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Introduction
The use of artificial intelligence (AI) to augment human intelligence 
in medicine is expected to reshape healthcare [1, 2]. The safe and 
effective use of clinical AI prediction tools requires recognition of 
the importance of human involvement and the technical limita-
tions of AI. Successful use of clinical AI prediction tools needs 
human intelligence, creativity, situational awareness, and profes-
sional knowledge to interpret and integrate results, and determine 

and handle exceptions. The implementation of clinical AI predic-
tion tools may change the workflow in medical practice, resulting 
in multiple new challenges and safety implications. For example, 
research is focused on developing AI tools to predict treatment re-
sponse to specific drugs, such as antidepressants [3–5]. In the fu-
ture, this will change the workflow, requiring the physician to agree 
or disagree with the recommendation. To achieve the potential 
benefits, this narrative review will discuss some of the important 
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ABSTR ACT

This narrative review discusses how the safe and effective use 
of clinical artificial intelligence (AI) prediction tools requires 
recognition of the importance of human intelligence. Human 
intelligence, creativity, situational awareness, and profession-
al knowledge, are required for successful implementation. The 
implementation of clinical AI prediction tools may change the 
workflow in medical practice resulting in new challenges and 
safety implications. Human understanding of how a clinical AI 
prediction tool performs in routine and exceptional situations 
is fundamental to successful implementation. Physicians must 
be involved in all aspects of the selection, implementation, and 
ongoing product monitoring of clinical AI prediction tools.
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and diverse challenges involved in the successful implementation 
of clinical AI prediction tools in medicine.

Fundamental differences between human 
intelligence and artificial intelligence
The successful implementation of AI tools in medicine requires re-
cognition of the unique importance of human involvement. Al-
though human brains and computers are often compared, there 
are many fundamental differences. A single human brain stores 
roughly the same amount of information as the entire Internet 
[6, 7]. Typically, a human brain has about 200 billion nerve cells, 
connected via trillions of synapses, which is more than all the com-
puters and routers and Internet connections on Earth [8, 9]. Human 
brain cells, primarily neurons and synapses, perform both data stor-
age and data processing [10]. In contrast, computers separate data 
storage from data processing, and must spend considerable ener-
gy moving data [10]. The adult brain is extraordinarily energy effi-
cient requiring only about 20 watts of power [10, 11]. A brain can 
perform an exaflop (billion-billion) mathematical operations per 
second with 20 watts of power, as compared to an advanced su-
percomputer that required 20 megawatts for the same computa-
tions, a million times more power [11].

Human intelligence is very different from AI. Human intelligence 
deals with uncertainty, and responds to very small amounts of data 
[12]. Humans evaluate the trustworthiness of new information, 
and integrate it with accumulated wisdom [13]. Humans frame de-
cision making using mental models that allow us to understand 
and make abstractions [13, 14]. Causality is a fundamental aspect 
of human decision making, and causal knowledge underlies much 
of what humans do even if we don’t understand the underlying 
mechanisms [15]. Human reasoning about cause and effect allows 
humans to ask why [16]. Human evaluation of information includes 
the creation of constraints, abstractions, and counterfactuals, such 
that different answers will be given to people having the same data. 
In contrast to human intelligence, AI systems do not understand 
causality [17]. AI does not capture human understanding that if x 
causes y, it does not mean that y causes x [17]. AI cannot ask why 
[16]. AI cannot create constraints or counterfactuals, or generate 
abstractions [14]. AI assumes that the same inputs will always re-
sult in the same prediction [18]. Judea Pearl noted that although 
the achievements of modern deep learning AI are impressive, they 
can be described today as “curve fitting” [17].

