
Unraveling Epigenetic Interplay between
Inflammation, Thrombosis, and Immune-Related
Disorders through a Network Meta-analysis
Shankar Chanchal1 Swati Sharma1 Syed Mohd1 Armiya Sultan1 Aastha Mishra2

Mohammad Zahid Ashraf1

1Department of Biotechnology, Faculty of Natural Sciences, Jamia
Millia Islamia, Delhi, India

2Cardio Respiratory Disease unit, CSIR- Institute of Genomics and
Integrative Biology, Delhi, India

TH Open 2024;08:e81–e92.

Address for correspondence Mohammad Zahid Ashraf, PhD,
Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New
Delhi-110025, India (e-mail: zashraf@jmi.ac.in).

Keywords

► thrombosis
► inflammation
► hypoxia
► epigenetic

modulators
► miRNA
► meta-analysis

Abstract Inflammation and thrombosis are two distinct yet interdependent physiological
processes. The inflammation results in the activation of the coagulation system
that directs the immune system and its activation, resulting in the initiation of the
pathophysiology of thrombosis, a process termed immune-thrombosis. Still, the
shared underlying molecular mechanism related to the immune system and coagula-
tion has not yet been explored extensively. Inspired to answer this, we carried out a
comprehensive gene expression meta-analysis using publicly available datasets of
four diseases, including venous thrombosis, systemic lupus erythematosus, rheuma-
toid arthritis, and inflammatory bowel disease. A total of 609 differentially expressed
genes (DEGs) shared by all four datasets were identified based on the combined effect
size approach. The pathway enrichment analysis of the DEGs showed enrichment of
various epigenetic pathways such as histone-modifying enzymes, posttranslational
protein modification, chromatin organization, chromatin-modifying enzymes, HATs
acetylate proteins. Network-based protein–protein interaction analysis showed epi-
genetic enzyme coding genes dominating among the top hub genes. The miRNA-
interacting partner of the top 10 hub genes was determined. The predomination of
epitranscriptomics regulation opens a layout for the meta-analysis of miRNA datasets
of the same four diseases. We identified 30 DEmiRs shared by these diseases. There
were 9 common DEmiRs selected from the list of miRNA-interacting partners of top
10 hub genes and shared significant DEmiRs from microRNAs dataset acquisition.
These common DEmiRs were found to regulate genes involved in epigenetic
modulation and indicate a promising epigenetic aspect that needs to be explored
for future molecular studies in the context of immunothrombosis and inflammatory
disease.
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Introduction

The human body invokes inflammatory responses to various
exogenousandendogenousstimuli. Exogenous stimuli involve
invasion by pathogens and environmental conditions such as
temperature, hypoxia, and high ultraviolet radiation along
with others.1–3 Endogenous stimuli range from damaged cells
released from diseased conditions to circulatory signaling
molecules elicited by epigenetic changes.4 Often the complex
inflammatory process involving the interplayof immune cells,
blood vessels, and various molecular mediators against these
stimuli overlaps. Inflammation is interlinkedwith hemostasis
and altered hemostasis is associated with several diseased
conditions.5 Any disturbance or loss in the control of hemo-
stasis results in the amplification of inflammation contribut-
ing to the onset and manifestation of pathologies such as
thrombosis. Inflammation is a key player in a thrombus or
blood clot formation within the blood vessel via activation of
the coagulation system.5 Inflammation induces coagulation
while coagulation amplifies inflammation.6 However, the
underlying mechanism through which inflammation invokes
thrombosis remains under-explained and complicated. There
are complex interactions between inflammation and coagula-
tionpathways, involving pro-inflammatory cytokines, chemo-
kines, tissue factor expression, adhesion molecules,
endothelial cells, immune cells, and leukocyte activation along
with platelet activation and aggregation. Such interactions
further contribute to endothelial injury and dysfunction.7

Previous work from our lab demonstrated the association
between nucleotide-binding domain, leucine-rich containing
family, pyrin domain containing 3 (NLRP3) inflammasome,
and hypoxia-inducible factor 1-alpha (HIF-1α) in potentiating
thrombosis under hypoxic conditions.3 The study revealed
that inflammationprecedes coagulation in thrombosisundera
hypoxic environment with a concomitant increase in the
relative expression of NLRP3, caspase-1, interleukin-1β (IL-
1β), and IL-18 transcripts in high altitude (HA) thrombotic
patients. The involvementof inflammasome in thepathophys-
iology of several inflammatory disorders such as systemic
lupus erythematosus (SLE), rheumatoid arthritis (RA), and
inflammatory bowel disease (IBD) with prominent pro-
thrombotic phenotypic features further indicates a strong
link of interaction between inflammation and coagulation
pathways.7 These inflammatory disorders with explicit pro-
thrombotic phenotypic features give an opportunity to under-
stand the pathogenic influence and the active pathways that
connect inflammation and coagulation pathways. This has
encouraged us to look for the shared genetic cues in inflam-
matory diseases such as SLE, RA, and IBD along with venous
thrombosis (VT).

