Experimental and Clinical Endocrinology & Diabetes

Incidence of stroke in people with diabetes compared to those without diabetes: A systematic review

Tatjana Kvitkina, Maria Narres, Heiner Claessen, Maria-Inti Metzendorf, Bernd Richter, Andrea Icks.

Affiliations below.

DOI: 10.1055/a-2106-4732

Please cite this article as: Kvitkina T, Narres M, Claessen H et al. Incidence of stroke in people with diabetes compared to those without diabetes: A systematic review. Experimental and Clinical Endocrinology & Diabetes 2023. doi: 10.1055/a-2106-4732

Conflict of Interest: The authors declare that they have no conflict of interest.

This study was supported by German Federal Ministry of Health, ZMV I 1-2516DIA001

Abstract:
Background: One of the goals of the St. Vincent Declaration was to reduce serious complications of diabetes, including strokes. However, it remains uncertain whether this goal has been achieved. Study aim: The aim of our review was to evaluate the incidence of stroke in the diabetic population and its differences regarding sex, ethnicities, age and regions, to compare the incidence rate (IR) in people with and without diabetes, and to investigate time trends. Materials and methods: A systematic review was conducted according to the guidelines for meta-analysis of observational studies in epidemiology (the MOOSE group) and to the PRISMA group guidelines. Results: Nineteen of the 6,470 studies retrieved were included in the analysis. The incidence of stroke in the population with diabetes ranged from 238 per 100,000 person-years (PYs) in Germany in 2014 to 1191 during the 1990s in the United Kingdom. The RR comparing people with diabetes to those without diabetes varied between 1.0 and 2.84 for total stroke, 1.0 and 3.7 for ischemic stroke, and 0.68 and 1.6 for hemorrhagic stroke. Significant differences were found between fatal and non-fatal stroke depending on the time period and the population. We found decreasing time trends in people with diabetes and stable incidence rates of stroke over time in people without diabetes. Conclusion: The considerable differences between results can partly be explained by differences in study designs, statistical methods, definitions of stroke, and methods used to identify patients with diabetes. The lack of evidence arising from these differences ought to be rectified by new studies.

Corresponding Author:
Dr. Tatjana Kvitkina, German Diabetes Center Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Auf’m Hennekamp 65, 40225 Dusseldorf, Germany, takvi001@gmail.com, takvi001@gmail.com

Affiliations:
Tatjana Kvitkina, German Diabetes Center Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Dusseldorf, Germany
Maria Narres, University Hospital of Düsseldorf Institute for Health Services Research and Health Economics, Dusseldorf, Germany
Heiner Claessen, University Hospital of Düsseldorf Institute for Health Services Research and Health Economics, Dusseldorf, Germany
Andrea Icks, University Hospital of Düsseldorf Institute for Health Services Research and Health Economics, Dusseldorf, Germany
Incidence of stroke in people with diabetes compared to those without diabetes: A systematic review

Short title: Incidence of stroke in people with diabetes

Tatjana Kvitkina\textsuperscript{1,2,3}*, Maria Narres\textsuperscript{1,2,3}, Heiner Claessen\textsuperscript{1,2,3}, Maria-Inti Metzendorf\textsuperscript{4}, Bernd Richter\textsuperscript{4}, Andrea Icks\textsuperscript{1,2,3}

1 Institute for Health Services Research and Health Economics, German Diabetes Center, Düsseldorf, Germany

2 Institute for Health Services Research and Health Economics, Centre for Health and Society, Medical Faculty of the Heinrich-Heine University Düsseldorf, Germany

3 German Center for Diabetes Research (DZD), Neuherberg, Germany

4 Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine University Düsseldorf, Germany

*Corresponding author:

Dr. PH. Kvitkina Tatjana MPH, MSc Epi
Institute for Health Services Research and Health Economics
German Diabetes Center (DDZ)
Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf
Auf’m Hennekamp 65, 40225 Düsseldorf
Tel.: +49-(0)-211-3382-408
tatjana.kvitkina@ddz.de

ORCID ID: 0000-0001-9627-1216
Systematic review registration number: PROSPERO CRD42017073159
Abstract

Background: One of the goals of the St. Vincent Declaration was to reduce serious complications of diabetes, including strokes. However, it remains uncertain whether this goal has been achieved. Study aim: The aim of our review was to evaluate the incidence of stroke in the diabetic population and its differences regarding sex, ethnicities, age and regions, to compare the incidence rate (IR) in people with and without diabetes, and to investigate time trends. Materials and methods: A systematic review was conducted according to the guidelines for meta-analysis of observational studies in epidemiology (the MOOSE group) and to the PRISMA group guidelines. Results: Nineteen of the 6,470 studies retrieved were included in the analysis. The incidence of stroke in the population with diabetes ranged from 238 per 100,000 person-years (PYs) in Germany in 2014 to 1191 during the 1990s in the United Kingdom. The RR comparing people with diabetes to those without diabetes varied between 1.0 and 2.84 for total stroke, 1.0 and 3.7 for ischemic stroke, and 0.68 and 1.6 for hemorrhagic stroke. Significant differences were found between fatal and non-fatal stroke depending on the time period and the population. We found decreasing time trends in people with diabetes and stable incidence rates of stroke over time in people without diabetes. Conclusion: The considerable differences between results can partly be explained by differences in study designs, statistical methods, definitions of stroke, and methods used to identify patients with diabetes. The lack of evidence arising from these differences ought to be rectified by new studies.

