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Introduction
Obesity can be described as a disproportionate accumulation or 
organization of body fat and has become an increasingly important 
health problem worldwide, referred to as the obesity pandemic [1]. 
Obesity is usually assessed by measuring height and weight to cal-

culate the body mass index (BMI, kg/m2). Recently, however, it has 
emerged that this parameter is not an efficient predictor of mor-
tality risk and should be replaced by the estimation of percent body 
fat despite the complexity and high financial cost of assessment 
[2].
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ABstr Act

As a result of an unhealthy diet and limited physical activity, 
obesity has become a widespread pandemic worldwide and is 
an important predictor for the development of cardiovascular 
disease. Obesity is often characterized by a pro-inflammatory 
environment in white adipose tissue (WAT), mainly due to in-
creased macrophage infiltration. These immune cells boost 
their lipid concentrations by accumulating the content of dying 
adipocytes. As the lysosome is highly involved in lipid handling, 
the progressive lipid accumulation may result in lysosomal 
stress and a metabolic shift. Recent studies have identified gly-
coprotein non-metastatic melanoma protein B (GPNMB) as a 
novel marker of inflammatory diseases. GPNMB is a type I trans-
membrane protein on the cell surface of various cell types, such 
as macrophages, dendritic cells, osteoblasts, and microglia, 
from which it can be proteolytically cleaved into a soluble mol-
ecule. It is induced by lysosomal stress via microphthalmia-
associated transcription factor and thus has been found to be 
upregulated in many lysosomal storage disorders. In addition, 
a clear connection between GPNMB and obesity was recently 
established. GPNMB was shown to have protective and anti-
inflammatory effects in most cases, preventing the progression 
of obesity-related metabolic disorders. In contrast, soluble 
GPNMB likely has the opposite effect and promotes lipogenesis 
in WAT. This review aims to summarize and clarify the role of 
GPNMB in the progression of obesity and to highlight its po-
tential use as a biomarker for lipid-associated disorders.
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Obesity contributes to chronic diseases, including type 2 diabe-
tes (T2D), hepatic steatosis and steatohepatitis, cardiovascular dis-
ease, stroke, dyslipidemia, hypertension, and different types of can-
cers [3, 4]. Moreover, progressive caloric pressure on white adipose 
tissue (WAT) results in low-grade but persistent inflammation, 
called “metaflammation”, associated with increased macrophage 
infiltration responsible for the clearance of dysfunctional and dying 
adipocytes [5, 6]. Adipocytes and infiltrating immune cells can pro-
duce and release a plethora of chemokines and cytokines that me-
diate systemic inflammation in obese patients [7]. This continuous 
inflammatory status in WAT also leads to a metabolic switch from 
a storage to an inflammatory phenotype, causing ectopic lipid dep-
osition in secondary tissues such as the liver or muscle, which in 
turn results in deregulated systemic insulin signaling [8].

Adipose tissue macrophages (ATMs) play a central role in the 
development and progression of inflammation in WAT. In fact, in-
hibition or silencing of various mediators produced by these im-
mune cells was shown to be sufficient to ameliorate the multiple 
pathological consequences of obesity [9, 10]. By investigating the 
molecular mechanism of this polarization switch in macrophages, 
inositol-requiring enzyme 1a and peroxisome proliferator-activat-
ed receptor gamma were identified as important regulators in this 
process, as they create an inflammatory environment [11, 12]. To 
reduce WAT inflammation and adipocyte hypertrophy, caloric re-
striction is widely used as a treatment strategy. However, this ther-
apy paradoxically increases the number of ATMs and the expression 
of related cytokines in humans and mice [13–16]. In addition, var-
ious pharmacological approaches have been used in an attempt to 
reduce obesity. For instance, melatonin, a powerful antioxidant, 
has been demonstrated to reduce obesity-related problems by low-
ering inflammatory adipokines such as interleukin-6 (IL-6), mono-
cyte chemoattractant protein-1, leptin, and tumor necrosis 
factor-α [17]. The numerous beneficial effects of glucagon-like pep-
tide-1 (GLP-1) render this hormone an interesting candidate for the 
development of pharmacotherapies to treat obesity, diabetes, and 
neurodegenerative disorders [18]. In fact, a weekly dose of the GLP-
1R agonist semaglutide was associated with a sustained reduction 
in body weight [19]. In mice, semaglutide reduced adipocyte hy-
pertrophy and macrophage infiltration and activated adipocyte 
browning and mitochondrial biogenesis to promote weight loss 
[20].

