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ABSTRACT

Purpose Carotid ultrasound allows noninvasive assessment of

vascular anatomy and function with real-time display. Based

on the transfer learning method, a series of research results

have been obtained on the optimal image recognition and

analysis of static images. However, for carotid plaque recogni-

tion, there are high requirements for self-developed algorithms

in real-time ultrasound detection. This study aims to establish

an automatic recognition system, Be Easy to Use (BETU), for

the real-time and synchronous diagnosis of carotid plaque

from ultrasound videos based on an artificial neural network.

Materials and Methods 445 participants (mean age, 54.6

± 7.8 years; 227 men) were evaluated. Radiologists labeled a

total of 3259 segmented ultrasound images from 445 videos

with the diagnosis of carotid plaque, 2725 images were col-

lected as a training dataset, and 554 images as a testing data-

set. The automatic plaque recognition system BETU was es-

tablished based on an artificial neural network, and remote

application on a 5G environment was performed to test its di-

agnostic performance.

Results The diagnostic accuracy of BETU (98.5 %) was consis-

tent with the radiologist’s (Kappa = 0.967, P < 0.001). Remote

diagnostic feedback based on BETU-processed ultrasound

videos could be obtained in 150ms across a distance of‡ These authors contributed equally.
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1023 km between the ultrasound/BETU station and the con-

sultation workstation.

Conclusion Based on the good performance of BETU in real-

time plaque recognition from ultrasound videos, 5G plus Arti-

ficial intelligence (AI)-assisted ultrasound real-time carotid

plaque screening was achieved, and the diagnosis was made.

ZUSAMMENFASSUNG

Hintergrund Der Karotis-Ultraschall ermöglicht eine nicht

invasive Beurteilung der Anatomie und Funktion von Gefäßen

in Echtzeit. Auf der Grundlage der Transfer-Learning-Methode

wurden viele Forschungsergebnisse zur optimalen Bilderken-

nung und Analyse statischer Bilder gewonnen. Für die Erken-

nung von Karotisplaques bestehen jedoch hohe Anforderun-

gen an selbstentwickelte Algorithmen für die Echtzeit-

Ultraschall-Erkennung. Ziel der Studie ist es, ein automati-

sches Erkennungssystem – Be-Easy-to-Use (BETU) – für die

Echtzeit- und Synchrondiagnose von Karotisplaques aus Ultra-

schallvideos auf Basis eines künstlichen neuronalen Netzes zu

entwickeln.

Zu Material und Methoden 445 Teilnehmer (Durchschnitts-

alter: 54,6 ± 7,8 Jahre; 227 davon Männer) wurden unter-

sucht. Radiologen stellten bei insgesamt 3259 segmentierten

Ultraschallbildern aus 445 Videos die Diagnose „Karotis-

plaque“; 2725 Bilder wurden als Trainingsdatensatz und

554 Bilder als Testdatensatz gesammelt. Das automatische

Plaque-Erkennungssystem BETU wurde auf Basis eines künstli-

chen neuronalen Netzes etabliert, und dessen diagnostische

Leistung wurde durch eine Remote-Anwendung in einer 5G-

Umgebung getestet.

Ergebnisse Die diagnostische Genauigkeit von BETU (98,5 %)

stimmte mit der des Radiologen überein (Kappa = 0,967;

p < 0,001). Ein auf den BETU-prozessierten Ultraschallvideos

basierendes Ferndiagnose-Feedback konnte in 150ms über

eine Entfernung von 1023 km zwischen dem Ultraschall-/BETU-

System und dem Konsultations-Bildschirm erhalten werden.

Schlussfolgerung Basierend auf der guten Leistung von BETU

bei der Echtzeit-Plaque-Erkennung aus Ultraschallvideos

wurde ein 5G- plus durch künstliche Intelligenz (KI) gestütztes

Echtzeit-Ultraschall-Screening von Karotisplaques durchge-

führt und die Diagnose gestellt.