Keywords: Diabetes, population-based study, incidences, stroke, systematic review

Abbreviations:

DM Diabetes Mellitus
IR Incidence rate
PYs Person-years
IS Ischaemic Stroke
ICH Intracerebral Hemorrhage
SCH Subarachnoid Hemorrhage
**Introduction**

The prevalence of diabetes mellitus (DM) has increased substantially. According to the International Diabetes Federation, the estimated prevalence of diabetes (type 1 and type 2 combined) in people aged 20–79 years has risen from 151 million (4.6% of the global population) in 2000 to 463 million (9.3%) in 2019 [1]. This increase has led to an increasing number of people with diabetic micro- and macrovascular complications, including stroke [2]. In addition, stroke is a major cause of disability and death worldwide [3]. It is not only crucial to reduce the incidence of stroke to improve quality of life, but also to mitigate the economic consequences associated with stroke (high costs due to hospitalizations, rehabilitation, and social-services support). However, only few epidemiological studies have assessed time trends of stroke incidence comparing people with and without diabetes [4-7]. The St. Vincent Declaration (1989) set the goal of reducing the incidence of stroke among people with diabetes to match the incidence in those without diabetes [8]. However, it remains uncertain as to whether this goal has been achieved. Previous systematic reviews have investigated diabetes as a risk factor for stroke [9-14]. Several studies identified marked differences in incidence and RR of stroke in people with diabetes compared to the population without diabetes [15-17]. Published data are contradictory and heterogeneous in their definitions and recordings of diabetes, the methods used to count and describe stroke events, and their definitions of the population at risk. Furthermore, statistical methods often differ between the studies because some estimated age-sex standardized IRs while others solely reported crude rates. Finally, knowledge is limited regarding the extent to which differences between people with and without diabetes are considered when evaluating types of stroke, i.e. ischemic, hemorrhagic, fatal or non-fatal strokes. The main objectives of this systematic review were (a)
to evaluate and compare the incidence of stroke in people with and without diabetes, (b) to
detect differences between the incidences of various stroke types (all types, ischemic,
hemorrhagic, fatal, non-fatal) with respect to sex, age and ethnicity, and (c) to investigate time
trends.

**Methods**

This systematic review was conducted according to a predetermined protocol and established
guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses,
PRISMA/PRISMA-P [18,19]. A study protocol with the registration number
CRD42017073159 was published [20].

**Search strategy and selection criteria**

We conducted a systematic search in the literature databases MEDLINE, Embase and
LILACS from inception to April 2021. This database selection corresponds with the
recommendations for searching for epidemiological studies [21]. A comprehensive search
strategy was developed by an experienced information scientist and tested against eight
known relevant references from previous systematic reviews according to the guidelines for
meta-analysis of observational studies in epidemiology (the MOOSE group [22]). The search
strategy for all databases can be found in supplementary material. The retrieved records were
exported into EndNote and duplicates were removed manually. We aimed to identify further
potentially eligible studies by using additional methods, such as checking reference lists of
review articles and relevant studies. We contacted the authors of those studies for which we
could not obtain the full text despite our efforts of making use of interlibrary loan.

**Types of studies and populations**

All population-based longitudinal studies which used prospective and retrospective designs to
analyze IRs of stroke among people with and without diabetes and reported RRs and time
trends were included in this review. The source population (population at risk) had to be defined by official statistics (e.g., nationwide data or all residents of a specific region) or statutory health insurance institutions (e.g., all people insured by a statutory health insurance institution). Individuals with diabetes (incident or prevalent) had to be identified or diagnosed in a valid manner, i.e. the diabetes diagnosis had to be clearly described (e.g., documented in medical records, self-reported or physician-diagnosed diabetes, intake of antihyperglycemic medication, or as an HbA1c value). Studies were excluded if: (a) they solely reported the incidence of stroke among persons with diabetes without comparison to people without diabetes; (b) IRs were reported in relation to the total population and not exclusively using the population with diabetes as the population at risk; (c) only crude IRs were reported. Given the assumed profound heterogeneity of included studies based on prior experience with comparable systematic reviews [23,24], no meta-analysis was planned.

Data extraction
The main outcome incidence of stroke was analyzed according to clinical diagnoses of ischemic stroke (IS), intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SCH), all types of strokes, and survival (non-fatal/fatal/both). We extracted the IR (per 100,000 PYs with 95% confidence intervals (95% CI)) or cumulative incidence (CumI) of stroke. To compare IRs of the populations with and without diabetes the RR, the hazard ratio (HR) or incidence rate ratio (IRR) was considered depending on what publications reported. Where available, time trends and differences in the stroke risk associated with demographic variables (sex, ethnicity, age) and regions were extracted. All presented results (IR, RR, HR, IRR) were standardized or adjusted for age and sex. Furthermore, study-related data such as study design, study period, data source and reporting methods for stroke, and patient-related data such as age range, gender, data sources for diabetes and for stroke were extracted.

Quality assessment and risk of bias
The quality of eligible studies was assessed by two independent review authors, considering the studies’ limitations and risk of bias using a modified checklist (S2 Table) as per the
Methodological Evaluation of Observational Research (MORE) [25], Scottish Intercollegiate Guidelines Network (SIGN) [26] and the Cochrane Approach Study Quality Guide [27]. These tools were used to define criteria based on clinical and epidemiological expertise and to rank the studies’ quality (high, acceptable or low) according to the recommendations of SIGN [26]. The following exclusion criteria were applied: imprecise/heterogenous recording and estimation of stroke incidence, implausible data reporting, methodological differences concerning unclear descriptions of the data source (surveys, diabetes registries or insurance data) or implausible source of diabetes diagnoses. Potential disagreements regarding the inclusion or exclusion of studies were resolved by discussion with a third review author. Detailed information can be found in the study protocol [20].

Results

The systematic search identified 6,470 articles, which were assessed by title and abstract. Following initial screening, 230 articles met the criteria for full-text screening (performed manually with Endnote), 199 of which were however subsequently excluded, mainly due to missing information for incidence or RRs of stroke or non-population-based study designs. After the critical appraisal, 19 studies which fulfilled our eligibility criteria were included in the analysis. The selection procedure is presented in Figure 1.

