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Abstract Trauma-induced coagulopathy (TIC) is a complex hemostatic disturbance that can
develop early after a major injury. There is no universally accepted definition of TIC.
However, TIC primarily refers to the inability to achieve sufficient hemostasis in
severely injured trauma patients, resulting in diffuse microvascular and life-threaten-
ing bleeding. Endogenous TIC is driven by the combination of hypovolemic shock and
substantial tissue injury, resulting in endothelial damage, glycocalyx shedding,
upregulated fibrinolysis, fibrinogen depletion, altered thrombin generation, and
platelet dysfunction. Exogenous factors such as hypothermia, acidosis, hypokalemia,
and dilution due to crystalloid and colloid fluid administration can further exacerbate
TIC. Established TIC upon emergency room admission is a prognostic indicator and is
strongly associated with poor outcomes. It has been shown that patients with TIC are
prone to higher bleeding tendencies, increased requirements for allogeneic blood
transfusion, higher complication rates such as multi-organ failure, and an almost
fourfold increase in mortality. Thus, early recognition and individualized treatment of
TIC is a cornerstone of initial trauma care. However, patients who survive the initial
insult switch from hypocoagulability to hypercoagulability, also termed “late TIC,”
with a high risk of developing thromboembolic complications.
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Current Understanding of the
Pathophysiology of Trauma-Induced
Coagulopathy

Hemorrhage is the second leading cause of death following
trauma, exceeded only by traumatic brain injury.1 If severe
blood loss after trauma remains uncontrolled, it leads to
pronounced hemorrhagic shock, which has been identified
as an important driver of trauma-induced coagulopathy
(TIC). Historically, coagulopathy after severe trauma was
assumed to be a result of hemodilution due to fluid replace-
ment therapy, consumption of coagulation factors at the side
of injury, and additional confounders, such as hypothermia
and acidosis.2 Intensive research over the past 15 years has
found that TIC is an endogenous dysregulation of the hemo-
static system, primarily driven by tissue trauma, shock-
related hypoperfusion, endotheliopathy, altered thrombin
generation (TG), and platelet dysfunction, which can be
further complicated by exogenous factors, such as hypother-
mia, acidosis, hypocalcemia, and dilution.3 Early TIC is
characterized by a hypocoagulative state and the inability
to form sufficient clots, resulting in uncompressible diffuse
microvascular bleeding. Studies have revealed that TIC starts
early after trauma and can be detected in the most severely
injured patients, already at the scene of the accident.4 The
presence of a TIC upon emergency room (ER) admission is
associatedwith higher blood loss, increased allogeneic blood
product requirements, higher rates of multi-organ failure,

and an almost fourfold increase in mortality compared with
trauma patients with hemostatic competence.5–7 When
bleeding and shock-related hypoperfusion is controlled
and patients survive the initial first 24 hours, a transition
from an early hypocoagulable to a later hypercoagulable and
prothrombotic state occurs.8 Thus, thromboprophylaxis
should be initiated as soon as possible.9 The purpose of
this review is to provide current evidence on the potential
drivers and mechanisms resulting in “early” TIC.

Definition, Incidence, and Diagnosis of TIC
So far, no universally accepted definition of TIC has been
established. The term TIC describes an abnormal hemostatic
response following a major injury, which results in an
inefficient clot formation process, diffuse microvascular
bleeding, and an increased risk of exsanguination.

The diagnosis of TIC still relies on standard coagulation
tests, such as prothrombin time and international normal-
ized ratio (INR).10–12 However, the correlation between
INR and TG is poor. Dunbar and Chandler77 demonstrated
that TG parameters in severely injured patients with an
INR of greater than 1.5—by definition TIC—were upregu-
lated. Moreover, a single parameter, such as INR, cannot
display the complexity of coagulation abnormalities
related to TIC.

