
plant pathogenic fungus Phytophthora infestans [43], as well as
significant antimicrobial activity against S. aureus,MRSA, S. epider-
midis, B. subtilis, and the human pathogenic fungus Candida albi-
cans with MIC values of 0.25–32 µg/mL [22,47,111]; 33 was ac-
tive against Pseudomonas syringae with an IC50 value of 28.5 µM
[112] and against Aspergillus fumigatus with MIC values of 1.25 to
2.5 µg/mL [113,114]. Furthermore, 22 and 33 displayed anti-in-
flammatory activity [37,115–121], as well as a potent agonist of
peroxisome proliferator-activated receptor with IC50 values of 3.2
and 1 µM, respectively [122].

LL‑Z 1272ζ (34), LL‑Z 1272δ (35), and LL‑Z 1272ε (36), togeth-
er with 1, 2, and 33, were isolated from Fusarium sp. LL‑Z 1272 in
1969 (▶ Fig. 8) [14,38]. Verticillium SP FO-2787, Fusarium sp. (in-
ternal strain 3042), Acremonium sp., Cylindrocarpon sp. FKI-4602,
etc. are additional producers of these hybrids [21,22,34,37,43,
44]. It was noted that LL‑Z 1272ζ (34) was proven to be the same
as ilicicolin F.; 35 was known as ilicicolin C and 4,5-dihydroasco-
chlorin, while 36 was identical to 4,5-dihydrodechloroascochlorin
1115. Thieme. All rights reserved.



▶ Fig. 9 Structures of compounds 37–40.

▶ Fig. 10 Structures of compounds 41–44.
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[15,16,21,32]. Cyclohexanone-containing sesquiterpene moiety
is the most common scaffold in the family, which is usually cy-
clized by the relevant terpene cyclase.

The bioactivities of 34–36 were evaluated. All exhibited mod-
erate T 5α-reductase inhibitory activity with IC50 values of
0.37mM, 0.34mM, and 0.37mM, respectively [20]. Furthermore,
34 showed potent fungicidal activity against plant pathogenic
fungi P. infestans at 500mg/L [43] and good cytotoxic activities
toward three cancer cell lines, KB, BC-1, and NCI-H187, as well as
Vero cells with IC50 values ranging from 0.69 to 1.9 µg/mL [44]; 34
was also active with IC50 values of 28.5 µM against P. syringae
[112]. Compound 35 could selectively inhibit the production of
NO at 100 µM [37] and potent antibacterial activity toward
B. megaterium with a zone of 10mm [32]. Compound 36 showed
strong antifungal activity toward Eurotium repens with a zone of
15mm [32].

Another two derivatives, LL‑Z 1272ε acid (37) and dechloro-
deacetyloronctrin (38), were first separated and purified from
Nectria sp. B-13 (▶ Fig. 9). Compound 37 can completely inhibit
the spore germination of Magnaporthe grisea with an MIC value
of 15.6 µg/mL. Compound 38 had a weak inhibitory effect on the
activity of Pyricularia oryzae [123].

Cylindrochlorin (39) (▶ Fig. 9), also named 8′,9′-dehydroasco-
chlorin [43] and ilicicolin E [15,16], was first discovered from the
methanol extract of the mycelium of Cylindrocladium sp. in 1970
and showed antiviral activity against Newcastle disease virus
[124]. Meanwhile, compound 39 was found to be active on herpes
simplex virus type 1 (HSV-1) with an IC50 value of 0.19 µg/mL
[44]. It showed potent fungicidal activity against A. fumigatuswith
an MIC value of 4.1 µM [43,114]. It also exhibited cytotoxic activ-
ities in KB, BC-1, NCI-H187, and Vero cells with IC50 values of 2.4,
0.53, 1.3, and 0.69 µg/mL, respectively [44]. Compound 39 was
subsequently found from Cylindrocarpon sp. FKI-4602, Nectria sp
(HIL Y 90 3333), Stilbella fimetaria (IBT 28361), and Verticillium SP
FO-2787 [20,22,43,114].