Characteristics of studies included in the analysis

Table 1 shows the characteristics of the included population-based studies. Ten of the 19 studies reported data from Europe [5,7,17,28-34], five from the United States (US) [35-39], three from Asia [15,40,41] and one study from Australia [42]. No study reported data from South America and Africa. In total, 16 studies reported data from both sexes, while three studies comprised only females [32,36,37]. The majority of the population-based studies
included used a prospective cohort study design [15,28,32,34-37,39,42]. Stroke incidence rates were calculated by dividing the number of incidents by the number of person-years of follow-up. Two prospective studies used community-based stroke registers from Germany [29] and Sweden [5]. Five of the included studies used a retrospective cohort study design, comparing the occurrence of first stroke incidences among people with and without diabetes by using health insurance data [17,30,31,40,41]. The included studies used varying data sources to estimate the population with diabetes at risk: six studies used data from national surveys [5,15,29,33,38,39], nine studies used data from national or local diabetes registries or linked data from several diabetes-related data sources [7,32,34-36,40-43], and four studies adopted diabetes prevalence data from other studies [17,28,30,37].

Eight studies did not report specific information on the type of diabetes (type 1 or type 2) but presented overall data about “diabetes mellitus” [5,15,17,30,32,38,39,41]. Seven studies analysed populations with type 2 diabetes [7,28,33,35,36,42,43]. Two studies analysed data separately for type 1 and type 2 diabetes: the UK Biobank population-based cohort study (see Figure 2 A) [34] and “The Nurses’ Health Study” of a female cohort in the US [37] (see Figure 2 B). The included studies used different sources to assess the diabetes status of people who had suffered a stroke: eight studies used data based on diagnostic tests or hypoglycemic therapy (treatment for diabetes) [17,28,32,35,36,39,41,42] or a combination of both [29,30,34]; four studies used documentation in medical records based on ICD-Codes [33,38,40,43]; two studies used self-reported data confirmed by physicians’ diagnoses [15,37]; one Scottish study ascertained diabetes status by linkage to a research extract from the Scottish Care Information Diabetes dataset [7]; and one study was the Swedish MONICA Stroke Registry study, which was based on the World Health Organization’s (WHO) definition of diabetes [5].
The included studies used different data sources for stroke determination: five studies used data from national surveys [15,32,36,37,39], eight studies were based on hospital or registry data [7,28,30,33-35,38,42], four studies used health insurance data [17,31,40,41], and two studies used data from population-based registries [5,29]. All studies used diagnostic criteria for stroke according to ICD-codes 8-10 (the World Health Organization’s International Classification of Diseases). The majority of the studies estimated both fatal and non-fatal stroke incidences, with two papers only reporting fatal events [15,36].
Incidence and relative risks of stroke

The results are presented in Table 2.

Total stroke (all types of stroke): Thirteen studies estimated incidence rates of all types of stroke (IS, ICH, SCH) for both non-fatal and fatal stroke [5,17,28-31,34,37,40,42]. The IRs ranged from 238 (155-321) in Germany in 2014 [29] to 1,191 (1,141–1,243) in the UK in the 1990s (data from 1992-1999, [28]) per 100,000 PY in the population with diabetes and from 208 (200–219) [17] to 555 (540–570) in the population without diabetes [28]. The RRs in the same studies ranged from 1.0 (0.7-1.5) to 2.19 (2.1–2.3). With regard to gender differences, some studies described slightly higher RRs among women [28,30,31,40]. However, a German study (data from 1998-2014) by Icks et al. found the RR to be somewhat higher among men in the first years of the study period, while similar values were seen in later years for both sexes [29]. In general, there was no consistent gender pattern. Regarding age differences, a more pronounced effect was observed among younger groups in the US by Malla et al., where the HR for total stroke was higher among the age group <65 years than among older people aged ≥65 years (Table 2) [39]. In the study by Mulnier, the risk of stroke associated with diabetes decreased with age and was highest among young people (age 35–54 years: HR 5.64 (3.91–8.13) vs. age 75–84 years: 1.90 (1.75–2.06) (data not shown) [28]. Similarly, the studies from Scotland [7] and Austria [30] found a more pronounced risk of stroke incidence among younger age groups than among older people (data not shown).
**Ischemic stroke:** Six population-based studies were identified which assessed IS separately among populations with and without diabetes [7,29,32-34,37]. Only two of those studies reported incidence rates of IS per 100,000 PY [17,33,37], ranging from 111.6 in Spain (2018 [33]) to 258 in Germany (1998 [29]) in the population with diabetes, and 27.9 (Spain) to 186 (Germany) for the population without diabetes. Two of the six studies compared IRs of IS among men und women [29,33]. The IR per 100,000 PY decreased in the population with diabetes from 258.1 (179-336) in 1998 to 111.6 in 2018. In contrast, the IR remained relatively constant among the population without diabetes in Germany: 190.4 (154-226) in 1998 and 207.6 (173-241) in 2014. Higher IRs were observed among men with diabetes, whereas the results among people without diabetes were comparable for both sexes ([29,33], Table 2). In the UK study [34] type 1 diabetes was associated with a substantially higher risk of IS in both women and men: the multiple-adjusted HR of IS was 6.54 (3.79–11.27) in women and 3.31 (1.96–5.60) in men. In the study by Read [7], diabetes was associated with a 45% and 26% increased risk of IS among women and men respectively. In the German study [29], the RR of IS was not significantly different, ranging from 1.3 (0.94–1.93) in 2001 to 1.0 (0.7–1.5) in 2014. Two female cohort studies from the US and the UK showed that diabetes was strongly associated with IS, with RRs of IS being twice as high among women with diabetes (Table 2) [32,37].

**Hemorrhagic stroke:** Four studies estimated the IR for hemorrhagic stroke [15,32,37,41]. In a study from the US, type 1 diabetes was significantly associated with the risk of hemorrhagic stroke among women (RR=3.8 (1.2–11.8)), whereas type 2 diabetes was not (RR=1.0 (0.7–1.4)) [37]. While the RR of intracerebral hemorrhage was increased (RR=1.31) in women with DM in the UK (Million Women Study [32]), the risk of SCH was approximately 56 % (RR=0.43.9 (0.26–0.69)) lower in women with diabetes compared to women without diabetes. Results were broadly similar in the Korean study from 2021 where type 2 diabetes was significantly associated with decreased risk of subarachnoid haemorrhage (adjusted HR=0.68
No study reported the effect of diabetes on hemorrhagic stroke among men only.

**Fatal vs. non-fatal stroke**

A number of studies from the USA and China reported fatal and non-fatal stroke incidences separately [15,35,36,38] (Figure 3 A, B).

