Synlett
DOI: 10.1055/a-2099-6478
account

Exploring the Power of Sulfur, Silicon, and Organocatalysis: Innovative Strategies for Asymmetric Synthesis and Advanced Synthetic Methodology

Kuei-Wei Chiu
a   Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
,
Rong-Jie Chein
a   Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
b   Biomedical Translation Research Center, Academia Sinica, Taipei 11529, Taiwan
› Author Affiliations
This work was financially supported by Academia Sinica and the National Science and Technology Council (Taiwan) (109-2113-M001-035-MY3).


Abstract

This research Account describes the development of chiral organocatalysts, focusing on diphenyl-2-pyrrolidinemethanol and its derivatives as valuable tools in asymmetric transformations. The research also includes the discovery of a novel anionic Si→C alkyl migration method, which has been developed into a one-pot procedure for synthesizing (E)-chalcones from hydroxyamide and N,N-diethylcarbamates. The findings underscore the potential of sulfide and silicon as valuable reagents for organic synthesis and emphasize the importance of exploring new reaction pathways and mechanisms to discover novel synthetic methods.

1 Introduction

2 Synthesis of 2 and Sulfur Reagent as Chiral Lewis Acid

3 Sulfur/Selenium Reagent as Chiral Lewis Base

4 Anionic Si→C Alkyl Migration

5 Conclusion



Publication History

Received: 21 April 2023

Accepted after revision: 24 May 2023

Accepted Manuscript online:
24 May 2023

Article published online:
06 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kapfhammer J, Matthes A. Hoppe-Seyler’s Z. Physiol. Chem. 1934; 223: 43
    • 2a Corey E, Bakshi RK, Shibata S. J. Am. Chem. Soc. 1987; 109: 5551
    • 2b Hu Q.-Y, Zhou G, Corey E. J. Am. Chem. Soc. 2004; 126: 13708
  • 3 Marigo M, Wabnitz TC, Fielenbach D, Jørgensen KA. Angew. Chem. Int. Ed. 2005; 117: 804
  • 4 Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
  • 5 Franzén J, Marigo M, Fielenbach D, Wabnitz TC, Kjærsgaard A, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 18296
  • 6 Shiina I, Konishi K, Kuramoto Y.-s. Chem. Lett. 2002; 31: 164
  • 7 Wu H.-Y, Chang C.-W, Chein R.-J. J. Org. Chem. 2013; 78: 5788
    • 8a Imanieh H, Quayle P, Voaden M, Conway J, Street SD. A. Tetrahedron Lett. 1992; 33: 543
    • 8b Macdonald JE, Poindexter GS. Tetrahedron Lett. 1987; 28: 1851
  • 9 Bavikar SR, Lo H.-J, Pavan Kumar CN. S. S, Chein R.-J. Chem. Commun. 2022; 58: 8564
  • 11 Kumar SN, Bavikar SR, Pavan Kumar CN. S. S, Yu IF, Chein R.-J. Org. Lett. 2018; 20: 5362
  • 12 Hayashi Y, Rohde JJ, Corey EJ. J. Am. Chem. Soc. 1996; 118: 5502
  • 14 De Vries TS, Prokofjevs A, Vedejs E. Chem. Rev. 2012; 112: 4246
  • 16 Mukhopadhyay S, Boobalan R, Chein R.-J. Org. Biomol. Chem. 2022; 20: 8405
  • 17 Huang M.-T, Wu H.-Y, Chein R.-J. Chem. Commun. 2014; 50: 1101
  • 18 Wang S.-H, Chein R.-J. Tetrahedron 2016; 72: 2607
  • 19 Guo Y.-C, Chiu K.-W, Chein R.-J. J. Org. Chem. 2023; 88: 559
  • 20 Cheng P.-T, Tseng Y.-H, Chein R.-J. Org. Lett. 2021; 23: 8104
    • 21a Kamigata N, Nakamura Y, Kikuchi K, Ikemoto I, Shimizu T, Matsuyama H. J. Chem. Soc., Perkin Trans. 1 1992; 1721
    • 21b Takahashi T, Kurose N, Kawanami S, Nojiri A, Arai Y, Koizumi T, Shiro M. Chem. Lett. 1995; 24: 379