Other studies focused on discovering the non-inflammatory role 
of immune cells induced in obesity. Under conditions of increased 
adiposity, secreted factors from WAT trigger a program of lyso-
some biogenesis in ATMs to buffer the huge amount of lipids from 
adipocytes [21]. Unexpectedly, ATMs from obese mice do not po-
larize toward one of the classical M1 or M2 phenotypes. The au-
thors, therefore, hypothesized that these are not qualitative chang-
es in the expression profile of ATMs, but that these cells increase in 
number and, thus, no clear polarization was observed [21]. Obesi-
ty reprograms ATMs into a pro-inflammatory metabolically acti-
vated state that is transcriptionally, mechanistically, and function-
ally distinct from M1- or M2-like phenotypes [22]. A unique pleio-
tropic phenotype in WAT health has been attributed to these 
macrophages, which varies between beneficial (removal of dead 
adipocytes) and deleterious (release of pro-inflammatory cy-
tokines) determined by the duration of high-fat diet feeding, at 

least in mice [23]. Single-cell RNAseq studies have recently identi-
fied a new macrophage subset induced during obesity, termed li-
pid-associated macrophages, characterized by the expression of 
triggering receptors expressed on myeloid cells 2 [24]. These cells 
appear to activate an expression profile that involves phagocyto-
sis, lipid catabolism, and lysosomal pathways, which is a common 
phenotype of macrophages in different inflamed tissues such as 
the liver, brain, and atherosclerotic plaques [24–27].

In the last 10 years, the search for new genes that are differen-
tially regulated in the WAT of obese mice has substantially in-
creased. The discovery that glycoprotein non-metastatic melano-
ma protein B (GPNMB) is highly expressed in the WAT of obese an-
imals [28], opened the way for many studies on this protein. This 
review aims to emphasize the importance of GPNMB in the context 
of ATMs, lysosomal function, and obesity.

Structure, function, and regulation of glycoprotein 
non-metastatic melanoma protein B
GPNMB was first identified in 1995 in a screen using high and low 
metastatic human melanoma cell lines [29]. It is a type I transmem-
brane glycoprotein, also known as osteoactivin or dendritic cell 
heparan sulfate proteoglycan integrin-dependent ligand [30, 31]. 
GPNMB was detected in a range of cell types, including osteoblasts 
and osteoclasts in bone, melanocytes, keratinocytes, microglia in 
the central nervous system, as well as macrophages and dendritic 
cells [31]. It was found to be increased in a variety of inflammatory 
diseases such as colitis, renal diseases, different types of cancers, 
and neurodegenerative disorders [32, 33]. In addition, GPNMB was 
associated with other disorders, such as senescence [34], vitiligo 
[35], glaucoma [35], myocardial infarction [37], and atherosclero-
sis [38]. Mutations in Gpnmb cause hypopigmented lesions and pig-
mentary glaucoma in mouse models [39–41] and recessive and 
semi-dominant amyloidosis cutis dyschromica in humans [42, 43].

The human Gpnmb gene, located at chromosome 7p15, encodes 
for 2 alternative splicing isoforms of 572 and 260 amino acids [44]. 
Mouse Gpnmb codes for a protein of 574 amino acids and shares 
70.16 % sequence identity with the human protein [45, 46]. In its ex-
tracellular domain, GPNMB contains an N-terminal signal peptide 
(SP), an integrin-binding RGD motif and a polycystic kidney disease 
domain, a single-pass transmembrane domain, as well as an immu-
noreceptor tyrosine-based activation-like motif and a lysosomal tar-
geting di-leucine motif in the cytoplasmic tail (▶Fig. 1a, b) [47, 48]. 
The protein has 12 potential N-glycosylation sites, described in nu-
merous cell types [49–51]. It is predominantly located in endoso-
mal/lysosomal compartments, where it promotes the recruitment 
of light chain 3 (LC3/Atg8) to the phagosome for lysosomal fusion 
(▶Fig. 1c) [52–55]. In addition to phagocytosis, GPNMB was also as-
sociated with efferocytosis, the clearance of apoptotic and necrotic 
cells primarily by macrophages [56]. IL-6, under the control of the 
phosphorylated-signal transducer and activator of transcription 3 
(pSTAT3), was shown to be a positive regulator of this progress [57]. 
Although Gpnmb-deficient bone marrow-derived macrophages can 
initiate phagocytosis, they are unable to digest the cargo content, 
as pSTAT3 activation is not sustained over time. Moreover, this im-
pairment does not allow macrophages to correctly switch from an 
inflammatory to a restorative phenotype, underscoring the link be-
tween GPNMB, phagocytosis, and tissue repair [57].
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Although the precise mechanisms driving this process are un-
known, a disintegrin and metalloproteinase 10, a proteolytic en-
zyme belonging to the matrix metalloproteinase (MMP) family, 
contributes to GPNMB extracellular domain shedding [58]. This 
soluble form (sGPNMB) can bind to a variety of receptors, includ-
ing Na + /K + -ATPase, CD44, epidermal growth factor receptor, vas-
cular endothelial growth factor receptor, and other molecules such 
as integrins, heparin, and syndecan-4 [31, 59]. In addition, GPNMB 
signaling increases extracellular signal-regulated kinase and pro-
tein kinase B phosphorylation in many disease models [60–63]. 
GPNMB is tightly transcriptionally regulated, with melanogenesis-
associated transcription factor (MITF) as one of the major players. 
MITF overexpression increased GPNMB expression by binding and 
activating its promoter in both human and animal cells [55, 64, 65]. 
In addition, transcription factor EB was identified as a regulator of 
GPNMB expression [34].