In a cohort study (data from 1976-1996 “The Nurses’ Health Study”), Hu et al. showed that the RRs for non-fatal and fatal stroke were significantly higher among women with diabetes aged 30-55 years (5.28 and 7.42 respectively) compared to other studies [36]. A study from China [15] found the risk of non-fatal hemorrhagic stroke to be approximately 20% (RR: 0.8 (0.64-1.0)) lower in the population with diabetes compared to people without diabetes. Khoury et al. compared ethnic differences for non-fatal IS and found the risk of IS among African-Americans to have decreased significantly from 5.6 in 1994 to 3.2 in 2005, while the risk among White people remained the same at 3.8 in 1994 and in 2005 [38].

**Time trends of incidence rates and relative risks**

Three studies described the time trend among the population with and without diabetes with contradictory results [5,7,29]. The results are presented in Table 2. The study by Icks et al. found a significant annual decrease (1.5%) in the incidence of all stroke types (fatal and non-fatal) among people with diabetes, with similar results among men and women. In contrast, incidence remained constant among individuals without diabetes [29] (Table 2) in both sexes. RRs in this study decreased by 2% per year (RR per calendar year 0.979; 0.960-0.997), with similar results for both sexes. A slight annual decrease in the IR of ischemic stroke of 1% was reported for the population with diabetes (RR per calendar year 0.99; 0.97-1.00), with comparable results among men and women. The IR remained nearly constant with similar results for both sexes among the population without diabetes. Rautio et al. analyzed all stroke
types except subarachnoidal hemorrhage in Sweden from 1985 to 2003 and found declining
IRs among women with diabetes (1.5% per annum) and men without diabetes (0.8% per
annum), but not among men with diabetes (n.s. 0.1% (0.9-1.0, annual change). IRs among
women without diabetes also remained stable [5] (Table 2). In Scotland between 2004 and
2013 incidence rates of ischemic stroke declined by 1.26% (0.66-1.87) annually among
people with diabetes and in people without diabetes in Scotland between 2004 and 2013
(diabetes/year interaction: rate ratio 0.99 (0.98-1.01)) [7].

Discussion

The data from the 19 population-based studies included in this systematic review show the
incidence of all stroke types (except hemorrhagic stroke) to be greater among individuals with
diabetes than among those without. However, our analysis observed variations in the
incidence of stroke and RR of stroke between the populations with and without diabetes. This
variation may be due to the large heterogeneity of the included studies. Most studies reported
data on all types of non-fatal and fatal stroke combined without differentiating between
ischemic or hemorrhagic stroke and fatality or non-fatality. We identified only few studies of
time trends which compared populations with und without diabetes meeting our eligibility
criteria. These studies indicated relatively stable IRs of stroke over time among people
without diabetes and decreasing rates among people with diabetes.

Ischemic vs. hemorrhagic stroke

Six population-based studies included in this review reported the IR and RRs/HRs for
ischemic stroke [7,29,32-34,37] and thee studies for hemorrhagic stroke [32,37,41].

Interestingly, the risk of subarachnoid hemorrhage was approximately 30-50% lower among
people with diabetes compared to people without diabetes. Our findings were consistent with
the results of a recent systematic review and meta-analysis of risk factors for ischemic and
hemorrhagic stroke [44]. Luitse et al. reported that admission hyperglycemia is associated
with poor functional outcome, possibly due to aggravated ischemic damage as a result of disturbed recanalisation and increasing reperfusion injury [45]. A further study indicated that hyperglycemia among patients with hemorrhagic stroke is an independent risk factor for poor clinical outcomes and may affect the increase in size of hematoma [46]. As the studies report, several mechanisms may play a role in these relationships. For example, poorly controlled hyperglycemia reduces cerebral blood flow and oxygenation of tissues and increases intracranial pressure, cerebral edema and neuronal death [47]. As reported by Snarska et al. [48], these mechanisms, which are more severe among patients with diabetes and hemorrhagic stroke, may increase mortality.

**Time trend**

Our review found limited data regarding time trends: only three of the 19 studies analysed time trends in the population with and without diabetes. Two studies identified decreasing time trends in people with diabetes for all types of stroke [5,29]. Decreasing time trends were also found for ischemic stroke in persons with diabetes, while time trends remained constant in populations without diabetes [7,29]. Our study confirms the findings of other reports. For example, in the US, the RR of stroke associated with diabetes declined from 2.5 in 2000 to 1.5 in 2010 [49]. In contrast, the incidence trends of all stroke types and of just ischemic stroke remained constant among individuals without diabetes in Germany and in Scotland [7,29]. In Sweden, IRs of stroke were found to decline by 0.8% per year among men without diabetes, whereas the IR remained constant among women without diabetes [5]. These positive results among the population with diabetes may reflect improved management of diabetes, hypertension and dyslipidemia, as well as population-wide improvements in diets and reduced smoking prevalence [7]. Secondary prevention measures for patients with diabetes and established cardio-vascular diseases (CVD) should therefore be intensified, with interventions focusing on traditional cardiovascular risk factors [5].
The results presented regarding time trends among people without diabetes are in line with international studies, which identified stable incidences among the general population [50-52]. A systematic review by Feigin et al. which included population-based studies from 28 countries from 1970 to 2008 found a 42% decrease in stroke incidence, especially ischemic stroke, in high-income countries [53]. Similarly, a review using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD Study) reported a significantly declining trend in the age-standardized incidence of stroke from 1990–2013 in high-income countries [54]. In contrast, studies from low- and middle-income countries mainly reported trends of increasing stroke incidence [55].

**Diabetes type 1 and type 2**

Both type 1 and type 2 diabetes are associated with an increased risk of stroke due to risk factors such as hyperglycemia, hypertension, dyslipidemia, and inflammation [16,56]. However, differences in lifestyle factors between the types of diabetes may impact risk of stroke. Individuals with type 2 diabetes compared to type 1 diabetes are more likely to be obese or overweight, have a less healthy diet, and be physically inactive, all of which increase their risk of stroke [57]. Furthermore, individuals with type 2 diabetes are more likely to have peripheral arterial disease, large-artery atherosclerosis which may lead to stroke. On the contrary, individuals with type 1 diabetes are more likely to have coronary heart disease and peripheral arterial disease that strongly promote the development of stroke [58].