More advanced technologies, such as viscoelastic test (VET)
methods, have discovered more trauma patients with abnor-
mal test results comparedwith prothrombin time or activated

Zusammenfassung Die trauma-induzierte Koagulopathie (TIC) ist eine komplexe hämostatische Störung,
die sich früh nach einer schweren Verletzung entwickeln kann. Bisher gibt es keine
allgemein anerkannte Definition von TIC. TIC bezeichnet in erster Linie die Unfähigkeit,
schwer verletzter Traumapatienten eine suffiziente Blutstillung zu erreichen, was zu
diffusen mikrovaskulären und somit lebensbedrohlichen Blutungen führen kann. Die
TIC ist eine „endogene Gerinnungsstörung“ die durch die Kombination aus hypovolämi-
schem Schock und erheblicher Gewebeschädigung verursacht wird. Dadurch kommt es
zu substanziellen Endothelschäden, Glykokalyxablösungen, einer hochregulierten Fib-
rinolyse, Fibrinogenmangel, veränderter Thrombinbildung und einer Plättchenfunk-
tionsstörung. „Exogene Faktoren“ wie Hypothermie, Azidose, Hypokaliämie und
Verdünnung aufgrund der Verabreichung von Kristalloiden und Kolloiden können
eine TIC weiter verschlimmern. Eine bestehende TIC bei Schockraum-Aufnahme ist
ein prognostischer Indikator und eng mit einem schlechten Outcome assoziiert. Es hat
sich gezeigt, dass Patienten mit TIC eine höhere Blutungsneigung aufweisen, einen
erhöhten Bedarf an allogenen Bluttransfusionen unterliegen, signifikant mehr Kom-
plikationen wie etwa ein Multiorganversagen zeigen und eine fast vierfach höhere
Mortalität aufweisen als gerinnungkompetente Traumapatienten. Daher ist die Früh-
erkennung und individuelle Behandlung einer bestehendenTIC essenziell in der initialen
Versorgung von schwerverletzten Patienten. Trauma Patienten, die das initiale Trauma
überleben, wechseln von einer Hypokoagulabilität in einen hyperkoagulablen Zustand,
der auch als „späte TIC“ bezeichnet wird. Damit erhöht sich das Risiko für die
Entwicklung thromboembolischer Komplikationen.

Schlüsselwörter

► traumainduzierte
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► Endotheliopathie
► Hyperfibrinolyse
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partial thromboplastin time.10–17Thispartlyexplains thewide
variation of reported TIC incidences ranging from 25 to 43% of
all severely injured patients.6,14

In contrast to VET methods, a general accepted “gold
standard” for point-of-care platelet function testing has not
been established so far.18 Both the applied technologies and
the composition of platelet agonists used to activate throm-
bocytes differ considerably between the different platelet
function analyzer.19 Moreover, platelet function analyzers
were initially developed to assess the impact of platelet
inhibitors, such as aspirin or adenosin diphosphate (ADP)
antagonists, on thrombocytes rather than to detect potential
bleeding related to trauma-induced platelet dysfunction.20

Importantly, the laboratory definition of TIC differs from
clinically evident coagulopathy with diffuse microvascular
bleeding. Chang et al reanalyzed data from the PROHS study
and reported that clinically evident coagulopathy was rare
(4%) compared with laboratory-defined coagulation abnor-
malities (39%) but was associated with substantially higher
mortality (59 vs. 22%).21

Pathophysiology of Trauma-Induced
Coagulopathy

Clinical outcomes following traumatic injury depend on the
severity of blood loss, the degree of shock on admission, the
extent of tissue injury, injury patterns, and the elapsed time
from injury to clinical control of the bleeding source.11,22,23

Initially, after tissue trauma, TG is upregulated, platelets are
activated, and clot formation is enhanced to establish rapid
bleeding control. Moreover, the release of antifibrinolytic
molecules from platelet granules protects the established
clot frompremature lysis. Nevertheless, if blood loss remains
uncontrolled, it results in hypovolemic shock, with devastat-
ing consequences.