Artificial intelligence technical challenges
The physician should expect technical challenges during the im-
plementation of clinical AI prediction tools. Currently most AI, in-
cluding in medicine, is based on data-intensive machine learning 
(ML) methods [19, 20]. ML uses very large training datasets to de-
termine the best model (data variables and equations) for predict-
ing an outcome, with the model remaining an opaque black box. 
The accuracy of the clinical AI prediction tools is tied to the train-
ing data where better quality data produces better quality predic-
tions. The electronic medical records (EMR) and claims data that 
are routinely used as training data in medicine have quality prob-
lems related to inaccuracy, missing data, biases, coding errors, lack 
of diversity, unrepresentative samples, and lack of vendor software 
interoperability [21]. There are additional data quality concerns for 

psychiatry due to the high frequency of missing behavioral health 
data in the EMR [21, 22]. Compared to nonmedical domains, the 
size of training data available for clinical AI prediction tools in psy-
chiatry is much smaller [23], and a small training data size will de-
crease the accuracy of predictions [24, 25]. It is harder to test ML 
applications than conventionally coded applications [26], and there 
is no standard for communicating the amount of uncertainty in a 
ML prediction [27].

Another area of concern with the data used to train ML clinical 
AI prediction tools is dataset shift, where the data collected from 
the population used to train the model is different from the popu-
lation where the model is deployed. When a clinical AI prediction 
tool is implemented in a setting where the patient population char-
acteristics differs from the training data, AI often does not perform 
well [28–30]. Many diverse factors contribute to dataset shift in 
medicine including changes in patient demographics, standards of 
care, treatment practices, disease prevalence, and technology use 
[28]. Additionally, there is a reproducibility crises in all scientific 
fields that use ML [31], including healthcare [32], and a need to ad-
dress the reproducibility challenge for clinical AI prediction tools 
[33–35]. The problem of reproducibility of ML models emphasizes 
the need for validated clinical AI prediction tools that have received 
approval from appropriate regulatory bodies.

Formal implementation process
A carefully considered, clearly defined process for implementing 
clinical AI technology in medical settings will improve the quality 
of the results. Despite the high expectations, there is a well docu-
mented productivity paradox, a delay in years between the adop-
tion of a new technology and productivity increases, including in 
medicine [21]. The introduction of any new clinical technology, in-
cluding AI prediction tools, will change the workflow, often in un-
expected ways, and may result in new types of human errors and 
failure paths [36]. Physicians, clinical support staff, management 
and technical staff should all be involved in selection, implementa-
tion, and ongoing product monitoring and maintenance of clinical 
AI prediction tools [37]. This includes physician training, workflow 
changes and clinical impacts, product testing, integration into cur-
rent systems, and ongoing monitoring and reporting of product 
performance and accuracy [37]. In medicine, many clinical AI pre-
diction tools are developed internally. This is very expensive in the 
long-term, as the ongoing costs to maintain reliable systems are 
much higher for ML than for traditional software [38]. Vendor con-
tracts for clinical AI prediction tools should explicitly define respon-
sibilities related to ML maintenance, administration, and enhance-
ments.

Expect artificial intelligence errors
A fundamental assumption by physicians in an AI implementation 
should be that clinical AI prediction tools will make errors. There 
will be errors from any predictive model, whether based on AI or 
traditional statistics. The consequences of false positives, false neg-
atives, and other errors will vary with the situation [24]. Much of 
the commercial use of AI is for low risk situations, such as a prod-
uct recommendation on Amazon, where the costs of errors are fi-
nancial [24]. In contrast, the potential impacts of errors from clin-
ical AI prediction tools in medicine emphasize the need for human 
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oversight and error tracking. The clinical AI prediction tools must 
perform in exceptional situations and boundary cases, as well as 
during routine activities. AI tools are not good at predicting rare 
events [24]. The results of AI prediction tools may conflict with cur-
rent practice guidelines [39]. The results of an AI prediction could 
be plausible but incorrect, and potentially dangerous for an indi-
vidual patient [40]. Additionally, when the result from an opaque 
black box algorithm is incorrect, it is not clear what went wrong or 
what should be fixed [41]. Physicians who learned their skills based 
on interpretation of raw data values may not function as well when 
only a prediction is presented [36]. AI failures may lead to unex-
pected safety hazards not seen previously, emphasizing the impor-
tance of physician training on potential ML dysfunction [42].