Two cohort studies from the US and UK, reported stroke data separately for type 1 and type 2 diabetes (Figure 2).

Both studies found type 1 diabetes to markedly increase the risk of all stroke subtypes among women. Even after controlling for age, body mass index (BMI), physical activity, menopausal status, estrogen use, smoking, hypertension, high cholesterol, ischemic heart disease, aspirin
use, and alcohol consumption, the risk of ischemic stroke was 6.3 times higher in women with type 1 diabetes compared to women without diabetes. The risk of hemorrhagic stroke was almost four times higher, and of total stroke 4.7 times higher in the US female cohort (Figure 2) [37]. However, as the authors noted, the results were based on few cases and should therefore be interpreted with caution. Similarly, a UK study including both sexes also found that for type 1 and type 2 diabetes the HRs for ischemic stroke were higher among women than men (Figure 2) [34]. Type 2 diabetes was not found to pose a significant risk for hemorrhagic stroke (RR: 1.1 (95% CI 0.7–1.4)), but the RR of ischemic stroke was increased twofold (2.3 (2.0 –2.6)) [37]. Data on type 2 diabetes relating to the risk of intracerebral hemorrhage were limited and conflicting [59]. Most studies reported type 2 diabetes to be an important risk factor for ischemic stroke but not to increase the incidence of hemorrhagic stroke [9,60-62]. This finding may partly reflect the longer duration of type 1 diabetes than type 2 diabetes. This is supported by the fact that the magnitude of the positive relation between type 2 diabetes and the risk of myocardial infarction, heart failure, and ischemic stroke increased with longer duration of type 2 diabetes [61]. Another possible explanation for of the differences regarding diabetes types is that treatments may differ for patients with type 1 (insulin therapy) and type 2 diabetes (usually diet and exercise alone or combined with diabetes medications). Hägg et al. [62] also reported partial differences between the risk factor profiles of type 1 diabetes for ischemic stroke and hemorrhagic stroke. Longer duration of diabetes, presence of diabetic nephropathy, poor glycemic control, more severe diabetic retinopathy, history of smoking, and insulin resistance all independently increased the risk of ischemic stroke. The risk factor profile for hemorrhagic stroke included presence of diabetic nephropathy and diabetic retinopathy, higher systolic blood pressure, and lower BMI. Due to the heterogeneity and limitations of the results, future large studies of the association between types of diabetes and the risk of different stroke types are necessary to better understand their relationship.
Gender and age difference

The findings of the included studies were inconsistent. Some studies found higher IRs among men [17,29,33,34,40,48] than women in both the population with and without diabetes. However, most studies reported higher RRs in women, ranging from 1.47 [31] to 2.3 [28] for all stroke types and from 1.04 [29] to 1.88 [34] for ischemic stroke. This association between the risk of stroke and female gender was described in earlier publications [9,63,64]. A large meta-analysis reported a 27% higher RR of stroke due to diabetes among women compared to men [9]. Our review only indicated beneficial time trends among women. The first stroke did not change among women without diabetes [5]. In contrast, the study by Icks et al. (2017) [29] did not identify any gender differences regarding time trends.

We identified a number of studies which found the risk of stroke to be higher among the young population with diabetes [7,15,28,29,37,38]. In the Mulnier study from the 1990s, the increased risk associated with diabetes decreased with age and was highest among young women (aged 35–54 years: HR=8.18 (4.31–15.51)) [28]. Data from the Nurses’ Health Study from the US covering the time period 1976-2002 showed similar results, with a higher incidence of stroke attributable to younger age at onset of diabetes [37]. The German study by Icks et al. also found the RR for stroke to decrease with increasing age: RR diabetes vs. no diabetes < 50 years: 3.43; 80+ years: 1.1 [29]. An Austrian study found diabetes to have the most severe influence on the incidence of stroke among persons in the 0-44 age group [30] with the risk of stroke being 5.44 (men: 5.55, women: 5.26) times higher among people with diabetes than without. While the risk of stroke in people with diabetes in the age group 45-54 years was indeed considerably lower, it was still more than twice as high than in people without diabetes in the same age group. In a recent study from Scotland, the risk of ischemic stroke was most pronounced in the age group <60 years [7].
Our findings confirm those of past studies which found the association between diabetes and stroke to be more pronounced among young and middle-aged adults than in older adults. In the Greater Cincinnati/Northern Kentucky Stroke Study (GCNKSS), the risk of stroke associated with diabetes was greater among adults aged <65 than those aged ≥65 years. Similarly, the recently updated Framingham Heart Study (Revised Framingham Stroke Risk Profile to Reflect Temporal Trends) reported stronger association at a younger age [65]. One possible explanation for the age differences in diabetes-related relative risk of stroke is the proportional increase in numbers of risk factors with increasing age among people without diabetes [16]. Moreover, Kiss et al. found age-related differences in statin medication adherence, with the younger cohort presenting significantly lower adherence than older cohorts [43]. It was found that those people who did not adhere to statin intake were significantly younger, more likely to be female and had a significantly shorter duration of diabetes [66].

Ethnic differences

There is little information regarding the impact of ethnic differences on the association of diabetes with stroke. Only three studies in our review, all from the US, reported ethnic differences [35,38,39]. The results are contradictory (see Table 2 and Figure 3). The ARIC (Atherosclerosis Risk in Communities, 1987–1995) study by Folsom et al. did not, however, identify any ethnic differences regarding the diabetes-stroke association [35], although an updated analysis with additional follow-ups found the diabetes-stroke association to be stronger among black adults than among white adults [67].

