Mesenchymal stem cells suppress inflammatory cytokines in lipopolysaccharide exposed preterm and term human pregnant myometrial cells.

ARUNMANI MANI, John Hotra, Sean C Blackwell, Laura Goetzl, Jerrie S Refuerzo.

Affiliations below.

DOI: 10.1055/a-2216-9194

Conflict of Interest: The authors declare that they have no conflict of interest.

Abstract:
Objective The objective of this study was to determine the cytokine response in human pregnant preterm and term myometrial cells exposed to lipopolysaccharide (LPS) and co-cultured with mesenchymal stem cells (MSCs).

Study design Myometrium was obtained at cesarean delivery in term and preterm patients. Human myometrial cells were exposed to 5 μg/ml LPS for 4 hours (h) followed by 1 μg/ml LPS for 24 h and were co-cultured with MSCs for 24 h. Culture supernatants were collected at 24 h and expression of cytokines, including IL-1β, IL-6, IL-8, TNF-α, TGF-β and IL-10, was quantified by ELISA.

Results There was significantly increased expression of the pro-inflammatory cytokines IL-1β, IL-6, IL-8 and TNF-α in preterm myometrial cells treated with LPS compared to untreated preterm myometrial cells. Co-culture with MSCs significantly suppressed the pro-inflammatory cytokine levels in LPS treated preterm vs. treated term myometrial cells. Moreover, MSC co-cultured preterm myometrial cells expressed increased levels of the anti-inflammatory cytokines TGF-β and IL-10 compared to treated term myometrial cells.

Conclusion MSCs ameliorate LPS-mediated inflammation in preterm human myometrial cells compared to term myometrial cells. Immunomodulatory effects of MSCs mediated through anti-inflammatory cytokine regulation suggest a potential cell-based therapy for preterm birth.

Corresponding Author:
Ph.D ARUNMANI MANI, University of Texas Health Science Center at Houston, Obstetrics Gynecology & Reproductive Sciences, 6431 Fannin Street, 77030 Houston, United States, ARUNMANIMANI@UTH.TMC.EDU

Affiliations:
ARUNMANI MANI, University of Texas Health Science Center at Houston, Obstetrics Gynecology & Reproductive Sciences, Houston, United States
John Hotra, University of Texas Health Science Center at Houston, Obstetrics Gynecology & Reproductive Sciences, Houston, United States
Sean C Blackwell, University of Texas Health Sciences Center at Houston, Obstetrics & Gynecology, Houston, United States
Laura Goetzl, University of Texas Health Science Center at Houston, Obstetrics Gynecology & Reproductive Sciences, Houston, United States
Jerrie S Refuerzo, UTHSC, Obstetrics Gynecology and Reproductive Sciences, Houston, United States
Introduction

Human parturition is an inflammatory incident that involves production of both autocrine and paracrine factors in the gestational tissues.1 The specific factors that initiate inflammation remain unknown but ultimately lead to a cascade of events in both term and preterm labor (PTL), including: activation of membranes, uterine contractility and cervical ripening. Inappropriate timing of inflammatory activation at the maternal fetal interface can lead to pathologic preterm birth (PTB).2,3 This process is mediated by pro-inflammatory cytokines in response to various stress factors that orchestrate the activation of the parturition mechanism prematurely leading to PTL.4,5 Myometrial inflammation plays a vital role both in term and PTL.3,6-7 Cytokines and other mediators are considered inflammatory responses involved in cervical ripening and remodeling.3-6

Mesenchymal stem cells (MSCs) are multipotent cells that play a major role in modulating inflammation and immune response. Through soluble paracrine factors and therapeutic extracellular vesicles, these MSCs demonstrate potential for clinical utility.8,9 Immunomodulatory effects of MSCs are executed by both secretory factors and direct cell-to-cell contact.10 MSCs exert immunosuppressive effects by the production of various cytokines such as transforming growth factor-β (TGF-β), interleukin-10 (IL-10), indoleamine-2,3-dioxygenase (IDO), nitric oxide (NO), prostaglandin2 (PGE2) and other soluble factors. TGF-β, IL-10 are considered potent anti-inflammatory cytokines.11 The potential for MSCs to modulate the inflammatory and immune responses in preeclampsia has been demonstrated in both in vitro cell culture models12-16 as well as preclinical models12. There have also been some studies
of MSCs with recurrent pregnancy loss. However, there are limited studies involving MSCs in term and preterm gestations.