Introduction

Atherosclerosis is a major cause of cerebrovascular diseases, and
establishing its diagnosis entails a series of critical medical exam-
inations to prevent cerebral and cardiovascular events [1, 2]. The
intima-media thickness (IMT) of the common carotid artery (CCA)
is one of the most common indicators of cardiovascular disease
(CVD) development. Carotid IMT provides the first morphological
evidence of atherosclerosis, whereas carotid plaques are stronger
predictors of CVD than carotid IMT [3]. The risk of stroke increases
with the severity of carotid stenosis [4, 5, 6]. The determination of
IMT, delineation of the atherosclerotic carotid plaque, measure-
ment of carotid artery diameter, and grading of its stenosis are
important factors for the evaluation of atherosclerosis disease [7].

Magnetic resonance imaging (MRI) is currently the most well-
established imaging modality for plaque characterization, with its
high resolution and high sensitivity for identifying intraplaque he-
morrhage, ulceration, lipid-rich necrotic core, and inflammation
[8]. However, MRI is a time-consuming imaging modality. More-
over, protocols allowing high-resolution carotid plaque character-
ization are mainly used for research purposes [9]. CT also allows
for high-resolution imaging and can accurately detect ulceration
and calcification. However, CT scans involve radiation, and high-
resolution CT images need contrast media imaging, which is not
suitable for extensive repetitive screening and follow-up [8].

Carotid ultrasound (US) is one of the several imaging modal-
ities allowing noninvasive assessment of vascular anatomy and
function [10]. Considering that US is a time-saving, convenient,
and economical modality, with real-time display, it is recommen-
ded as the first-line imaging modality for the assessment and
screening of carotid IMT, plaque, and artery stenosis [11, 12].
However, in contrast to MRI and CT, US imaging needs to collect

dynamic images of different sections for real-time diagnosis,
whereas other imaging modalities can establish the diagnosis
based on static images. The acquisition and diagnosis of US ima-
ges are highly dependent on the radiologist’s experience. Unsatis-
factory repeatability caused by the subjective dependence of op-
erators is an important bottleneck for the standardization and
homogenization of US imaging. Due to the complexity of medical
images themselves, even experienced doctors may formulate dif-
ferent conclusions during the diagnosis process [13]. The intro-
duction of high-resolution ultrasonography associated with com-
puter-assisted methods for carotid plaque analysis has made it
possible to standardize the ultrasonographic imaging characteris-
tics. Therefore, it is of great importance and urgency to develop
methods that can automatically identify carotid IMT and plaque
based on static or dynamic US video imaging [7, 14].

Deep learning, especially convolutional neural networks
(CNNs), has been applied to medical image processing in several
studies, providing new ideas and methods for medical imaging di-
agnosis [15, 16, 17]. The high variability of ultrasonic images is a
difficult problem in artificial intelligence (AI) imaging diagnosis.
Recently, the main research field is focused on the thyroid, breast,
and liver [18, 19]. Based on the transfer learning method, a series
of research results have been obtained on the optimal image re-
cognition and analysis of static images, and high accuracy has
been achieved [20, 21, 22]. However, in real-time detection, the
number of mainstream algorithms available for transfer learning
is limited and is based on the You Only Look Once (YOLO) series
algorithms. YOLO is a framework to solve the problem of target
detection speed. As the recognized deep neural network in the
field of AI, real-time analysis and efficiency are the most promi-
nent features and advantages of YOLOv4.
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This study aimed to establish an automatic recognition system,
Be Easy to Use (BETU), for carotid plaques based on the frame-
work of YOLOv4, achieving real-time and synchronous diagnosis
during US examination to help sonographers screen and assess
the burden of carotid plaques. In this study, cross-sectional ima-
ges captured from the carotid US dynamic video were annotated
by experienced sonographers to extract the features of carotid
plaques. Based on the recognition of carotid plaques by BETU,
we discussed the diagnostic performance of BETU and compared
the recognition effect in images acquired from different ultraso-
nic devices.

Materials and Methods

Study population

In this study, individuals with stroke and those who were less than
40 years old or above 80 years old were excluded (▶ Fig. 1). Final-
ly, 445 participants were enrolled randomly in our retrospective
study. The baseline characteristics of the study population are
presented in ▶ Table 1. Institutional review board approval was
obtained. All of the examinations were performed in accordance
with relevant guidelines and regulations. Written informed con-
sent was obtained from all participants.

