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Introduction

Venous thromboembolism (VTE) is a significant health bur-
den globally, resulting in preventable morbidity and mortal-
ity. It is estimated that 0.1 to 0.2% of the population is
affected by this condition annually.1 Thrombophilia is a
collection of conditions that increase the risk of thrombo-

embolism by inherited or acquired factors. The clinical
manifestations are primarily VTE, but some individuals
may also experience arterial thrombosis and obstetric com-
plications.2 Inherited thrombophilia commonly arises from
alterations in factor V Leiden, prothrombin G20210A, anti-
thrombin III (ATIII), protein C, and protein S. Acquired risk
factors, including immobilization, trauma, and surgical inter-
ventions, contribute to an elevated likelihood of venous
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Abstract Venous thromboembolism (VTE) represents a worldwide health challenge, impacting
millions of people each year. The genesis of venous thrombosis is influenced in part by
genetic components. Hereditary thrombosis is described as a genetically determined
susceptibility to VTE. In the present study, a male patient was referred to our
department presenting with multiple venous thrombosis events in different locations.
Given a lack of identifiable risk factors, we aimed to investigate the possible genetic
factor underlying venous thrombosis. Whole-exome sequencing was employed to
examine genes linked to inherited thrombophilia in the proband. Putative variants were
subsequently confirmed through Sanger sequencing within the family. The proband
was identified as carrying two genetic mutations. One is the novel c.400G>C (p.
E134Q) mutation affecting the final nucleotide of exon 5 in the PROC gene, potentially
impacting splicing. The other is a previously reported heterozygous nonsense variant
c.1016G>A (p.W339X) in the SERPINC1 gene. The proband inherited the former from
her mother and the latter from her father. The presence of digenic inheritance in the
patient reflects the complex phenotype of venous thrombosis and demonstrates the
significance of an unbiased approach to detect pathogenic variants, especially in
patients with a high risk of hereditary thrombosis.
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thrombosis.3 The final diagnosis of inherited thrombophilia
relies on genetic sequencing of associated genes.

Whole-exome sequencing (WES) is a next-generation
sequencing method that examines the nucleotide sequence
of all the protein-coding regions of one’s genome.4 Although
exome comprises less than 2% of the human genome, it
contains 85% of the known disease-causing variants.5 WES
has been used in awide range of clinical studies, especially in
hereditary diseases and emerges as a promising new diag-
nostic tool. We previously identified a pathogenic missense
variant of PROS1 by utilizing WES.6 In this study, we de-
scribed an individual experiencing recurrent thrombosis at
various locations, linked to mutations in the SERPINC1 and
PROC gene.

Case Presentation

A 57-year-old male patient was referred to our department
with swelling and pain in his right upper extremity. By
ultrasonography, the axillary and brachial veins were found
to be affected by deep vein thrombosis (►Fig. 1A). A subse-
quent computed tomography scan indicated that the throm-
bus had extended into the innominate vein (►Fig. 1B). The
patient had a history of lower extremity deep venous throm-
bosis in his 30s and superior mesenteric venous thrombosis
in his 40s (►Fig. 1C). The patient’s family history did not

show any predisposition to venous thrombosis. After the
diagnosis of venous thrombosis, the patient was initially
given low-molecular weight heparin followed by oral rivar-
oxaban to continue anticoagulation therapy. As the absence
of any apparent susceptibility to venous thrombotic events
and the genetic heterogeneity of hereditary thrombosis, an
investigation of this patient’s genetic background was con-
ducted and WES was chosen to identify potential genetic
susceptibility to thrombophilia.

All participants provided written informed consent for
the acquisition of venous blood samples, which were subse-
quently processed utilizing the QIAamp DNA Blood Mini Kit
(Qiagen, Hilden, Germany) in accordance with established
protocols for DNA extraction. WES was carried out as de-
scribed earlier.6 The library preparation required aminimum
of 200ng of DNA, followed by exon capture using the Sure
Select XT Human All Exon Kit V6, and subsequently se-
quenced using the Illumina Hiseq 2000 platform with
2�150bp paired-end reads. Sequenced reads were demul-
tiplexed, and sequencing quality was assessed using the Fast
QC tool.

In this study, a standardized methodology was utilized to
examine genomic sequences. Initially, sequence reads were
aligned to the UCSC hg19 reference genome employing the
BurrowsWheeler Aligner with default parameters. Duplicate
sequencing reads were handled by utilizing Picard Mark

Fig. 1 Imaging findings of the proband. (A) Doppler ultrasound showed a solid long hypoechoic mass filling the right axillary and brachial veins.
(B) Multi-slice computed tomography showed thrombus extending to the innominate vein (red arrow). (C) Computed tomography revealed
cavernous transformation of portal vein secondary to portal vein thrombosis (red asterisk).
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Duplicates. Subsequently, the Genome Analysis Toolkit
(GATK) was utilized for local realignment of reads surround-
ing in-frame insertions and deletions (indels) and recalibra-
tion of base quality scores. Variants, encompassing single-
nucleotide variants and indels, were detected using theGATK
Haplotype Caller and annotated via ANNOVAR. These identi-
fied variants were screened against public single-nucleotide
polymorphism databases such as dbSNP, 1000G, ESP, and
ExAC in order to filter out common variants. Only the
variants predicted as deleterious by The PolyPhen2 and
SIFT algorithms were included in the analysis. Ultimately,
the validation of putative disease-associated variants discov-
ered in family members was achieved through Sanger
sequencing.