Endo/lysosomal localization of glycoprotein non-
metastatic melanoma protein B and its role in 
lysosomal storage diseases
Since GPNMB is localized to endo/lysosomes, studies focused on un-
derstanding its role in the biology of these organelles and its link to 
macrophages, one of the cell types that primarily utilize lysosomal 
degradation to generate energy in response to the nutritional status 
of the cell. The link between GPNMB and lysosomal function is sup-
ported by many in vitro studies. Numerous inducers of lysosomal 
stress, such as HEPES, sucrose, chloroquine, bafilomycin, concana-
mycin A, or palmitate, increase GPNMB expression in macrophage 
cell lines [28, 66]. Moreover, the lysosomal/endocytic marker lyso-
somal associated membrane protein 2 was reported to co-localize 
with GPNMB in osteoclasts [55]. GPNMB is essential for the recruit-
ment of the autophagy protein LC3/Atg8 to the surface of au-
tophagosomes and subsequent acidification and fusion with lys-
osomes [54], highlighting its close association with this organelle.

The accumulation of lysosomal macromolecules and the result-
ing stress condition may be due to a genetic deficiency of lysosomal 
enzymes, leading to lysosomal storage disorders (LSDs). Tissue mac-
rophages are among the primary storage cells involved in LSDs be-
cause they contribute to the cleavage of various substrates. Biomark-
ers such as chitotriosidase (CHIT1) and chemokine (C-C motif) ligand 
18 (CCL18) have been identified in patients with LSD but cannot be 
used in mouse models because CHIT1 is not expressed in phagocytes 
[67] and a CCL18 homolog is absent in rodents [68]. The urgent need 
to find a new marker for this group of diseases led to the discovery 
of GPNMB. Van Ejik and colleagues were among the first to demon-
strate an increase in GPNMB in Gaucher disease spleen and, in par-
ticular, in Gaucher cells, the lipid-laden macrophages characteristic 
of this pathology, accompanied by several hundred-fold increase in 
circulating sGPNMB concentrations [69]. These discoveries paved 
the way for many other studies that underscored the importance of 
GPNMB in Gaucher disease [70–73] and other LSDs [74–76] and, like 
CHIT1 and CCL18, confirmed its strong association with LSDs and li-
pid-laden macrophages.

Further findings provided important insights into the possible 
molecular mechanisms underlying the increase in GPNMB in LSDs. 
Another important player during lysosomal stress is the mamma-
lian target of rapamycin complex 1 (mTORC1), a protein localized 
to the surface of lysosomes and implicated in the control of au-
tophagy [77, 78]. In several models of impaired lysosomal function, 
mTORC1 was downregulated, and Mitf, the main transcription fac-
tor regulating Gpnmb expression, was upregulated [28, 79]. More-
over, lysosomal Ca2 +  release, as a consequence of organelle stress, 
was shown to induce nuclear translocation and activation of tran-
scription factor EB, another important transcription factor for 
Gpnmb [80].

Glycoprotein non-metastatic melanoma protein B 
and obesity
Across several models of obesity, expansion of WAT induces a pro-
gram of lysosome biogenesis in ATMs associated with lipid catabo-
lism but not a classic inflammatory phenotype [21], arguing that 
the increase in the inflammatory profile of WAT associated with 
obesity derives primarily from quantitative increases in immune 
cell populations. Thus, in addition to genetic defects, lysosomal 
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▶Fig. 1 GPNMB structure and localization. (a) Model of human 
GPNMB. The structure of the protein was predicted using the BI-
OZENTRUM SWISS-MODEL tool [62]. (b) Schematic model of the 
GPNMB structure, including N-glycosylation sites and cleavage site 
for AD-AM10. SP, signal peptide; RGD, RGD motif; PKD, polycystic 
kidney disease domain; TMD, transmembrane domain; ITAM, immu-
noreceptor tyrosine-based activation-like motif; DL, di-leucin motif. 
(c) Gpnmb expression is regulated by melanogenesis associated 
transcription factor (MITF) and transcription factor EB (TFEB). It 
localizes to the endo/lysosomal com-partment, where it recruits 
LC3/Atg8 for phagosome fusion. This image was created with Bio-
render.com (accessed on September 22nd 2023). [rerif]
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lipid accumulation is also triggered when the amount of fat exceeds 
the storage capacity of the adipocytes, which eventually undergo 
apoptosis and recruit macrophages. When the WAT is no longer 
able to process lipids properly, they may accumulate in ectopic tis-
sues, such as the liver or skeletal muscle.