Instruments and data acquisition

All participants underwent carotid artery ultrasound and brain
magnetic resonance examination. For all participants, US data for

the CCA, internal carotid artery (ICA), and external carotid artery
(ECA) were obtained in B-mode (grayscale) as longitudinal and
transverse sections using an Esaote MyLab (Esaote, Genoa, Italy)
with a linear 5–13-MHz transducer (LA523), Philips Lumify (Philips
Healthcare, Eindhoven, Netherlands) with a linear 4–12-MHz
transducer (L12–4), or Kangda i-M20 (Kangda Intercontinental
Medical Equipment, Zhejiang, China) with a linear 4–12-MHz
transducer (L154BH). Philips Lumify and Kangda i-M20 are porta-
ble ultrasonic devices. Each participant’s left and right CCA, caro-
tid bulb, and portions of the ICA and ECA were scanned by a train-
ed sonographer (with more than 10 years of US experience). The
cross-sectional US dynamic video frame rate was 20 frames per
second (FPS).

The ultrasonic device was connected to a portable computer
through a High-Definition Multimedia Interface. The portable
computer collected US video in real time and transmitted the US
dynamic videos to the server for calculation through the Real-
Time Streaming Protocol. The actual deployed server configura-
tion was as follows: processor Intel i5 8400 2.8GHz (six-core),
16G memory, 240G solid state drive, 4G graphics card GTX
1080ti, 500W power supply, and built-in system CentOS7.4. After
the server calculated the data, the returned results were displayed
on a portable computer.

Brain MRI was obtained from a single 3 T Skyra scanner (Sie-
mens, Erlangen, Germany). The 3 D T1-weighted images using
magnetization-prepared rapid gradient-echo sequence (repetition
time [TR] 2,530 milliseconds, echo time [TE] 3.43 milliseconds, vox-
el size 1 × 1 × 1.3mm3, flip angle 8°, 144 sagittal slices), fluid-atten-
uated inversion recovery images (TR 8,500 milliseconds, TE 81 mil-
liseconds, slice thickness 5 mm, gap 1 mm, 20 axial slices),
susceptibility-weighted images (TR 20 milliseconds, TE 27 millise-
conds, slice thickness 1.5mm, flip angle 15°, 80 axial slices), and
3D time-of-flight magnetic resonance angiography (TR 21 millise-
conds, TE 3.43 milliseconds, voxel size 0.3 × 0.3 × 0.6mm3, flip an-
gle 18°, 136 axial slices) were included in the routine protocol.

Ultrasound characterization of atherosclerotic plaque

IMT is a double-line pattern, which consists of the leading edges
of two anatomical boundaries. The lumen-intima and media-ad-
ventitia interfaces form the two boundaries. Based on the Stand-
ards for Carotid Ultrasound Examination in Healthy Subjects in
China [23], plaques are focal structures encroaching into the ar-
terial lumen of at least 0.5mm or 50% of the surrounding IMT val-
ue or that demonstrate a thickness > 1.5mm measured from the
intima-lumen interface to the media-adventitia interface
(▶ Fig. 2) [24].

Data preparation

Because of the color difference of the ultrasonic device, all the
segmented US images from the videos were automatically con-
verted to grayscale for training and recognition.

An anisotropic diffusion filter, an adaptive median filter, and
other filtering algorithms were used to process US images to test
whether they can improve accuracy. Finally, an adaptive bright-
ness adjustment algorithm was applied to all images. Adjusting

▶ Fig. 1 Participant selection flowchart.

▶ Table 1 Characteristics of the study population (n = 445).

All participants Mean ± SD or n (%)

Demographic/medical history

Age, years 54.6 ± 7.8

Sex, % male 227 (51.0)

Hypertension, n (%) 194 (43.6)

Prior diabetes, n (%) 100 (22.5)
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the brightness ensured that the brightness of the image was con-
sistent, and the image features were not lost.

According to the segmented US images, carotid plaques were
manually labeled and confirmed by two senior US doctors (with
more than 10 years of US experience).

