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Dietaryparametershavea strong influenceonoverall health in
various ways. For instance, it affects the physiology of blood
vessels. Consumption of western diet (WD) dysregulates the
arterial homeostasis and promotes the development of
atherosclerotic plaques in the intimal layer of arteries.1 Inter-
estingly, it was recently described that WD also alters the
composition and function of blood vessels in the bone mar-
row,2 structures which are considered to play a pivotal role in
the microenvironment or niche that tightly controls hemato-
poiesis.3 Endothelial cells as well as perivascular cells such as
pericytes, mesenchymal stem cells, and CXCL12-abundant
reticular cells that are found in bone marrow arteriolar and
sinusoidal vessels regulate the maintenance of hematopoietic
stem cells (HSCs).4,5 Thus, modifications of the architecture
and/or the features of the bonemarrow vascular networkmay
have dramatic effects on hematopoiesis. Long-term and per-
manentWDwas shown tomodify the anatomyof the vascular
bone marrow niche and HSC biology.2 It remains unknown
whether a short-term and acute WD regimen would be suffi-
cient to initiate modifications of the bone marrow physiology
and whether these alterations would be reversible.

We therefore investigated the effects of different short-term
WDconditions (►Fig. 1A) on thebonemarrowvasculature and
hematopoiesis in Apoe�/� hypercholesterolemic mice (see also
►Supplementary Methods [available in the online version]).
First, microscopic three-dimensional visualization of optically

cleared bones allowed us to assess the density of the bone
marrow vessel network using laminin as a marker for vessel
density and early remodeling (►Fig. 1B and►Supplementary

Fig. S1A, available in theonlineversion), revealing that 4weeks’
regimen ofWD (chronicWD group) promoted the remodeling
of arterioles (lamininhigh endoglin�)6 but not sinusoids (lam-
ininþ endoglinþ;►Fig. 1B, C and►Supplementary Fig. S1B, C,
available in the online version). Moreover, 1 week of WD only
(lateWDgroup)was already sufficient to induce a similar effect
with upregulated laminin expression (►Fig. 1B, C and
►Supplementary Fig. S1B, C, available in the online version),
suggesting that remodeling of the bone marrow arterioles by
WD is an acute and rapid process. Next, we tested whether
these fast changes observed in the arterioleswere reversible. To
this end, WD was fed to a group of mice for 1 week only and
thereafterwas replacedbyachowdiet for thefollowing3weeks
(early WD group). Surprisingly, the enhanced laminin expres-
sion in bone marrow arterioles was maintained after the
interruption of WD for the remaining weeks. Of note, none of
thedifferentconditions(chronic, late, andearlyWD)alteredthe
density of the bone marrow sinusoids (►Fig. 1B and
►Supplementary Fig. S1B, C, available in the online version).
Altogether, these findings highlight that short-term WD not
only induces a fast remodeling of the bone marrow arterioles,
but also that these alterations remain present for a prolonged
period of time.

The bone marrow vascular network was suggested to
serve as a niche and under steady state, HSCs reside in close� These authors contributed equally to this study.
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vicinity of arterioles or sinusoids.4 Since arteriolar laminin
expression was already increased by short-term WD, we
investigated the relationship of HSCs with these vessels.7

Three-dimensional computation of HSC–vessel spatial rela-
tionships at a single-cell level revealed that permanent WD
strongly increased the proximity between HSCs (Lin�,
CD150þ, CD48�)7,8 and arterioles (►Fig. 1D). Although less
pronounced, we could detect a similar effect after 1 week of
WD at late or early time point (►Fig. 1D). Given the impor-
tance of bone marrow niche on HSC homeostasis, we subse-
quently evaluated the contribution of the short-termWD on
HSC counts. Flow cytometry analysis revealed that, in chron-
ic, late, and early conditions of WD, numbers of HSCs were
decreased (►Fig. 1E). We hypothesized that this reduction
was the consequence of a deterioration in themaintenance of
HSCs. However, we did not observe any changes in apoptosis
(►Supplementary Fig. S1D, available in the online version).
We then reasoned that short-termWD induced the differen-
tiation of HSCs into a downstreampopulation, namelymulti-
potent progenitors (MPPs).9 Indeed, the numbers ofmyeloid-
biased MPP (a.k.a. MPP3)9 were greater in all groups of mice
that were fed a short-term WD compared to control mice
(►Fig. 1F), whereas proportions of lymphoid-primedMPP (a.
k.a. MPP4)9 remained unchanged (►Supplementary Fig. S1E,
available in the online version). We then investigatedwheth-
er the expansion of the myeloid-biased MPP population
correlated with an increase in myeloid cells. The different
WD conditions led to elevated numbers of neutrophils and
monocytes in the bone marrow (►Fig. 1G, H). Subsequently,
we examined whether this expansion had an impact on