Strengths and limitations

This systematic review incorporated a number of studies published over the past 30 years, giving a current overview of incidence and risk of stroke among the populations with and without diabetes. One major strength of our review is the selection of included studies using a
systematic search approach with clearly determined search strategies. We only included those studies reporting stroke incidences among the population at risk, i.e. the population with diabetes. This method is advantageous because results are not influenced by changes in the prevalence of diabetes. Moreover, we analysed stroke incidences for separate groups considering the definitions of different stroke types, including fatal and non-fatal stroke. This approach allowed studies to be compared despite a high degree of heterogeneity. Nevertheless, our review has some limitations. Although seven databases were searched, relevant studies might be missing due to publication bias. Furthermore, studies that were published in languages other than English were excluded. Most studies reporting on stroke incidence and time trends were conducted in high-income countries, such as the US or European countries, and thus do not represent a worldwide perspective. One might assume that e.g. due to impaired diabetes care the figures for stroke incidence in low-income countries for populations with diabetes are higher than in high-income countries.

This comprehensive systematic review demonstrates the considerable variation of stroke incidence among the population with diabetes and without diabetes, probably in part due to the heterogeneous design of the identified studies. Only few studies investigated time trends. These studies indicated decreasing incidence rates among the population with diabetes and stable incidence rates of stroke over time among the population without diabetes. Nevertheless, diabetes remains an important risk factor for stroke, especially in the younger diabetic population. Future studies analysing the incidence and RRs of stroke among the population with diabetes should use a more comparable study design such as prospective studies with detailed information regarding the clinical definition, cause and recording of stroke as well as better defined population at risk.

**Funding:** This work is supported by the German Federal Ministry of Health (BMG).

**Conflict of interest:** The authors declare that they have no competing interests.
Contribution statement: Andrea Icks, Tatjana Kvitkina and Maria Narres contributed to the concept, design and drafting of the study and undertook analysis of the data. Maria-Inti Metzendorf and Bernd Richter developed the systematic search and performed literature search. Heiner Claessen made major contributions to the write-up and editing of the review. All authors read and approved the final manuscript.

References

13. Johnson S. Diabetes as a risk factor for stroke in women compared with men: A systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes:


42. Davis WA, Gregg EW, Davis TME. Temporal Trends in Cardiovascular Complications in People With or Without Type 2 Diabetes: The Fremantle Diabetes Study. J Clin Endocrinol Metab 2020; 105: 01 DOI: https://dx.doi.org/10.1210/clinem/dgaa215


56. de Ferranti SD, de Boer IH, Fonseca V et al. Type 1 Diabetes Mellitus and Cardiovascular Disease: A Scientific Statement From the American Heart Association and American Diabetes Association. Diabetes Care 2014; 37: 2843-2863 DOI: 10.2337/dc14-1720
64. Zhao W, Katzmarzyk PT, Horswell R et al. Sex differences in the risk of stroke and HbA(1c) among diabetic patients. Diabetologia 2014; 57: 918-926 DOI: 10.1007/s00125-014-3190-3

LEGENDS

Table 1
(a) Subarachnoidal hemorrhages were excluded; (b) Data was extracted from people who were not involved in the study by Icks et al. IS, ischaemic stroke; ICH, intracerebral hemorrhage; SCH, subarachnoid hemorrhage; n. sp, no specific information collected on diabetes type.

Table 2
DM, diabetes mellitus; RR, relative risk; HR, hazard ratio; IRR, incidence rate ratio; ICH, intracerebral hemorrhage; SCH, subarachnoid hemorrhage; m, men; w, women; WP, white persons; AA, African-American. (+) age-standardized or age-adjusted incidence rates were considered; † self-calculated; (-) not reported; a subarachnoidal hemorrhages were excluded; b data was extracted from people who were not involved in the study by Icks et al.

Caption for Figures
Figure 1: Flowchart of study selection.
Figure 2: Risk of stroke per diabetes type and sex. HR/RR*: population with diabetes compared to population without diabetes, 95% CI see Table 2.
Figure 3: Fatal vs. non-fatal stroke. RR/HR* population with diabetes compared to population without diabetes, 95% CI see Table 2. WP, White persons; AA, African-American.
Table 1: Characteristics of population-based studies included in the analysis of stroke incidence, fatality and time trends