The doctors reviewed the US images and drew bounding boxes
to identify the carotid arteries and plaques. Each carotid cross-
sectional image was labeled as “negative” or “positive” with the
plaque annotated in the image (▶ Fig. 3).

Different from other labeling methods, the plaque in the blood
vessel and half of the blood vessels were marked with a red box as
“plaque.” This will greatly reduce the loss of traditional methods
for the identification of plaques with different shapes, enhance
the understanding and recognition of intravascular plaque, and
ultimately improve the recognition rate.

In total, 3259 carotid artery cross-sectional images acquired
from 445 participants were labeled successfully.

An artificial intelligence automatic image recognition
model based on YOLOv4

The BETU system uses transfer learning as the main method to
train the model through high-performance target detection algo-
rithms such as YOLO and applies the training results to real-time

US video processing tasks for the rapid recognition of blood ves-
sels and vascular plaques. BETU also improves the dynamic recog-
nition performance using a target tracking algorithm.

BETU processes the original US videos with automatic match-
ing of the ultrasonic device, and only the area containing valid
data is reserved for calculation. This can increase the recognition
ability of BETU in plaque areas.

The cross-sectional dynamic US videos of each participant
were stored in a database to be segmented automatically by the
algorithm at 0.15-s intervals.

The core idea of the YOLO target recognition algorithm is to
transform the target recognition problem into a regression prob-
lem, which achieves rapid target recognition with only one deep
convolution network and high accuracy. YOLOv4 uses the im-
proved DarkNet-53 [19] network based on ResNet as the feature
extractor to improve the performance of small object recognition.
(▶ Fig. 4 and Supplementary figure).

The BETU system uses YOLOv4 as an algorithm for the rapid
detection of blood vessels and vascular plaques. In total, 2725 car-
otid artery cross-sectional images were randomly collected as the
training dataset. The remaining 554 images were collected as the
testing dataset.

To solve the problem with regard to capturing and tracking the
key features in the real-time recognition process of dynamic US vi-
deos, based on fast recognition, the BETU system tracks and dis-
plays the identified high-confidence feature targets through the
target tracking technology, such as Kalman filtering, to improve
the accuracy of recognition.

NVIDIA Tesla V100 graphics processing units (GPU) and GTX
1080Ti GPU were used for testing the dataset.

Application based on the BETU system

After the algorithm verification is completed, the fifth-generation
wireless system (5G) plus AI remote real-time assisted diagnostic
testing of carotid artery US was conducted between two cities
about 1023 km apart (▶ Fig. 5). The BETU system recognized the
real-time dynamic ultrasound images that were sent to the higher
level hospital based on the 5G network from community health
service centers in another city.

▶ Fig. 3 a Negative. The carotid artery without plaque was identi-
fied by the green bounding box and labeled as Negative. b Positive.
The carotid artery was identified by the blue bounding box and la-
beled as Positive, while the plaque was identified by the red bound-
ing box.

▶ Fig. 4 System logic structure diagram.

▶ Fig. 2 a Longitudinal view of the CCA. IMT is a double-line pat-
tern, which consists of the leading edges of two anatomical
boundaries. The lumen-intima and media-adventitia interfaces
form the two boundaries (shown by the two red arrows). b Trans-
verse view of the CCA. Plaques are focal structures encroaching into
the arterial lumen with a thickness > 1.5mm as measured from the
intima-lumen interface to the media-adventitia interface (shown by
the two ‘+’ marks).
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Statistical analyses

The differences in the interpretations of plaque-positive and pla-
que-negative CCA from different diagnostic methods were tested
using the chi-squared test. Based on the result confirmed by se-
nior US doctors, the sensitivity, specificity, positive predictive val-
ue (PPV), negative predictive value (NPV), and accuracy were cal-
culated to evaluate the diagnostic abilities of the BETU on CCA
plaque. The kappa test was used to check for consistency.
P < 0.05 was considered statistically significant. The statistical
software package SPSS 19.0 (IBM Corporation, Armonk, NY, USA)
was used for all data analyses.

Data Availability Statements

The data on which this article is based will be shared upon reason-
able request to the corresponding author.