blood cell counts. Circulatingmonocytes showed an increase
in all WD conditions (►Fig. 1J), while higher neutrophil
counts were only detected in the late WD group (►Fig. 1I).
To understand the mechanisms involved in neutrophil and
monocyte mobilization, we assessed the plasma levels of the
chemokines CXCL110 and CCL2.11 We observed higher
levels of CXCL1 in the plasma of the late WD group
(►Supplementary Fig. S1F, available in the online version),
providing an explanation for the increased presence of
neutrophils in circulation within this group. However,
CCL2 levels remained unaffected in all WD groups
(►Supplementary Fig. S1G, available in the online version),
suggesting the involvement of another mechanism in their
mobilization. Together, these findings indicate that short-
termWD after 1 week (late WD group) induces an accelerat-
ed differentiation of HSC to MPP3 and led to an increase of
myeloid cell production. Interestingly, our data further imply
that these effects are long lasting since the upregulation of
myelopoiesis could still be observed even after suspension of
WD (early WD group).

HSCs are by definition key in maintaining proper hemato-
poiesis, and a loss of HSCs can have significant consequences
on the production of hematopoietic cells. In our study, we
observed a significant decrease in HSC numbers across all
short-termWD groups (►Fig. 1E). To further investigate their
maintenance, we examined whether the proliferation of the
remainingHSCswas affected. UtilizingKi67 staining,we found
that 62% of HSCs in Apoe�/� mice on a chronic WD were
positive, whereas only 24% of HSCs in chow-fed Apoe�/� mice
showed positivity (►Fig. 1K). Notably, we also observed an
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Fig. 1 Short-term WD alters bone marrow physiology. (A) Schematic representation of dietary interventions. Apoe�/� mice were fed either a
chow diet (CD) for 4 weeks (control), western diet (WD) for 4 weeks (chronic WD), 3 weeks of CD followed by 1 week of WD (late WD) or 1 week of
WD followed by 3 weeks of CD (early WD). (B) Representative confocal microscopy 3D reconstruction of HSC (Lin� CD48� CD150þ, white
spheres), sinusoids (lamininþ endoglinþ, red structure), and arterioles (lamininhigh endoglin�, green structure) in optically cleared whole mount
bone marrow from Apoe�/� fed CD (control) or WD (chronic, late and early groups). Scale bar¼ 50 µm. (C) Quantification of the density of
bone marrow arterioles. n¼ 9 random field of views pooled from three mice per group. (D) Distance between HSCs and arterioles in bone
marrow. Distribution quartiles were defined as Q1 �11.67 µm, Q2 �35.2 µm, Q3 �75.66 µm, and Q4 �75.67 µm. n¼ 601 HSCs (control group),
n¼ 442 HSCs (chronic group), n¼ 405 HSCs (late group), and n¼ 455 HSCs (early group) from three mice per group. p< 0.001 (χ2 test).
(E) Numbers of HSCs (Lin� Sca1þ c-Kitþ CD150þ CD48�) in the bone marrow of Apoe�/�mice fed with CD (control) or WD (chronic, late, and early
groups) assessed by flow cytometry. (F) Numbers of myeloid-biased MPP3s (Lin� Sca1þ c-Kitþ CD150� CD48þ Flt3�) in the bone marrow of
Apoe�/� mice fed with CD (control) or WD (chronic, late, and early groups). (G) Numbers of polymorphonuclear neutrophils (CD45þ

CD11bþ CD115� Ly6Gþ) in the bone marrow of Apoe�/� mice fed with CD (control) or WD (chronic, late, and early groups). (H) Numbers of
classical monocytes (CD45þ CD11bþ CD115þ Ly6Cþ) in the bone marrow of Apoe�/� mice fed with CD (control) or WD (chronic, late, and
early groups). (I) Numbers of polymorphonuclear neutrophils (CD45þCD11bþCD115� Ly6Gþ) in the blood of Apoe�/�mice fed with CD (control)
or WD (chronic, late, and early groups). (J) Numbers of classical monocytes (CD45þ CD11bþ CD115þ Ly6Cþ) in the blood of Apoe�/� mice
fed with CD (control) or WD (chronic, late, and early groups). (K) Percentage of Ki67þHSCs Lin� Sca1þ c-KitþCD150þCD48�) in the bonemarrow
of Apoe�/� mice fed with CD (control) or WD (chronic, late, and early groups). All experiments presented in panels (C) and (E–J) were
performed with n¼ 12 mice per group from three independent experiments, except the experiment depicted in (K) that was performed with
n¼ 8 mice per group from two independent experiments. Mean� SEM. One-way ANOVA test. �p< 0.05, ��p< 0.01, and ���p< 0.001. 3D,
three-dimensional; HSCs, hematopoietic stem cells; SEM, standard error of the mean.
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increased percentage of Ki67-positive HSCs in the late WD
group (55% of HSCs) and the early WD group (43% of HSCs).
Collectively, these findings suggest that, after differentiating
intoMPPs, the remaining HSCs undergo proliferation, likely to
maintain their pool. Furthermore, this proliferation of HSCs
occurs rapidly and continues over an extended period, as
evidenced by increased HSC proliferation in both the late
and early WD groups.