Shock as a Driver of Trauma-Induced
Coagulopathy

An isolated massive tissue injury without shock induces a
prothrombotic phenotype of TIC associated with an in-
creased risk of thromboembolic complications.3 In contrast,
the bleeding type of TIC requires both shock-related hypo-
perfusion with a corresponding low-flow state and tissue
trauma.8 Frith et al demonstrated that the severity of TIC
strongly correlated with the combined degree of both injury
and shock.11 A prolongation of the prothrombin time ratio
and activated partial thromboplastin time (aPTT) was only
detected in shocked patients, defined as an admission base
deficit of greater than 6mmol/L. In contrast, when base
deficit remained within normal limits, prothrombin time
and aPTT also remained within the reference ranges.11

Endotheliopathy of Trauma
The vascular endothelium and its anticoagulant intraluminal
layer, the glycocalyx, are a huge, often underestimated organ,
with a large surface area of approximately 5,000m2 and a
weight of approximately 1 kg.24 The endothelium plays an

essential role in coagulation and inflammation, serving as a
semipermeable barrier between the fluid phase and the
tissue.25 Endotheliopathy of trauma describes a state of
endothelial cell damage and glycocalyx shedding with the
release of specific serum biomarkers such as soluble throm-
bomodulin, syndecan-1, heparan sulfate, chondroitin sulfate,
hyaluronic acid, and many more.24,26–28 Endotheliopathy of
trauma is primarily driven by inflammation and shock-
related hypoperfusion with the release of high amounts of
catecholamines (e.g., adrenalin) and vasoactive hormones
such as vasopressin24 (►Fig. 1). In a ratmodel of hemorrhagic
traumatic shock, chemical sympathectomy suppressed the
release of inflammatory cytokines, decreased profibrinolytic
activation, and was associated with less endothelial damage
compared with sham animals.29 In another experimental
study, Hofmann et al demonstrated an independent associa-
tion between shock severity and the intensity of endotheli-
opathy and sympathoadrenal activation.27 This aligns with
the findings in trauma patients, which also showed a strong
association between sympathoadrenal activation and the
release of markers of endothelial cell and glycocalyx dam-
age.30 Both adrenalin concentration and endotheliopathy
were identified as independent predictors of poor outcomes
in trauma patients.31

Importantly, a breakdown of the glycocalyx results in
capillary leakage and a significant loss of intravascular
volume, which additionally worsens hypovolemia in already
shocked patients, further intensifying tissue hypoperfusion
and shock severity.8

Moreover, the release of heparinlike substances, such as
heparan sulfate or chondroitin sulfate, as a consequence of
glycocalyx shedding was proposed as a potential additional
driver of TIC due to an endogenous autoheparinization
process.32 Whether and to what extent autoheparinization
plays a role as an additional anticoagulant mechanism that
increases bleeding tendency is currently under debate. A
recent study investigating potential autoheparinizationwith
different VET assays in severely injured trauma patients did
not indicate that the release of heparan sulfate plays a
significant role in the pathogenesis of TIC.33

Taken together, endotheliopathy of trauma is driven by
shock-related release of adrenalin and vasopressin into the
bloodstream,which promotes hypocoagulability, hyperfibri-
nolysis (HF), increased bleeding risk, transfusion require-
ments, and mortality.

Hyperfibrinolysis
HF has been identified as a predominant driver of TIC, which is
stronglyassociatedwithpooroutcomes in traumapatients.34–37

Two mechanisms have been proposed as potential acti-
vators of profibrinolytic pathways after a major injury. Brohi
et al suggested that hypovolemic shock stimulates the en-
dothelial synthesis of thrombomodulin, which binds throm-
bin. This complex, in turn, activates protein C. Activated
protein C, the main anticoagulant protein of the body,
promotes HF by inhibiting plasminogen activator inhibitor-
1 (PAI-1), which is the most important antagonist of the
profibrinolytic enzyme tissue plasminogen activator (tPA).38
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Another hypothesis suggests that hypoxemia, in conjunc-
tion with high concentrations of adrenalin, vasopressin, and
thrombin, powerfully activates endothelial cells. In turn,
significant amounts of tPA are released from the Weibel–
Palade vesicles into the bloodstream.39 This hypothesis is
supported by thefinding that HF has also been demonstrated
in other nontraumatic low-flow states, such as life-threaten-
ing anaphylactic shock or out-of-hospital cardiac arrest.40,41

Independent of the suggested mechanism, tPA cleaves
plasminogen to plasmin, which dissolves fibrin and—if avail-
able in high amounts—fibrinogen. Thus, upregulated plasmin
generation promotes premature clot dissolution and
hypofibrinogenemia.