Results

Diagnostic performance measurements

In the 3259 training dataset images, 1586 positive and 1673 neg-
ative images were confirmed by senior US doctors.

In the 554 testing dataset images, the results were as follows:
288 positive and 266 negative images were confirmed by senior
US doctors, whereas 287 positive and 267 negative images were
recognized in real time by BETU (▶ Fig. 6). ▶ Table 2 shows the re-
sults of the different device-sourced images recognized by the
BETU. The results were confirmed by brain MRI (▶ Fig. 7). MRI
can clearly show the lipid necrotic core, hemorrhage, calcification
and other components of the plaque and the status of the fibrous
cap. Different types of plaque have different appearances on MRI.

BETU and manual methods were consistent in the diagnosis of
CCA plaques (kappa = 0.967, P < 0.001).

The mean average precision of the BETU was 98.5 %. The BETU
yielded an accuracy, sensitivity, specificity, PPV, and NPV of 98.5 %
(95% confidence interval [CI]: 0.97–0.99), 98.3 %, 98.5 %, 98.6 %,
and 98.1 %, respectively.

Considering video segmentation, image scaling, engineering
algorithms, and other time losses, the detection speed based on
the NVIDIA Tesla V100 GPU was 39 FPS, which was higher than
the frame rate of the original videos, whereas the detection speed
based on the GTX 1080Ti GPU was 13 FPS.

Be Easy to Use performance between different
device-sourced images

The BETU yielded an accuracy, sensitivity, and specificity of 98.4 %
(95% CI: 0.97–1.0), 98.4%, and 98.4 %; 96.2 % (95% CI: 0.91–1.01),
95.0 %, and 96.9 %; and 99.2 % (95 % CI: 0.98–1.01), 98.8 %, and
100 % based on Esaote MyLab-sourced, Philips Lumify-sourced,
and Kangda i-M20-sourced images, respectively (▶ Table 3).

Comparison of the BETU performance between the different de-
vice-sourced images suggested that there were no significant differ-
ences in accuracy, sensitivity, and specificity among the three device-
sourced images (P=0.545, P=0.339, and P=0.493, respectively).

▶ Fig. 5 Practical application for remote consultation between two
cities across 1023 km in May 2021. a AI-powered carotid ultrasound
screening and remote consultation in community health service
centers of one city. b The remote consultation room and remote
consultation screen in a higher-level hospital.

▶ Fig. 6 The real-time results of the automatic recognition system.
a Negative carotid was recognized automatically with the green
bounding box and execution level of 1.00. b Positive carotid was
recognized automatically with the blue bounding box and execu-
tion level of 1.00, and the plaque was recognized with the red
bounding box and execution level of 0.99.

▶ Table 2 Results of testing dataset.

Devices Manual method YOLOv4

Positive Negative Positive Negative

MyLab (n = 375) 183 192 183 192

Lumify (n = 52) 20 32 20 32

i-M20 (n = 127) 85 42 84 43

N= 554 288 266 287 267

Wei Y et al. Real-time carotid plaque… Ultraschall in Med | © 2023. The Author(s).



Remote consultation application

With the advantages of 5G networks, such as high speed and low
delay, the scanning terminal of the BETU device in a 5G environ-
ment can reach a transmission speed of milliseconds. After the ac-
tual business test, within 1023 km, ultrasound video data could be
obtained, and assisted diagnosis results could be fed back within
150 milliseconds.

Discussion

AI-powered US has become a more developed tool that can be
commonly used in routine clinical applications in recent years be-
cause of the increased need for efficient and objective acquisition
and evaluation of US images. Recently, the main research field has
focused on the image analysis of static images from the thyroid,
breast, and liver [25]. In real-time dynamic detection, the number
of mainstream algorithms that can be used for transfer learning is
limited and most of them are based on YOLO series algorithms.
Compared with the traditional CNN for the recognition of carotid

plaque, real-time recognition of carotid plaque has rarely been
studied [26, 27, 28].