Our previous work has shown that MSCs attenuates lipopolysaccharide (LPS)-mediated inflammation in human non-pregnant uterine smooth muscle cells. The aim of this study was to extend our findings to pregnant uterine tissues collected at the time of term or preterm birth.

Materials and Methods

Clinical Samples

Human myometrial tissue was collected at the time of cesarean delivery from term and preterm pregnancies. This study was approved (HSC-MS14-0370) by the McGovern Medical School-UTHealth Committee for the Protection of Human Subjects. Uterine samples were collected from healthy pregnant women undergoing scheduled cesarean delivery (due to labor or preeclampsia) by transverse incision at a gestational age \(\geq 37 \) weeks (Term) or <37 weeks (Preterm). Women with more than 3 contractions per hour, rupture of membranes, placenta previa, known infections or uterine leiomyomas were excluded.

Cell culture

Biopsies of 2x2x4 cm were obtained from the upper edge of the lower segment of the uterine incision. Tissues were immediately placed in cold Hank’s solution and transported to the lab. Cells were obtained and cultures by methods described previously. These are reviewed briefly as follows. The uterine tissue was cut into 1-2 mm fragments with a razor then digested
in 0.1% trypsin (Sigma, USA) and 0.1% deoxyribonuclease (Sigma, USA) for 30 min at 37 °C in shaker incubator, followed by 0.1% collagenase (Sigma, USA) for another 30 min. After filtering the tissue through gauze, the cells were washed then plated on collagen I-coated T-75 mm flasks (BD Biosciences, USA) with RPMI 1640 media (Sigma, USA), 10% fetal bovine serum (FBS, Sigma, USA) and Penicillin Streptomycin (Sigma, USA). The media was changed daily until Day 4.

MSCs were purchased from Promo Cell, (Heidelberg, Germany) and were grown in mesenchymal stem cell growth medium, at 37°C in a humidified atmosphere of 95% air and 5% CO2. At 90% confluent monolayer, myometrial cells were plated at a density of 2 X 10⁵ cells per well in a 12 well plate (Corning NY) and treated with LPS 5 μg/mL LPS (Sigma-Aldrich, St. Louis, MO) for 4 hours, followed by 1 μg/mL LPS for 24 hours. Both preterm and term myometrial cells were divided into the following experimental groups: a) Control (saline); b) LPS (no MSC’s); c) MSC co-culture (no LPS); and d) LPS and MSC co-culture. Following treatment with LPS or vehicle, myometrial cells were mono-cultured or co-cultured with MSCs and plated at a total cell density of 2 X 10⁵ cells (Corning transwell; 0.4μm). After 24 hours, culture supernatants from myometrial cells were collected, centrifuged at 1,500 rpm for 10 min to remove any cell contamination and stored at -80°C until further use. Culture supernatants were assayed for expression levels of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α, and anti-inflammatory cytokines TGF-β1 and IL-10 by ELISA (R & D Systems, Minneapolis, MN) in accordance with the guidelines supplied by the manufacturer. The minimum detectable and quantifiable amount for IL-1β was 3.91 pg/mL, IL-6, 3.0 pg/mL, whereas for IL-8, IL-10 and TGF-β1, was 31.3 pg/mL and TNF-α was 15.6 pg/mL.
Statistical analysis

Data are expressed as mean ± standard error of the mean (SEM). Statistical analysis was carried out using Graph-Pad Prism (version 6.0, La Jolla, CA, USA). Comparisons of cytokines expression between the above 4 groups were analyzed using one-way ANOVA with Tukey’s post hoc test. A p value <0.05 was considered statistically significant.

Results

Myometrial cells were obtained from preterm (n=8) and term (n=7) subjects. Women in the preterm group delivered approximately 4 weeks earlier, were more likely to be of African America race and had a higher rate of prior cesarean delivery (Table 1). There were no differences in maternal age, gravidity, parity or body mass index.