Clonal hematopoiesis (CH) is characterized by the prolifer-
ation of a specific clone of HSCs, with or without a genetic
mutation, and is commonly associated with the aging
process.12 Certain somatic mutations in CH have been found
to contribute to atherosclerosis by affecting the behavior of
myeloid cells.13 More recently, it has been shown that
increased proliferation of HSCs by long-term WD in athero-
sclerosis condition accelerates the emergence of CH.14 Our
data suggest that short-term WD can trigger the initiation of
CH, primarily through neutral drift andmore specifically via a
bottleneck effect, and potentially provides an explanation for
the subsequent appearance of CH described with prolonged
exposure to WD. Indeed, the initial drastic reduction of HSC
pool size following short-term WD, especially observed after
1 week of WD (in the late group in ►Fig. 1E), leads to the
constitution of a smaller number of HSC clones (38% of the
initial pool). The expansion of these limited clones, that is
already noticeable 3 weeks after the cessation of WD (early
group in ►Fig. 1E), will inevitably promote the emergence of
CH, regardless of genetic mutations. It is worth noting that
even in a healthy hematopoietic system, small clones carrying
mutations can exist.15 If one of these clones harboring a
mutation proliferate, it will then become over-represented
in the context of WD-induced hematopoiesis.14 Alternatively,
as uncontrolled proliferation increases the likelihood ofmuta-
tions, it raises the probability that one clone acquires driver
mutations and dominates over others if there is a selective
advantage for the variant.

The environment of the bone marrow niche plays an
important role in hematopoiesis.3,4 The function of the
arterial niche for the maintenance of HSCs has been contro-
versial. A proportion of HSCs was shown to associate with
arterioles and molecular factors produced by vascular
endothelial cells and perivascular cells as well as a microen-
vironment low in reactive oxygen species were proposed to
maintain HSC quiescence.16–19 In contradiction to these
findings, it was also shown that quiescent HSCs were closely
associatedwith sinusoids, while arterioles did not play a role
in HSC maintenance.7,20,21 Our findings suggest that a
disturbed microenvironment centered around arterioles,
and induced by a brief consumption of WD, results in the
activation (differentiation and/or proliferation) of HSCs. In
our study, laminin was utilized for the identification of
bone marrow arterioles which showed a clear increase of
this extracellular matrix protein upon WD stimulus. Inter-
estingly, an altered production of lamininmay be considered
as an early hallmark of vascular remodeling.22 Moreover, it
was shown that bone marrow laminins serve as adhesive
substrates23 to HSCs and regulate their maintenance.24

Potentially, additional changes in the activated bonemarrow

niches that occur in parallel of laminin expansion could
influence the maintenance of HSCs. Nevertheless, it is con-
ceivable that short-term WD activates bone marrow arterial
endothelial and perivascular cells, which leads to an increase
of laminin production in arterioles and consequently affects
HSC biology. The exact reason behind the prolonged impact
of WD on laminin levels after WD cessation remains uncer-
tain. However, it is possible that the turnover of laminin,
which relies on a delicate balance between synthesis
and degradation processes,25 might be influenced in this
particular context. It is conceivable that cells surrounding
arterioles could remain active for an extended period even
after WD discontinuation and continue to produce laminin.
Alternatively, the onset of laminin degradation, facilitated by
enzymes like metalloproteinases and proteases, could be
slower in this scenario.

In conclusion, our data show that a brief exposure to WD
induces a rapid and sustained alteration of the bone marrow
physiology. This may have deleterious effects in mounting an
efficient immune response26 and could have harmful conse-
quences in thedevelopmentof an inflammatory response.13,14

Further research is required to understand the regulatory
pathways involved in the sustained remodeling of bone mar-
row niches and its consequences on hematopoiesis.
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