<table>
<thead>
<tr>
<th>Study reference</th>
<th>Study period, population and design</th>
<th>Age range (years)</th>
<th>Gender</th>
<th>Data for diabetic prevalence</th>
<th>Data Source for stroke</th>
<th>Non-fatal/fatal</th>
<th>Type of stroke</th>
<th>Determination of stroke</th>
<th>Time trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folsom et al 1999 USA, [35]</td>
<td>1987/89-1995 Atherosclerosis Risk in Communities (ARIC) Study N=15,792</td>
<td>45-64</td>
<td>Both</td>
<td>Known DM type 2</td>
<td>Hospital data</td>
<td>Non-fatal</td>
<td>IS</td>
<td>Annual telephone contacts; hospital records, hospital discharge</td>
<td>Not reported</td>
</tr>
<tr>
<td>Hu et al 2002 USA, [36]</td>
<td>1976-1996 The Nurses’ Health Study (NHS) N=117,629</td>
<td>30–55</td>
<td>Women</td>
<td>Known and unknown DM type 2</td>
<td>Survey</td>
<td>Both</td>
<td>All types</td>
<td>Questionnaire confirmed by medical records</td>
<td>Not reported</td>
</tr>
<tr>
<td>Mulnier et al 2006 UK, [28]</td>
<td>1992-1999 General Practice Research Database; N=202,733</td>
<td>35-89</td>
<td>Both</td>
<td>Known DM type 2</td>
<td>Hospital data</td>
<td>Both</td>
<td>All types</td>
<td>Medical records, hospital discharge, physiotherapy or rehabilitation, confirmation by computed tomography</td>
<td>Not reported</td>
</tr>
<tr>
<td>Janghorbani et al 2007 USA, [37]</td>
<td>1976-2002 The Nurses’ Health Study (NHS) N=121,701</td>
<td>30–55</td>
<td>Women</td>
<td>Known DM type 1 and 2</td>
<td>Survey</td>
<td>Both</td>
<td>All types</td>
<td>Questionnaire confirmed by computed tomography, MRI, angiography, surgery, or autopsy</td>
<td>Not reported</td>
</tr>
<tr>
<td>Icks et al 2011 Germany*, [17]</td>
<td>2005-2007 Statutory health insurance data, (1.6 million members) N=1,279,530</td>
<td>All</td>
<td>Both</td>
<td>Known DM, n.sp.</td>
<td>Health insurance</td>
<td>Both</td>
<td>All types</td>
<td>Hospitalizations and ambulatory health processes with diagnoses and pharmaceutical prescriptions</td>
<td>Not reported</td>
</tr>
<tr>
<td>Schublener et al 2015 Austria, [30]</td>
<td>2008-2012 The Upper Austrian stroke registry (UASR) N=1,319,761</td>
<td>All</td>
<td>Both</td>
<td>Known and unknown DM, n.sp.</td>
<td>Registry and health insurance</td>
<td>Both</td>
<td>All types</td>
<td>The statutory Upper Austrian health insurance</td>
<td>Not reported</td>
</tr>
<tr>
<td>Liao et al 2015 Taiwan, [40]</td>
<td>2000-2003 Taiwan’s National Health Insurance claims N= 24,027 DM cohort N=96,108 non-DM cohort</td>
<td>All</td>
<td>Both</td>
<td>Known DM, n.sp.</td>
<td>Health insurance</td>
<td>Both</td>
<td>All types</td>
<td>Diagnoses for admission and discharge, treatments, medications</td>
<td>Not reported</td>
</tr>
<tr>
<td>Study reference</td>
<td>Study period, population and design</td>
<td>Age range (years)</td>
<td>Gender</td>
<td>Data for diabetic prevalence</td>
<td>Data Source for stroke</td>
<td>Non-fatal/fatal</td>
<td>Type of stroke</td>
<td>Determination of stroke</td>
<td>Time trend</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------------</td>
<td>------------------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Kiss et al 2018 Hungary, [31]</td>
<td>2010-2013 National Health Insurance Fund (NHIF) N=152,678 DM typ 2 cohort N=305,356 matched controls cohort</td>
<td>All</td>
<td>Both</td>
<td>Known DM type 2</td>
<td>Health insurance</td>
<td>Both</td>
<td>All types*</td>
<td>Outpatient records, all-cause mortality data</td>
<td>Not reported</td>
</tr>
<tr>
<td>Davis et al 2020 Australia, [42]</td>
<td>1993-1996, 2008-2011, Community-based Fremantle Diabetes Study N=13,995</td>
<td>All</td>
<td>Both</td>
<td>Known DM type 2</td>
<td>Hospital data</td>
<td>Both</td>
<td>All types</td>
<td>The hospital morbidity data</td>
<td>Not reported</td>
</tr>
<tr>
<td>Peters et al 2020 UK (England, Scotland, and Wales), [34]</td>
<td>2006-2018 UK Biobank prospective, population-based cohort study N &gt;500,000</td>
<td>40-69</td>
<td>Both</td>
<td>Known DM type 1 and 2</td>
<td>Hospital data, death register and Biobank</td>
<td>Both</td>
<td>All types</td>
<td>Hospital admissions data by ICD-codes and the national death register; UK Biobank</td>
<td>Not reported</td>
</tr>
<tr>
<td>Kim et al 2021 South Korea, [41]</td>
<td>2004-2015, National Health Insurance Service, population-based Cohort N= 514,866</td>
<td>40 -79</td>
<td>Both</td>
<td>Known DM, n.sp.</td>
<td>Health insurance</td>
<td>Both</td>
<td>SCH</td>
<td>Health insurance claims data for all hospital visits (include diagnostic code, procedure performed, prescriptions issued)</td>
<td>Not reported</td>
</tr>
<tr>
<td>López-de-Andrés et al 2021 Spain, [33]</td>
<td>2016-2018, The Spanish National Hospital Discharge Database, 95% of all hospital in Spain</td>
<td>≥35</td>
<td>Both</td>
<td>Known DM type 2</td>
<td>Hospital data</td>
<td>Both</td>
<td>IS</td>
<td>Hospital discharges</td>
<td>Not reported</td>
</tr>
</tbody>
</table>

(a) Subarachnoidal hemorrhages were excluded; (b) Data was extracted from people who were not involved in the study by Icks et al. IS, ischaemic stroke; ICH, intracerebral hemorrhage; SCH, subarachnoid hemorrhage; n. sp, no specific information collected on diabetes type.
Table 2: Incidence rates, relative risks and time trends of stroke among the populations with and without diabetes (+)