A comprehensive implementation plan for AI will include error 
tracking and implementing enhancements as an integral part of 
using any ML tool. There must be clearly defined and documented 
methods for physicians who use clinical AI prediction tools to iden-
tify, record and track errors. Physicians must understand what is 
expected of them in relation to error reporting and tracking. A 
framework for continuous tracking and reporting of errors in clini-
cal AI prediction tools is especially important with ML, due to lack 
of model transparency, including for some Food and Drug Admini-
stration- approved ML tools [43].

Central importance of humans
An AI implementation plan must recognize that humans are cen-
tral to the successful use of clinical AI prediction tools. The diverse 
types of errors from clinical AI prediction tools, and potential for 
serious consequences, highlights the importance and need for 
human intelligence in the process [24]. Increasing complexity in an 
automated system increases the need for human judgement and 
situational awareness when unexpected errors occur [36, 44]. The 
implementation of clinical AI prediction tools must ensure ade-
quate physician review such that predictions can be overridden if 
necessary. Unlike ML, human clinical decision making is tied to con-
text [36, 45]. The black-box nature of ML can make it difficult to de-
tect biases, understand, or trust the results [43, 46]. Although there 
are ongoing efforts to provide explainability to ML models, there 
are limitations and drawbacks to explainability techniques [47, 48]. 
There are also complex problems in medicine where humans disa-
gree on what is the best solution. Concern about the quality of evi-
dence available for many clinical AI prediction tools is widespread, 
along with recognition of the need to improve and expand govern-
ment regulation [49, 50].

Unintended consequences of artificial intelligence
The implementation of any new technology, including AI, results 
in unintended consequences [36, 51, 52]. The introduction of AI 
into routine clinical practice can lead to overreliance on the tech-
nology, automation bias and complacency. Automation bias occurs 
when the user gives greater authority to automated advice than to 
other sources of advice [53]. The risk for automation bias increases 
when it is hard to verify if automation is performing correctly, as 
found in clinical medicine [54]. Automation complacency occurs 
when a user in a multitasking environment focuses on the manual 
tasks, not noticing errors in the automated tasks [53]. One concern 

is that most psychiatrists have no formal training in technology and 
may be unaware of the risks and drawbacks of AI [55]. Another pos-
sible consequence of using AI is that overreliance on AI will lead to 
deskilling, reducing the clinical knowledge and the patient com-
munications and examination skills of a physician [45, 56].

Limitations
There are many limitations to this discussion. With a focus on im-
plementation, the important topic of validation standards was not 
discussed. Unsolved technical issues with ML that may negatively 
impact safety, including biases, the presentation of uncertainty in 
results [57] and cybersecurity [58, 59], were not discussed. The use 
of interpretable rather than ML models was not discussed [60]. The 
unique challenges for ongoing governing and regulating of ML in 
healthcare were not reviewed [49, 61]. Specific measures to miti-
gate the risks of implementation of AI were not discussed. Legal is-
sues including physician responsibility and liability for related er-
rors made by AI products were not included [62, 63].

Conclusion
The use of clinical AI prediction tools should emphasize the impor-
tance of human intelligence. The fundamental determinant of im-
plementation success will be human understanding of how AI tech-
nology performs in routine and exceptional situations. Human in-
telligence, creativity, situational awareness, and professional 
knowledge is required to interpret, integrate, handle results, and 
recognize exceptions. Implementation of a clinical AI prediction 
tool may assist a physician, after the results are evaluated in the ap-
propriate context for the individual patient. Physicians must be in-
volved in all aspects of the selection, implementation, and ongo-
ing product monitoring of clinical AI prediction tools.
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