With the implementation of VET methods in modern
trauma care, HF has been identified as an important contrib-
utor toTIC.35,36,42–44However, there is no uniform definition
of HF based on VET results. For the ROTEM/ClotPro devices,
HF is defined as a breakdown of greater than 15% of the
maximum clot firmness. For TEG, a reduction of greater than
3% 30minutes (LY30) after reaching the maximum ampli-
tude of the clot is by definition HF.

However, not only the percentage of decreased clot
firmness but also the speed of clot dissolution is linked to
poor outcomes. Fulminant lysis, defined as a complete
breakdown of the clot within 30minutes (ROTEM) or the
so-called diamond of death shape of the clot (TEG), is
associated with an almost 100% mortality.37,45,46 Thus,
the pattern of clot lysis seems to be crucial for clinical
outcomes (►Fig. 2). It is essential to note that the absence of
lysis signs in VETs does not rule out profibrinolytic activa-
tion. Raza et al reported in a cohort of trauma patients that,
despite normal maximum lysis (ML) in ROTEM, high plas-
min–antiplasmin complexes (>1,500 μg/L) were detected,
suggestive of fibrinolytic activation.47 Moreover, currently
available VET assays are designed to detect systemic lysis
only. Thus, local lysis might take place but remain unnoticed
by VET methods.

Froman evolutionary point of view, HF counteracts shock-
related microvascular stasis, microthrombosis, tissue hypo-
perfusion, and hypoxemia tomaintain bloodflow, even at the
cost of an increased bleeding rate due to the dissolution of
already established clots48 (►Fig. 3).

Fig. 1 Schematic overview of potential drivers of trauma-induced coagulopathy. t-PA, tissue plasminogen activator; PAI-1, plasminogen
activator inhibitor 1. Activators; inhibitors.

Fig. 2 Different lysis patterns measured by rotational viscoelastometry. (a) Fulminant lysis or so-called diamond of death shape. (b)
Intermediate type of clot lysis. (c) Late lysis. (d) Physiologic lysis. (e) Fibrinolytic shutdown.
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Fibrinolytic Shutdown
Lysis and HF are strongly inhibited by PAI-1, which starts its
upregulation approximately 2 hours after the initial trauma
and may result in complete inhibition of clot lysis, a condi-
tion known as “fibrinolytic shutdown.”49,50 Numerous stud-
ies demonstrated that mortality in patients with fibrinolytic
shutdown, defined as LY30<0.8% in TEG or as ML<5% in
ROTEM, was higher than in patients with physiologic
lysis.51–56

However, whether VET methods accurately define fibri-
nolysis phenotypes is still under discussion.47,53,56,57 To
diagnose lysis and HF, D-dimers and plasmin–antiplasmin
complexes are potentially more sensitive parameters than
VETs. Gall et al identified a cohort of trauma patients with
high D-dimer levels and increased blood product consump-
tion andmortality despite lowML in ROTEM.56 Cardenas et al
analyzed blood samples from trauma patients with TEG and
measured the plasmin–antiplasmin complexes and
D-dimers. A total of 89% of the shutdown patients had
moderate to high fibrinolytic activation by the plasmin–
antiplasmin complexes. Thus, low TEG LY30 does not reflect
hypercoagulability, but a TIC with moderate fibrinolysis and
fibrinogen consumption associated with poor outcomes.57