In our study, the results were confirmed by brain MRI. BETU
and manual methods were consistent in the diagnosis of carotid
plaques (kappa = 0.967, P < 0.001). This result is especially impor-
tant in developing countries with a large population and unba-
lanced medical resources. An AI system requires only a short
time (with millisecond resolution) for recognition. In reference to
the results of the AI system, the diagnosis time of the radiologists
can be effectively reduced, which simplifies CCA screening. Many
studies have focused on the automatic method for the recogni-
tion of carotid plaques [14, 15, 26, 27, 28]. In several earlier stud-
ies, cumbersome image preprocessing, complex computer analy-
sis, and lengthy computation time are required, which makes it
impossible to recognize plaques in real time. In our model, the re-
gions of interest (ROIs) were automatically labeled, and the pla-
ques were identified with accuracy, sensitivity, and specificity
comparable to those of experienced US doctors. Additionally, the
model established in this study achieves rapid recognition, en-
ables real-time and dynamic inspection in US examinations, and
has broad potential for clinical applications.

The core of AI is big data, computing power, and algorithms.
Due to the complexity of medical images themselves, even ex-
perienced doctors may formulate different conclusions during
the diagnostic process [17]. For computing power, in the field of
real-time detection, there are high requirements for strong data
computing power, which is difficult for large ultrasonic devices or
portable devices. For the algorithm, there are few mature frame-
works for real-time detection (object recognition) for transfer
learning. Without a solution to this problem, it is difficult to apply
AI in clinical practice.

Compared to other complex deep learning algorithms for clas-
sification, YOLO has defects regarding accuracy. It is difficult for
YOLO to achieve classification accuracy similar to other studies
on static images based on other algorithms with greater than
98% accuracy [29]. In the BETU system, an iterative mechanism
was added, and the training dataset was updated and retrained
through the results verified by experienced doctors. The final ac-

▶ Fig. 7 The plaque recognized by BETU was confirmed by brain
MRI. a Positive carotid was recognized automatically with the blue
bounding box and execution level of 1.00, as well as the plaque was
recognized with the red bounding box and execution level of 0.99.
b Carotid plaque was shown on brain MRI (↓).

▶ Table 3 YOLOv4 performance between various device-sourced images and the difference.

Devices P

MyLab (n =375) Lumify (n = 52) i-M20 (n = 127)

TP 180 19 84

TN 189 31 42

FP 3 1 0

FN 3 1 1

Accuracy 369/375 (98.4%) 50/52 (96.2%) 126/127 (99.2%) 0.545

Sensitivity 180/183 (98.4%) 19/20 (95.0%) 84/85 (98.8%) 0.339

Specificity 189/192 (98.4%) 31/32 (96.9%) 42/42 (100%) 0.493

TP: True positive. TN: True negative. FP: False positive. FN: False negative.
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curacy was increased by improving the interpretability of the pro-
gram throughout the project.

To achieve real-time recognition and detection, the software
with a response speed on the millisecond level is insufficient, and
it is necessary to solve the problems of hardware support or effi-
cient network transmission speed. Customized hardware can inte-
grate portable US devices with an industrial control computer
with a built-in professional GPU. A new type of portable US device
that contains a recognition program without a network is expect-
ed to be developed. The problem of efficient network transmis-
sion speed can be solved on the server side based on a 5G wireless
system.

This study reflects the advantages of ultrasound AI in real-time
diagnosis. The 5G network can assist sonographers to achieve ef-
ficient carotid plaque screening and diagnosis in remote consulta-
tion. However, this study has some limitations. The selection of
core algorithms is very important. With the continuous develop-
ment of AI and machine learning, more efficient algorithms may
appear in the future to replace the current algorithms. On the
other hand, 5G is characterized by high speed and low delay. It is
expected to be applied to ultrasonic remote diagnosis and treat-
ment with the development of 5G technology. However, the cur-
rent coverage is limited. The broadcast distance of the 5G net-
work is shorter than that of the 4G network, and the cost of base
station setup is higher, so there are still some difficulties in de-
ploying 5G network in remote areas.

Conclusion

BETU showed a good diagnostic performance in real-time plaque
recognition from ultrasound videos. Based on the good perform-
ance of BETU, 5G plus artificial intelligence (AI)-assisted ultra-
sound real-time carotid plaque screening and diagnosis were
achieved.
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