Inflammatory cytokines such as IL-1β were increased in preterm myometrial cells when exposed to LPS (Figure 1). LPS-exposed preterm myometrial cells expressed significantly higher levels of IL-1β compared to untreated preterm myometrial cells, (LPS: 7.587 ± 0.91 vs. no LPS: 3.06 ± 0.72 pg/mL, p<0.001). However, MSC suppressed inflammatory cytokines in these cells. LPS-treated preterm myometrial cells co-cultured with MSCs suppressed IL-1β, (LPS treated, co-cultured with MSC: 5.08 ± 0.69 pg/mL vs. LPS only: 7.587 ± 0.91, p<0.001) (Figure 1A).

Inflammatory cytokines such as IL-6 were increased in preterm myometrium compared to term myometrium (Figure 1B). Untreated preterm myometrial cells expressed higher levels of IL-6 than term myometrial cells, (Preterm: 1267.3 ± 435.7 vs. Term: 203.1 ± 90.9 pg/mL, p<0.001). LPS-exposed preterm myometrial cells co-cultured with MSCs significantly suppressed IL-6 expression, (LPS treated, exposed with MSC: 525.2 ± 78.3 pg/mL vs. LPS only: 3335.8 ± 280.4,
Expression levels of IL-8 increased significantly in preterm myometrial cells exposed to LPS, and were attenuated in MSC co-cultures, (LPS treated, co-cultured with MSC: 1417.9 ± 40.5 pg/mL vs. LPS only: 2756.0 ± 199.9, p<0.001, Figure 1C). Similar findings were seen with TNF-α, (LPS treated, co-cultured with MSC: 9.1 ± 1.1 pg/mL vs. LPS only: 498.4 ± 34.0, p<0.001, Figure 1D).

Preterm myometrial cells co-cultured with MSCs expressed significantly increased anti-inflammatory cytokines TGF-β1, (LPS treated, co-cultured with MSC: 884.7 ± 179.4 pg/mL vs. LPS only: 40.8 ± 3.5, p<.001, Figure 2A). Similar findings were seen with IL-10 expression, (LPS treated, co-cultured with MSC: 159.87 ± 7.1 pg/mL vs. LPS only: 23.30 ± 2.4, p<0.001, Figure 2B).

Discussion

The results of our *in vitro* study demonstrate that human pregnant myometrial cells treated with LPS and co-cultured with MSCs express significantly reduced levels of the pro-inflammatory cytokines IL-1β, IL-6, IL-8 and TNF-α, and significantly increased levels of the anti-inflammatory cytokines TGF-β and IL-10. The effects were enhanced in preterm myometrial cells compared to term myometrial cells. Moreover, these findings align with our prior work demonstrating attenuation of inflammatory cytokines and elevation of anti-inflammatory cytokines in LPS-exposed and treatment with MSCs in human non-pregnant myometrial cells. 17

The unique characteristic feature of MSCs are self-renewal and multi-lineage differentiation that together create an enduring therapeutic immunomodulatory role. The immunosuppressive properties of MSCs as potential novel modulators of preterm birth leverage their prime role in...
innate immunity.17 Innovative tissue engineering technologies have led to the production of MSC 3D scaffolds that promote secretion of anti-inflammatory cytokines and reduce inflammatory cell infiltration in non-obstetric applications.19 MSCs have been shown to exert therapeutic effects in diseases of various organs, including the heart, lung and liver. Growing evidence has shifted towards paracrine factors and extracellular vesicles being responsible for mediating immunomodulatory and regenerative MSC functions. Novel technologies allow the large-scale production of MSCs in bioreactors MSC can also be applied, with or without scaffolds, in tissue engineering concepts for disease modelling and therapy.20

This study used an\textit{ in vitro} LPS experimental model to investigate the therapeutic potential of MSCs for PTB. Bacterial infections and pathological inflammation are some of the leading factors leading PTB21-23 and novel cell-based therapies for high-risk women with inflammation mediated PTB may well be benefited over the current therapeutics. Our observation that MSC’s suppress pro-inflammatory cytokines is consistent with previous findings in both\textit{ in vitro}24-26 and\textit{ in vivo} studies5,27,28 in various inflammatory conditions. Prior studies suggest that MSC’s modulatory effects of immune response is mediated by soluble factors.9 The current study showed that TGF-β1 and IL-10 levels were significantly increased in LPS treated preterm myometrial cell treatments. This suggests that IL-10 may be a major anti-inflammatory cytokine contributor to the establishment and maintenance of immunosuppression necessary for endometrial receptivity.29 Evidence supports IL-10 delays the onset of preterm, but the driving mechanism remain elusive.30 There are a few contradicting reports on the role of TGF-β and IL-10 in PTB. Some studies show low TGF-β levels and high IL-10 were found in blood from the umbilical cord of pregnant women with placental inflammation, whereas other studies have
shown low IL-10 levels in blood from the umbilical cord of preterm neonates. Moreover, others have found high IL-10 in the plasma of pregnant women who experienced PTB, and higher levels of TGF-β were associated with increased odds of PTB at less than 35 weeks' gestation.