Similar findings using ROTEM have been reported by David
et al, who observed in the ROTEM shutdown group lower

fibrinogen concentrations and higher levels of fibrin degra-
dation products than in the patients with physiologic lysis.
The authors suggested that fibrinolytic shutdown probably
reflects a moderate form of coagulopathy and fibrinolysis
rather than hypercoagulopathy.53

Currently, it remains to be elucidatedwhich is the optimal
way to identify fibrinolytic shutdown in major trauma
patients, as the measurement of the plasmin–antiplasmin
complexes is not feasible in routine clinical practice.58

In summary, the endothelium reacts uniformly to hypoxic
stress and sympathoadrenal hyperactivation, with an early
and robust release of tPA and cleavage of plasminogen to
plasmin. PAI-1 starts to increase 2 hours after endothelial cell
activation, resulting in an endogenous inhibition of lysis.59,60

This delayed PAI-1 expression promotes a shift toward a
hypofibrinolytic state and may lead to microvascular throm-
bosis and multi-organ failure.

Fibrinogen Deficiency
Fibrinogen has a molecular weight of 350 kDa and is synthe-
sized solely in the liver.61 The circulating levels range
between 2 and 4 g/L in a healthyadult but can be upregulated
20-fold, mediated by infection, inflammation, and IL-6 re-
lease.62 Thrombin cleaves fibrinogen to fibrin fibers, cross-
linked by activated factor XIII, which increases mechanical

Fig. 3 Hyperfibrinolysis detected by EXTEM (ROTEM) upon (a) emergency room admission. (b) Twenty minutes after admission, no clot
formation in the ROTEM analysis could be detected any more. (c) Plasma (200 µL) collected upon admission and (d) after 20minutes was spiked
on fibrin plates. Substantial increase in the fibrinolytic area after 20minutes corresponds to increased lysis observed in EXTEM.42
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strength and resistance to premature fibrinolytic degrada-
tion.63 Moreover, fibrinogen binds with high affinity to
glycoprotein IIb/IIIa receptors expressed on the surface of
activated platelets, thereby facilitating further platelet ag-
gregation.64 Thus, fibrinogen plays an essential role in both
primary and secondary hemostasis.65

In a severely injured bleeding patient, fibrinogen is the
first coagulation factor to reach critically low levels.4,66

Moreover, hypofibrinogenemia upon ER admission is asso-
ciated with higher bleeding rates, increased allogenic blood
transfusion requirements, and increased mortality.67–69 A
critical fibrinogen level associated with a tendency toward
increased bleeding is assumed to be less than 1.5 g/L.67,70

Consequently, current guidelines recommend early fibrino-
gen substitution, particularly when levels decline below
1.5 g/L.71

Hypofibrinogenemia in trauma patients is driven by blood
loss, hemodilution, hyperfibrinogenolysis, and consumption
due to clot formation at the site of injury.65 Moreover, experi-
mental studies demonstrated that hypothermia, which is
common in severely injured patients, impairs fibrinogen syn-
thesis, and acidosis accelerates fibrinogen breakdown.72,73

Schlimp et al observed that fibrinogen levels upon ER admis-
sion were strongly associated with shock severity in trauma
patients. If base deficit exceeded 6mmol/L, fibrinogen plasma
concentrations decreased to less than 200mg/dL in 81% of the
patients and less than 150mg/dL in 63% of the patients.74

Interestingly, the acute-phase response of fibrinogen is not
downregulated by early exogenous fibrinogen substitution
during initial trauma care.75

Taken together, fibrinogen is the most vital and vulnera-
ble coagulation factor, and it reaches critically low levels
earlier than other coagulation proteins. Low fibrinogen upon
admission is strongly associated with poor outcomes.