The results revealed that a high-sequencing coverage of
approximately 114� was achieved for each sample, 99.1% of
short reads were mapped, and 97% of calls had an average
base call quality of Q30 or higher. After eliminating low-
quality variants and those with insufficient coverage, confi-
dent variants were obtained. Variants exhibiting a minor
allele frequency of �0.01% were ruled out using population
databases, such as 1000 Genomes, ExAC, and ESP, and the
analysis centered on missense, frameshift, nonsense, and
splice site variants in genes related to the blood coagulation
cascade. Thefinal analysis revealed twovariants. Thefirst is a
heterozygous missense variant (c.400G>C: p.E134Q) in
exon 5 of PROC (NM_000312), affecting the last nucleotide
of the exon. Analysis using the Splice Site Prediction by
Human Splice Finder showed that it resulted in an alteration

of the wild type donor site, most probably affecting splicing.
There are reports suggesting that apparent missense muta-
tions affecting the last nucleotide of an exon can lead to
missplicing.7 Unfortunately in our study, RNA was unavail-
able for testing the effects of c.400G>C on splicing, but it
seems possible that the variant exerts pathogenic effects
either by the amino acid substitution or by an effect on
splicing. The second variant is a previously described non-
sense variant in exon 5 of SERPINC1 (NM_000488: c.1016G
>A: p.W339X), both of which were confirmed through
Sanger sequencing (►Fig. 2). The same PROC variant was
identified in the proband’s mother and the same SERPINC1
variant was identified in the proband’s father upon sequenc-
ing of other family members. Moreover, the proband had
reduced protein C and antithrombin (AT) activity levels at 34
and 42%, respectively (►Table1). Our findings suggest that
the mutations in PROC and SERPINC1 are causative of the
proband’s multiple venous thrombosis episodes.

Discussion

Thrombophilia constitutes a diverse collection of conditions
marked by a propensity for thromboembolism, stemming
from an array of inherited or acquired defects in anticoagu-
lant proteins, coagulation factors, fibrin, or the existence of
acquired risk factors.2 The prevalence of genetic risk factors
for VTE exhibits considerable variation between Eastern and
Western populations. In contrast to the rarity of natural
anticoagulant deficiencies, such as AT, protein C, and protein

Fig. 2 Digenic variants of PROC and SERPINC1 identified in the proband. The black arrows indicate the genetic mutation sites.

Table 1 Clinic and genetic characteristics of the family

Family
member

Age (y) SERPINC1
c.1016G>A(p.W339X)

PROC
c.400G>C(p.E134Q)

AT:A
(%)

AT:Ag
(%)

PC:A
(%)

PC:Ag
(%)

PS:A
(%)

PS:Ag
(%)

VTE

Patient 57 þ þ 42 47 34 39 98 105 þ
Father 78 þ � 50 48 106 108 93 99 �
Mother 75 � þ 110 102 45 40 103 94 �

Note: Reference range: AT:A, 80–120%; AT:Ag, 80–120%; PC:A, 70–130%; PC:Ag, 80–120%; PS:A, 55–140%; PS:Ag, 60–150%.
Abbreviations: AT:A, antithrombin activity; AT:Ag, antithrombin antigen; PC:A, protein C activity; PC:Ag, protein C antigen; PS:A, protein S activity;
PS:Ag, protein S antigen; VTE, venous thromboembolism.
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S, in Western countries, these deficiencies pose significant
risk factors in Asian nations.8 Our study described a pioneer
case presented with mutations in both the SERPINC1 and
PROC genes, which led to recurrent multisite thrombosis.
Notably, the parents of the patient with a single gene
mutation did not display a significant history of thrombosis,
highlighting the incomplete penetrance of mutated genes.

SERPINC1, located on human chromosome 1q23-25, enc-
odes ATIII, a crucial inhibitor of the coagulation cascade. The
gene consists of seven exons and six introns.9 ATIII binds to
the active center serine of thrombin and forms a complex
with thrombin, known as the thrombin–AT complex, thereby
neutralizing its activity. Heparin enhances AT affinity by
changing its conformation through an exposed reactive
center loop, leading to at least a 1000-fold increase in AT
activity.10 The Human Gene Mutation Database reports
numerous missense/nonsense variants and a small number
of small deletions/insertions and splicing mutations in SER-
PINC1. Among the reported SERPINC1 mutations, four muta-
tions are relatively common in general population: Dublin(p.
Val30Glu),11 CambridgII (p.Ala416Ser),12 Budapest (p.
Leu131Phe),13 and Basel (p.Pro73Leu).14 AT deficiency is
classified into two types based on their phenotypes: Type I
AT deficiency is typified by a proportional reduction in AT
antigen and activity, whereas type II AT deficiency is marked
by diminished AT activity alongside normal or near-normal
AT antigen levels.15Nonsensemutations, splicing mutations,
and small frame-shifting deletions and insertions result in
type I deficiency, while missense mutations or small frame-
shifting deletions give rise to type II deficiency. However,
somemissense mutations also cause type I deficiency due to
conformational effects.16 The c.1016G>A(p.W339X) variant
was previously reported in a young female with VTE by Ding
et al.17 This variant is anticipated to culminate in either the
total lack of a functional AT protein or the expression of a
truncated, nonfunctional protein, which aligns with the type
I AT deficiency demonstrated by the proband harboring the
associated mutation.