<table>
<thead>
<tr>
<th>Study</th>
<th>Incidence rates (95% CI) per 100,000 person years</th>
<th>RR/HR/IRR (95% CI)</th>
<th>Time trend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total population</td>
<td>Stratified by sex/ethnic origin</td>
<td>Total population</td>
</tr>
<tr>
<td></td>
<td>DM non-DM</td>
<td>DM non-DM</td>
<td>DM non-DM</td>
</tr>
<tr>
<td></td>
<td>Total stroke both non-fatal and fatal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mulnier 1992-1999 UK, [28]</td>
<td>1191 (1141-1243)†</td>
<td>555 (540-570)†</td>
<td>m 1082 (1020-1150)†</td>
</tr>
<tr>
<td>Janghorbani 1976-2002 women cohort USA, [37]</td>
<td>-</td>
<td>-</td>
<td>w Type 1: 475 Type 2: 240</td>
</tr>
<tr>
<td>Rautio 1985-2003 Sweden *, [5]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Peters 2006-2018 UK, [34]</td>
<td>-</td>
<td>-</td>
<td>Type 1 w 378 (170-571)† m 331 (151-511)† Type 2 w 130 (100-151)† m 191 (161-220)†</td>
</tr>
<tr>
<td>Davis 1993-1996/2008-2011, Australia, [42]</td>
<td>1993-1996: 930† 2008-2011: 509†</td>
<td>1993-1996: 411† 2008-2011: 451†</td>
<td>m 378 (170-571)† m 331 (151-511)† Type 2 w 130 (100-151)† m 191 (161-220)†</td>
</tr>
<tr>
<td>Icks (2011) 2005-2007, Germany *, [17]</td>
<td>402 (376–479)</td>
<td>208 (200-219)</td>
<td>m 476 (438-514) w 342 (305-378)</td>
</tr>
<tr>
<td>Icks (2017) 1996-2014, Germany *, [29]</td>
<td>1998: 401 (279-523) 2014: 238 (155-321)</td>
<td>1998: 212 (174-250) 2014: 235 (199-271)</td>
<td>m 401 (279-523) 2014: 238 (155-321)</td>
</tr>
<tr>
<td>Schableger 2008-2012 Austria, [30]</td>
<td>591 (562-621)</td>
<td>329 (323-334)</td>
<td>m 572 (530-613) w 600 (559-642)</td>
</tr>
<tr>
<td>Study</td>
<td>Total population</td>
<td>Stratified by sex/ethnic origin</td>
<td>Total population</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Total population</td>
<td>Stratified by sex/ethnic origin</td>
<td>Total population</td>
</tr>
<tr>
<td></td>
<td>DM</td>
<td>non-DM</td>
<td>DM</td>
</tr>
<tr>
<td>Liao 2000-2003 Taiwan, [40]</td>
<td>1010†</td>
<td>450†</td>
<td>m 1090†</td>
</tr>
<tr>
<td>Kiss 2010-2013 Hungary *, [31]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Malla 2019 USA, [39]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total stroke non-fatal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hu 2002 USA, [36]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bragg 2016 China, [15]</td>
<td>981.7</td>
<td>553.5</td>
<td>-</td>
</tr>
<tr>
<td>Total stroke fatal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hu 2002 [36]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bragg [15]</td>
<td>129.1</td>
<td>56.9</td>
<td>-</td>
</tr>
<tr>
<td>Ischemic stroke both non-fatal and fatal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Janghorbani 1976-2002 USA, [37]</td>
<td>-</td>
<td>-</td>
<td>w Type 1: 20</td>
</tr>
<tr>
<td>Read 2004-2013 Scotland, [7]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Icks 2017 Germany, [29]</td>
<td>1998: 258 (179-336)</td>
<td>2014: 190 (154-226)</td>
<td>2014: 245 (163-355)</td>
</tr>
<tr>
<td>Price 1996-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Study</td>
<td>Total population</td>
<td>Stratified by sex/ethnic origin</td>
<td>RR/HR/IRR (95% CI)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------</td>
<td>--------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>DM</td>
<td>non-DM</td>
<td>DM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001 UK, [32]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peters 2006-2018 UK, [34]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lopez-de-Andres 2016-2018 Spain, [33]</td>
<td>111.61</td>
<td>27.93</td>
<td>m 124.88 w 98.33</td>
</tr>
<tr>
<td>Ischemic stroke non-fatal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folsum 1999 USA, [35]</td>
<td>538†</td>
<td>151†</td>
<td>AA 942† WP 367†</td>
</tr>
<tr>
<td>Khoury 2013 USA, [38]</td>
<td>869.5</td>
<td>463.6</td>
<td>-</td>
</tr>
<tr>
<td>Bragg 2016 China, [15]</td>
<td>19.3</td>
<td>8.6</td>
<td>-</td>
</tr>
<tr>
<td>Hemorrhagic stroke both non-fatal and fatal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Janghorbani 1976-2002 USA, [37]</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Price 1996-2001 UK, [32]</td>
<td>17.1 (13.5-21.4)</td>
<td>21.7 (20.3-23.1)</td>
<td>-</td>
</tr>
<tr>
<td>Kim 2004-2015 South Korea, [41]</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Hemorrhagic stroke non-fatal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bragg [15]</td>
<td>69.1</td>
<td>42.6</td>
<td>-</td>
</tr>
<tr>
<td>Hemorrhagic stroke fatal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bragg [15]</td>
<td>96.8</td>
<td>42.6</td>
<td>-</td>
</tr>
</tbody>
</table>

**Note:** This article is protected by copyright. All rights reserved.
<table>
<thead>
<tr>
<th>Study</th>
<th>Incidence rates (95% CI) per 100,000 person years</th>
<th>RR/HR/IRR (95% CI)</th>
<th>Time trend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total population</td>
<td>Stratified by sex/ethnic origin</td>
<td>Total population</td>
</tr>
<tr>
<td>DM</td>
<td>non-DM</td>
<td>DM</td>
<td>non-DM</td>
</tr>
</tbody>
</table>

DM, diabetes mellitus; RR, relative risk; HR, hazard ratio; IRR, incidence rate ratio; ICH, intracerebral hemorrhage; SCH, subarachnoid hemorrhage; m, men; w, women; WP, white persons; AA, African-American. (+) age-standardized or age-adjusted incidence rates were considered; † self-calculated; (-) not reported; * subarachnoidal hemorrhages were excluded; ^ data was extracted from people who were not involved in the study by Icks et al.
Records identified through database searching (n = 9,419)  
Additional records identified through other sources (n = 2)  
Records after duplicates removed (n = 6,470)  
Records screened (n = 6,470)  
Records excluded (n = 6,240)  
Full-text articles excluded (n = 199): Incidence or RR of stroke were not reported (n = 89)  
Non-population based studies (n = 71)  
Incidence based on total population (n = 14)  
Reviews and letters to the editor (n = 13)  
Non-English articles (n = 12)  
Full-text articles assessed for eligibility (n = 230)  
Full-text articles met inclusion criteria and went through quality assessment (n = 31)  
Studies included in systematic review (n = 19)  

Figure 1: Flowchart of study selection.
A female / male cohort
Ischemic stroke
Peters et al, 2006-2010 UK

B female cohort
All stroke types
Janghorbani et al, 1976-2002 USA
A non-fatal stroke

Total stroke  Ischemic stroke  Hemorrhagic stroke

Hu et al: USA, women (1976-1996)
Khoury et al: USA, AA (2005)
Khoury et al: USA, AA (1994)
Khoury et al: USA, WP (2005)
Khoury et al: USA, WP (1994)

B fatal stroke

Total stroke  Ischemic stroke  Hemorrhagic stroke

Hu et al: USA women (1979-1996)