Bioactivity-guided fractionation led to the discovery of hypo-
lipidemic 4′-hydroxy-5′-hydroascochlorin (40) from A. viciae Libert
in 1974 (▶ Fig. 9) [125], while 4′,5′-dihydro-4′-hydroxyascochlor-
in, deacetylchloronectrin, and 4′,5′-dihydro-4′β-hydroxyasco-
chlorin are considered to have the same structure with 4′-hy-
droxy-5′-hydroascochlorin [37,44,45,47,114]. Compound 40
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was usually co-isolated with 10′-deoxy-10′α-hydroxyascochlorin
(41), ascofuranone (22), ascochlorin (33), and other derivatives
from different fungal genus, such as Acremonium sp. LG0808,
V. hemipterigenum BCC 2370, Stilbella fimetaria (IBT 28361), etc.
[37,44,45,47,113]. Compounds 40 and 41 showed potent cyto-
toxic activities against the A549 (lung cancer) with IC50 values of
4.1 and 0.9 µM, and the HepG2 (hepatocellular carcinoma) cancer
cell line with IC50 values of 44.7 and 5.8 µM, respectively [47].
Moreover, 40 can selectively inhibit NO and IL-6 production to dis-
play anti-inflammatory activity [37] and showed strong antibacte-
rial activities against Ralstonia solanacearum with an MIC value of
3.13 µg/mL [126]; 41 exhibited metastatic prostate cancer cell
migration inhibitory activity at 6 µM [45] and weak antimicrobial
activity [47].

Ascochlorin N-acetylglucosamine (42), 4′-ketoascochlorin
(43), and 4′5′-dihydro-4′-formylascochlorin (44) were isolated
from marine-derived fungus S. fimetaria IBT 28361 by the tar-
geted dereplication of fungal extracts via UHPLC‑DAD-QTOF‑MS
(▶ Fig. 10). The additional amino sugar unit at the C-4′ position
of 42 was identified as N-acetyl-α-D-glucosamine. At present,
erived Orsellinic… Planta Med 2023; 89: 1110–1124 | © 2023. Thieme. All rights reserved.



▶ Fig. 11 Structures of compounds 45–52.

▶ Fig. 12 Structures of compounds 53–58.
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only compound 42 and vertihemipterin A (46) have α-D-glucos-
amine unit. Antifungal and antibacterial activities were assessed;
43 was found to have weak antibacterial activities against MRSA,
while others were inactive [114].

8′-hydroxyascochlorin (45) (▶ Fig. 11), vertihemipterin A (46),
4′,5′-dihydro-4′-hydroxyascochlorin, and 8′,9′-dehydroasco-
chlorin were separated from the extracts of V. hemipterigenum
BCC 2370 [44]. Meanwhile, compound 45 possessed more potent
cytotoxicity than 46 [44].

In 1996, Singh et al. reported that cylindrol A (47), cylindrols
A1-A4 (48–51), and cylindrols B and B1 (53–54) were obtained
from C. lucidum (MF 5710, ATCC 74261) (▶ Fig. 11 and 12) [38,
39,127]. A soil-derived fungus, Cylindrocarpon sp. FKI-4602, was
also reported to produce cylindrol A5 (52), cylindrol A4 (51), and
cylindrol B (53) [22]. Compounds 47, 48, 50–51, and 53 showed
broad FPTase inhibitory activity with IC50 values of 0.7 µM to
Gao H et al. Filamentous Fungi-Derived Orsellinic… Planta Med 2023; 89: 1110–1124 | © 2023
13 µM [39]. In addition, 52 exhibited moderate antimicrobial ac-
tivities toward B. subtilis ATCC 6633, Acholeplasma laidlawii
KB174, M. smegmatis ATCC 607, and Kocuria rhizophila ATCC
9341 [22]; 53 could inhibit the production of NO, TNF‑R, and IL-6
at 100 µM [37].

Chloronectrin (55) (▶ Fig. 12) was initially discovered from
Nectria coccinea in 1972 [21]. Nectchlorin A (56) (▶ Fig. 12),
together with 55 and 14, were isolated from Microcera sp. BCC
17074 [34]. The five carbon linkers in 55 and 56 are further oxi-
dized in contrast to analogs, and they displayed weak cytotoxic ac-
tivity [34]. When bromide was added to chloride-free medium,
Fusarium sp. could produce the bromo-analogue of ascochlorin,
3-bromoascochlorin (57) [21]. Supplementation of KBr to the
Fusarium sp. culture medium led to the production of 3-bromoas-
cochlorin (57) and 3-bromo-12,13-dihydroascochlorin (58)
(▶ Fig. 12). Compound 58 (IC50=17.8 µM) showed slightly stron-
1117. Thieme. All rights reserved.