There are some strengths and weaknesses to this study. A strength is that we were able to test the effects of MSCs on the cytokine effect from actual pregnant myometrial tissue, both preterm and term, for this in vitro study. One weakness is that it is not clear whether the causes for these pregnant women who delivered prematurely were due to spontaneous labor or medically indicated deliveries (such preeclampsia, fetal growth restriction or abnormal fetal antenatal testing). Thus, we cannot assume that our results apply to just spontaneous preterm labor. Another weakness is that the myometrial tissue was collected only from pregnant women who underwent a cesarean delivery. We cannot assume that results would be similar in pregnant women who deliver via vaginal delivery.

MSCs exert immunomodulatory effects mediated by the production of IL-10, TGF-β and several other soluble factors primarily by their capacity of adapting and regulating in a manner specific to the cellular environment in which they localize. MSCs may function as therapeutics with clinical benefits in PTB, intra-uterine infection, PPROM and other inflammation related reproductive complications. Our results suggest that MSCs may be potential novel cellular therapeutics. Further in vitro and in vivo studies are required for the translation of these basic scientific findings into therapeutic interventions. A logical next step may be to eliminate the need for MSC co-culture by directly treating myometrial cells with MSC derived extracellular...
vesicles purified from culture supernatants; this approach has enhanced therapeutic potential as MSC derived ECVs can be administered intravenously.33,34

References

Fig. 1 The effect of mesenchymal stem cells (MSC) on pro-inflammatory cytokines in preterm human myometrial cells (MYO) treated with lipopolysaccharide (LPS). Preterm myometrial cells showed significant decrease in pro-inflammatory cytokine levels of IL-1β (A), IL-6 (B), IL-8 (C) and TNF-α (D) measured using ELISA. Data represent mean ± SEM. p values * <0.001.

Fig. 2 Effect of mesenchymal stem cells (MSC) on preterm and term human myometrial cells (MYO) treated with lipopolysaccharide (LPS). Preterm myometrial cells showed an increase in anti-inflammatory cytokine levels TGF-β and IL-10 (A-B). Data represent mean ± sem. p values * <0.001.

Table 1. Maternal Demographics

<table>
<thead>
<tr>
<th></th>
<th>Preterm N=8</th>
<th>Term N=7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age (years)</td>
<td>31.4 ± 3.5</td>
<td>31.7 ± 2.8</td>
</tr>
<tr>
<td>Gestational age at delivery (weeks)</td>
<td>34.2 ± 2.7</td>
<td>38.3 ± 1.9</td>
</tr>
<tr>
<td>Gravidity</td>
<td>4 (2-10)</td>
<td>3 (2-8)</td>
</tr>
<tr>
<td>Parity</td>
<td>1 (0-1)</td>
<td>0 (0-1)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>12.5 % (1)</td>
<td>14.3 % (1)</td>
</tr>
<tr>
<td>African American</td>
<td>75 % (6)</td>
<td>28.6 % (2)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>12.5 % (1)</td>
<td>14.3 % (1)</td>
</tr>
<tr>
<td>Other/Multiple</td>
<td>0 % (0)</td>
<td>42.8 % (3)</td>
</tr>
<tr>
<td>Pre-pregnancy BMI (kg/m²)</td>
<td>40.6 ± 12.9</td>
<td>37.1 ± 11.6</td>
</tr>
<tr>
<td>Prior cesarean delivery</td>
<td>87.5 % (7)</td>
<td>71.4 % (5)</td>
</tr>
</tbody>
</table>

BMI- body mass index

*mean ± standard deviation, **median (range), ***percent (N)