Altered Thrombin Generation
Thrombin cleavesfibrinogen tofibrin and activates factor XIII
(FXIII), platelets, endothelial cells, and leucocytes. When
bound to thrombomodulin, thrombin activates the protein
C pathway and becomes an anticoagulant factor.38 Immedi-
ately after initial tissue trauma, TG is strongly upregulated to
create sufficient clots for quick termination of blood loss.76,77

TG can be altered by several trauma-related mechanisms,
such as loss and consumption of coagulation factors, dilution,
hypothermia, and acidosis (►Fig. 1).78,79 Studies in severely
injured patients demonstrated that factor V, factor VII, and
factor IX are predisposed to low levels.66,80,81 Nevertheless,
experimental and clinical studies have demonstrated that TG
remains unaffected.80,82

Cardenas et al reported that trauma patients upon ER
admission had significantly higher TG parameters than
uninjured subjects.76 Only 17% of the patients demonstrated
a peak TG of less than 250 nM. However, these patients
required more allogeneic blood products, had a fourfold
increased risk of massive transfusion, and a threefold
increased risk of mortality.76 Coleman et al also observed
high-volume blood transfusion in trauma patients with
compromised TG.83

Hypercoagulability was also reported by Schreiber et al in
62% of the investigated trauma patients in the first 24hours
after injury, with a female predilection.84Hypercoagulability
might be related to tissue factor exposure and the additional
release of procoagulant microparticles and damage-associ-
ated molecular patterns.85 Thus, it is highly questionable
whether an initial augmentation of TG should be considered
a primary goal of early hemostatic management in major
traumas.86

In summary, major tissue trauma creates an initial
procoagulant environment driven by tissue factor exposure
and the release of procoagulants, resulting in a substantial
upregulation of TG. At a later stage, TG can be altered by
shock-related activation of the protein C pathway, dilution
and consumption of the coagulation factors, hypothermia,
and acidosis.

Platelet Dysfunction
Platelets play a vital role in initial clot formation. Activated
platelets adhere to the subendothelial collagen of damaged
tissues and provide the surface for the assembly of clotting
factors to further amplify TG.87 Moreover, platelets are
involved in inflammation and wound healing by recruiting
immune cells from the circulation in a P-selectin-dependent
mechanism.88

There is a growing body of evidence that severe trauma
not only affects plasmatic coagulation factors but also com-
promises platelet function. Platelet dysfunction occurs early
after initial tissue injury despite a normal platelet count.15

Numerous studies have demonstrated that even mildly
impaired platelet aggregation in response to different plate-
let agonists, such as thrombin and adenosine diphosphate
receptor stimulation, is associated with poor out-
comes.15,16,89–92 In a retrospective study, Solomon et al
analyzed platelet function in major trauma patients after
ER admission. Decreased platelet aggregation assessed by
Multiplate was associated with increased mortality.90

Kutcher et al also measured platelet function by Multiplate
aggregometry in severely injured patients on admission and
during their hospital stay. Despite a normal platelet count,
platelet dysfunction was observed in 45% of patients on
admission and in 91% during their hospital stay.15

The exact mechanism that promotes platelet dysfunction
following trauma remains to be elucidated. Verni et al spiked
healthy plateletswith plasma collected from trauma patients
and detected a significantly diminished response to multiple
platelet agonists. The authors suggested that soluble plasma
species may downregulate various platelet activation path-
ways.91 Another hypothesis suggested that platelets are
captured by leukocytes, which was linked to impaired plate-
let function detected byMultiplate.17Vulliamyet al observed
a ballooning of platelets induced by histone H4, a damage-
associated molecular pattern, which is released in massive
quantities after severe injury.93

Taken together, platelet dysfunction occurs early after
severe trauma independently of platelet count. This initial
inhibition of platelet function has been linked to adverse
outcomes. Interestingly, recent studies in major trauma
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patients could not demonstrate a clear clinical benefit of
early estimation of platelet dysfunction byMultiplate or TEG
platelet mapping to improve outcome.94–96

Conclusion

TIC is a heterogeneous, dynamic, and complex coagulation
disorder that starts early after the initial injury. Many
different potential drivers, of which shock-related hypoper-
fusion seems to be the most critical, have been identified.
Advanced understanding of the pathophysiology of TIC, in
alliance with innovative coagulation monitors, which allow
individualized guidance of hemostatic therapy, has the
potential to improve a patient’s outcome.
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