Since the reports that GPNMB is drastically induced in WAT of 
several obese animal models [28, 81, 82], many studies have fo-
cused on describing the role of this protein in obesity and associ-
ated metabolic disorders (▶Fig. 2). GPNMB was identified as a neg-
ative regulator of macrophage inflammatory responses and only 
reparative, anti-inflammatory M2-like macrophages activated by 
TGFβ retain full-length GPNMB on their surface [83]. Pro-inflam-
matory macrophages activated by interferon γ and lipopolysaccha-
ride secrete sGPNMB [83]. sGPNMB, which is abundantly produced 
by hypertrophied adipocytes, was also suggested to reduce the in-
flammatory capacity of macrophages by inhibiting nuclear factor-
κB signaling mainly through binding to CD44. Thus, chronic WAT 
inflammation was severely exacerbated in high-fat diet-fed Gpnmb-
deficient mice, accompanied by a pronounced increase in crown-

like structures [84]. These data emphasize the critical function of 
GPNMB in macrophage activation and the subsequent inflamma-
tory response in obese WAT.

The phenomenon that GPNMB plays an essential role in decreas-
ing WAT inflammation during obesity by reducing the number of 
ATMs was absent when GPNMB was over-expressed in adipocytes 
and macrophages of mutant mice [81]. Whether the discrepancy 
in the observed phenotype is due to the different high-fat diet (co-
conut oil [81] versus lard [83]) remains elusive.

In fact, only palmitic acid present in lard is able to trigger insu-
lin resistance [85] and GPNMB expression [28], leading to a strong-
er effect on WAT of obese mice. However, both diets were very ef-
fective in inducing liver steatosis. Furthermore, both studies 
showed that sGPNMB secreted by adipocytes from obese mice was 
responsible for decreased oxidative stress, fat deposition, and fi-
brosis in the liver by interacting with calnexin on Kupffer and stel-
late cells. However, sGPNMB was also described as a hepatokine 
that activates SREBP1c and thus lipogenesis in obese WAT by bind-
ing CD44 on adipocytes, resulting in a positive correlation between 

▶Fig. 2 Overview of the role of GPNMB in macrophage function and obesity. (a) Membrane bound GPNMB is retained on the surface of anti-in-
flammatory macrophages, whereas soluble (s)GPNMB is released by pro-inflammatory cells. (b) Obesity induces the production of sGPNMB by adi-
pocytes, which lowers the inflammatory capacity of macrophages by interacting with CD44 on the cell surface and inhibiting the function of NF-kB. 
(c) To reduce oxidative stress, lipid accumulation, and fibrosis in the liver, obese adipocytes release sGPNMB, which interacts with calnexin on Kupffer 
and stellate cells. (d) In obese WAT, the hepatokine sGPNMB activates SREBP1c to promote lipogenesis by binding to CD44 on adipocytes. This image 
was created with Biorender.com (accessed on September 24th 2023). [rerif]
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sGPNMB and BMI [86]. These findings indicate that GPNMB is a 
strong risk factor for obesity.

GPNMB was also linked to T2D, one of the diseases potentially 
associated with obesity. Numerous sequelae, such as acute renal 
injury, cardiovascular disease, muscle failure, ocular pathologies, 
and cognitive dysfunction, frequently accompany the development 
of T2D. Indeed, GPNMB was found to be increased in many of these 
T2D-associated disorders [87–89], once more emphasizing the im-
portant role of this protein as a biomarker in obesity and its related 
conditions.

Conclusions
This review highlights GPNMB as a key player in lysosomal dysfunc-
tion and obesity and its potential as a biomarker for the identifica-
tion and progression of these diseases. In particular, the studies 
described underscore the binomial role of the two forms of GPNMB 
in preventing or aggravating obesity and its related disorders. How-
ever, the exact mechanism by which GPNMB modulates obesity 
and obesity-associated metabolic disorders remains controversial 
and requires further investigation.
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