▶ Fig. 13 Structures of compounds 59–67.
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ger cytotoxicity than compound 57 (IC50=21.3 µM) [128]. Zhang
et al. studied the antitumor mechanism of compound 57 by sup-
pressing the MAPK pathway [129].

Acremochlorin A–F (59–64) (▶ Fig. 13), together with com-
pounds 15–19, were isolated from coral-derived fungus
A. sclerotigenum GXIMD 02501. Among them, 59 showed potent
hDHODH inhibition with the IC50 values of 74 nM and cytotoxic
activity against MDA‑MB‑231 and MDA‑MB‑468 cell lines, with
IC50 values of 0.65 and 0.48 µM. Other metabolites (60–64)
showed moderate hDHODH inhibition with IC50 values ranging
from 3.9 to 34 µM and weak cytotoxic activities (IC50>60 µM) [18].

DimethoxyilicicolinC (65) (▶ Fig. 13) was initially derived from
Nectria sp. B-13 by silica gel column, gel chromatography, reverse
phase silica gel chromatography, preparation thin-layer chroma-
tography (PTLC), and HPLC [25]. It can be regarded as the me-
thoxy substituent of ilicicolin C. Another difference is that com-
pound 65 has an additional methyl group at C-8. However, com-
pared with other analogs, it has no biological activity. In 1997,
TAN-2355A (66) and TAN-2355B (67) (▶ Fig. 13) with glycosides
were found from Acremonium sp. FL-65227. For the binding of
[3H]-TRH to CHO cells, compound 66 showed inhibitory activity
with an IC50 value of 52 µM [38,130].

Bicyclic Type

This class contains four molecules (68–71) that are featured by
the farnesyl group formed to a bicyclic sesquiterpene scaffold. In
detail, compound 68 has a furan ring and a cyclohexanone moi-
ety; 69 possesses a decalin unit and both metabolites 70 and 71
are involved in a fused 13–5 bicyclic ring system (▶ Fig. 14).
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Acremochlorin G (68) and acremochlorin H (69) were co-iso-
lated with compounds 59–64 from the coral-derived fungus
A. sclerotigenum GXIMD 02501 and showed weak cytotoxic activ-
ity against MDA‑MB‑231 and MDA‑MB‑468 cells and hDHODH in-
hibitory activity. Interestingly, compound 69 is the first case of the
ASC-type meroterpenoids with a drimane unit [18].

Acremofuranone A (70) and acremofuranone B (71) were iso-
lated from Acremonium sp. (J05B-1-F-3) [37,38], with the unpre-
cedented cyclic skeleton. Compound 71 was defined as a dehy-
drated derivative of 70.
Conclusion
Orsellinic acid-sesquiterpene meroterpenoids aroused the great
interest and attention of scientists because of their diverse bio-
activities, particularly antitrypanosomal activity and antitumor
activity inhibiting the hDHODH target protein. This review sum-
marizes structures, filamentous fungi sources, activities, and bio-
synthesis of these types of compounds from 1968 to June 2022.

The statistical data revealed most orsellinic acid-sesquiterpe-
noid hybrids are produced by filamentous fungi. Of all the com-
pounds reviewed, Acremonium/Ascochyta (25%), Neonectria
(14%), Cylindrocarpon (14%), Fusarium (11%), Verticillium (7%),
and Stachybotrys (7%) are predominant producers of increased
structural diversity (▶ Fig. 15). The remaining 22% of these com-
pounds are scattered across another four genera including Stilbel-
la, Microcera, Nectria, and Cylindrocladium. Furthermore, consider-
ing the structure frameworks, nearly 48% of the linear type, 39%
of the monocyclic, and 100% of the bicyclic type are derived from
erived Orsellinic… Planta Med 2023; 89: 1110–1124 | © 2023. Thieme. All rights reserved.



▶ Fig. 14 Structures of compounds 68–71.