The PROC gene, which comprises 9 exons and 8 introns, is
located on the 2q13-14 region of the human chromosome.18

Protein C, a vitamin K-dependent serine protease produced
by the liver, plays a crucial role in natural anticoagulation.19

When it binds to the thrombin–thrombomodulin complex
on the vascular endothelium, protein C is converted into
activatedprotein C (APC). In collaborationwith protein S, APC
deactivates factors Va and VIIIa, ultimately resulting in
decreased thrombin and fibrin generation. Furthermore,
protein C enhances fibrinolysis by neutralizing circulating
plasminogen activator inhibitor and augmenting tissue plas-
minogen activator activity.20 A deficiency in protein C can
increase the risk of thrombosis, and there are two types of
congenital protein C deficiency: Type I, defined by reduced
antigenic levels and function, and Type II, characterized by
diminished function while maintaining normal antigenic
levels. The Human Gene Mutation Database contains more
than 390 PROC mutations, including missense, nonsense,
insertion, deletion, and splicing mutations, with missense
mutations accounting for over 65% of all PROC mutations.21

Most missense mutations result in the abnormal folding of
synthesized protein C, which accumulates in the endoplas-
mic reticulum (ER), leading to ER-associated degradation and
reduced protein C antigen and function.22,23 The proband
exhibited a heterozygous missense mutation (c.400G>C:p.
E134Q) in the PROC gene, which remains unreported in
public polymorphism databases and is anticipated to be
deleterious according to Polyphen2 and SIFT predictions.
In addition, an effect of this variant on splicing is possible,
because themutation is located at the last nucleotide of exon
5 and alters the conserved splice donor sequence. In linewith
the interpretation standards and guidelines for sequence
variants, as well as the joint consensus from the American
College of Medical Genetics and the Association of Molecular
Genetic, this variant is regarded as “likely pathogenic (II)”
and fulfills one strong and one moderate criterion, specifi-
cally PS2, PM2, PP1, and PP3.24

Indigenic inheritance, diseasearisesdue toprotein–protein
or protein–DNA interaction between two genes or proteins.25

TheDigenic Diseases Database classifies digenic cases into two
types based on Schäffer’s definition ofdigenic inheritance. The
first type, known as “true inheritance,” requires variants at
both motifs to cause disease, and neither variant alone is
sufficient to produce the phenotype. In this type, it is difficult
to determinewhich genevarianthas agreater effect ondisease
symptoms. The second type is a composite class, where
variants in both genes have an “additive” effect, since the
variation in thefirst gene is sufficient to cause the disease, but
the variation in the second gene increases the severity of the
disease. However, there are exceptions that can complicate the
classification of double gene inheritance.26 This phenomenon
has been observed in a variety of diseases with complex
genetic mechanisms, such as diabetes,27 dyslipidemia,28 pitu-
itary stalk interruption syndrome,29 and isolated hypogonad-
otropic hypogonadism/Kallmann syndrome.30 Under normal
circumstances, AT and protein C act as inhibitors in the coagu-
lation cascade, thereby regulating normal blood flow.31 In our
study, the PROC mutation was inherited from the mother and
the SERPINC1mutationwas inherited from the father,while the
parents had not suffered a thrombotic event. Hematologic
examination of the patient reported in this case manifested
that the patient’s both protein C activity and AT activity were
considerably lower than normal levels in healthy individuals,
whereas thecorrespondingparentswereonlybelowthenormal
range of either protein, which could explain why the parents
didn’t show any obvious symptoms. With regard to hereditary
thrombosis, a previous case has been reported in which both
SERPINC1 and PROC mutations were found in a patient with
severe recurrent thromboembolism, diagnosed ashaving a type
IATdeficiencywithdecreasedproteinC.32 It is obvious that case
is similar to our case, both of which meet the definition of
composite inheritance. It further demonstrates the advantages
of WES for the final diagnosis of hereditary thrombosis.

Conclusions

In summary, we presented a case of an individual who
exhibited multiple venous thrombosis events in distinct
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locations. WES analysis identified a novel heterozygous
missense variant, c.400G>C (p.E134Q), in the PROC gene,
which has the potential to impact splicing. Additionally, a
previously reported heterozygous nonsense variant, c.1016G
>A (p.W339X), was found in the SERPINC1 gene within the
individual’s genome.WES demonstrated its ability to rapidly
identify genetic abnormalities associated with complex
inheritance patterns with high accuracy.
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