▶ Fig. 15 Fungal genus distribution of isolated compounds.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.
Acremonium spp., indicating the potential differences of gene con-
stitution in gene cluster or/and transcriptional regulation be-
tween different genera. Maybe it results from secondary metabo-
lism regulated by environmental factors such as pH, medium nu-
trition, culture temperature, etc. In terms of inhabiting ecological
niches, 34% of the investigated hybrids are produced by marine-
derived fungi that are isolated from coral, sponge, and driftwood;
22 percent, 14 percent, and 7 percent of these compounds are
coming from terrestrial soil- or arctic soil-derived fungi, patho-
genic fungi, and endophytic fungi, respectively. In addition, dried
cow dung, the dead leaf of beech, and a Nasutitermes corniger ter-
mite aerial nest-derived fungi are also the potential producers for
production of the hybrids (19%), as shown in ▶ Fig. 16. It is noted
Gao H et al. Filamentous Fungi-Derived Orsellinic… Planta Med 2023; 89: 1110–1124 | © 2023
that the hybrids produced by pathogenic fungi may play an im-
portant role in infecting the host or chemical arsenals for defense
and even in the area of biological control.

The related bioactivities for the meroterpenoids were also dis-
cussed in this review. To sum up, they showed a wide range of
biological activities (▶ Fig. 17). Approximately 28% of the mero-
terpenoids possessed cytotoxic activity including antitumor and
antiproliferative activities. About 21%, 15%, and 10% of the
meroterpenoids exhibited antimicrobial activity, testosterone-
5α-reductase or farnesyl-protein transferase inhibitory activity,
and anti-inflammatory activity, respectively (▶ Fig. 17). The re-
maining 9% showed other activities including antiviral, hypo-
lipidemic, and antitrypanosomal activities. Specifically, com-
1119. Thieme. All rights reserved.



▶ Fig. 16 Diverse ecological environments of producing fungi.

▶ Fig. 17 Bioactivity distribution of isolated compounds (1–71).
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pound 2 showed more potent anti-African-trypanosomiasis activ-
ity (IC50= 0.049–0.059 µM) than fexinidazole (IC50=0.7–3.3 µM).
The fexinidazole is the only oral preparation for the treatment of
human African trypanosomiasis approved by the FDA; thus, com-
pound 2 could be a potential anti-African-trypanosomiasis drug
candidate or lead structure. Compound 59 showed stronger
DHODH inhibitory activity (IC50=74 nM) than teriflunomide which
was approved by FDA for treating multiple sclerosis and rheuma-
toid arthritis. Furthermore, compound 59 has higher safety and
fewer side effects than the commonly used DHODH inhibitor bre-
quinar, suggesting the meroterpenoids are promising molecules
for discovering the new class of DHODH inhibitors. Considering
the lack of a systematic bioactive evaluation of these compounds
in unified conditions, we failed to summarize the structure-activ-
ity relationships of the meroterpenoids among the linear, mono-,
and bicyclic types. However, we take DHODH inhibition as an ex-
ample; the bicyclic sesquiterpenes are less effective than that of
linear and monocyclic sesquiterpenes. Most linear sesquiterpenes
have better DHODH inhibitory activity than monocyclic sesquiter-
pene. Obviously, rich cyclization patterns about farnesyl moiety
may have an impact on hDHODH inhibition.
1120 Gao H et al. Filamentous Fungi-D
Given the aforementioned potential pharmaceutical values of
the meroterpenoid hybrids, accurate mining of these resources is
sought after. In the post-genome era, bioinformatics and omics
analysis will facilitate the location of related biosynthetic gene
clusters in the fungi kingdom. While using genome mining tech-
nologies, complemented by the global natural products, molecu-
lar networks (GNPs) can accelerate the discovery of the resource
of the unknown natural hybrids. Considering silent biosynthetic
gene clusters, low expression in the host strains, and the need
for structure derivatization, the synthetic biology method and
combinatorial biosynthesis, which are based on a platform of het-
erologous expression, will provide the opportunities to rationally
access unidentified natural products and natural-product-like
molecules.
Supporting Information
Filamentous fungi sources and biological activities of orsellinic
acid-sesquiterpene hybrids from 1968 to June 2022 are available
as Supporting Information.
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