SLE is an acquired, multi-organ and autoimmune disorder
with diverse clinical manifestations including thrombosis
prevalent in more than 10 percent of cases.8 The incidences
of thrombosis may even exceed up to 37% in high-risk SLE
patients.8 The exact etiology of thrombotic events in SLE
remains obscure but various environmental, genetic, and
hormonal factors contribute to its pathogenesis. The antiphos-
pholipid syndrome in approximately a third of SLE patients

favors thrombosis due to the endothelial injury and increased
expression of intercellular adhesion molecule/vascular cell
adhesion molecule, vascular endothelial growth factor, von
Willebrand factor, and platelet activation.9 Similarly, RA is a
systemic inflammatory autoimmune disease characterized by
persistent inflammation of multiple synovial joints. The inci-
denceof thromboembolicevents inRApatients can range from
30 to 50% compared to the general population because of
predisposing conditions like endothelial dysfunction and
hypercoagulability. RA patients also have the presence of
pro-thromboticmilieuwith increasedfibrinogen level, protein
C, protein S, and inflammatory markers and decreased anti-
thrombin III. In addition, endothelial cells may be injured
because of high levels of plasma homocysteine.10 Sharing
thesamepathologyof inflammation, IBD isa systemicdisorder
predominantly affecting the gastrointestinal tract along with
several extra-intestinal manifestations including thrombosis.
Bargen and Barker were the first to report the possible
association between IBD and VT at the Mayo Clinic showing
18 patients with VT from among more than 1,000 patients
treated for IBD.11 Various other reports showed that patients
with IBD have an increased risk of VT.12,13

Although the thrombotic risk is well ascertained in all the
above inflammatory diseases, but the evidence related to the
hierarchical relationship between the biological process and
sharedpathwaysstill is lacking. Therefore, in thepresent study,
we carried out an integrated gene expressionmeta-analysis of
four independent publicly availablemicroarray datasets of the
four selected diseases viz. VT, SLE, RA, and IBD, to identify
shared gene expression signatures and overlapping biological
pathways. We selected four eligible datasets to out the com-
mon transcriptional signatures based on the inclusion criteria
from public repositories such as Gene Expression Omnibus
(GEO) and ArrayExpress. Network-based hub gene analysis
obtained an overrepresentation of chromatin modulators
among the top enriched pathways and histone-modifying
enzymes among the top identified hub genes. The dominance
ofepigeneticmodulators in our transcriptomicsmeta-analysis
made us examine quantitative and qualitative epitranscrip-
tomics profiles targeting microRNAs (miRNAs) as well in the
selected pathologies of the study.

Dysregulated expression of miRNAs augments the patho-
genesis of several diseases. Therefore, by identifying the
common miRNA signatures to summarize the complex mul-
tilevel regulation ofmiRNA andmRNAexpression, in relation
to disease, the body’s physiological state and various external
factors such as hypoxia become pertinent. As a result, shared
genetics and epigenetics signatures and overlapping biolog-
ical pathways are identified through meta-analysis of inte-
grated transcriptomics and epitranscriptomics targeting
miRNAs for four independent publicly available microarray
datasets of VT, SLE, RA, and IBD.

Materials and Methods

Acquisition of Eligible Datasets for Meta-analysis
We systematically mined the public database National Cen-
tre for Biotechnology Information-GEO (NCBI-GEO) database
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(http://www.ncbi.nlm.nih.gov/geo/) to select microarray-
based studies. For search, following keywords and their
combinations were used: “Thrombosis,” “venous thrombosis
(VT),” “inflammatory disease,” “Systemic lupus erythemato-
sus (SLE),” “Rheumatoid arthritis (RA),” “Inflammatory bow-
el disease (IBD),” “microarray,” “gene expression dataset.”
Each identified study was used to extract the following
information: GEO accession number, sample source, plat-
form, number of controls, and patient along with references.
For each dataset selection inclusion, criteria were laid and
strictly followed. The criteria were human control/patient
study, sample source, platform, entry type having datasets,
and study type with expression profiling by array.

We fetched the expression data from RNA extracted from
the blood samples in all the conditions. However, when data
were extracted for RA (GSE1402), we found that few samples
had the gene expression data of synovial fluid mononuclear
cell samples. So, we carefully excluded those samples in this
dataset as they did not meet our inclusion criteria. Themeta-
analysis was conducted in accordance with the guidelines
provided in the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) guidelines published

in 2009. The same exercise was conducted for microRNA
datasets as well for the four studied pathologies. A flow
diagram depicting the microarray meta-analysis as a selec-
tion process along with inclusion and exclusion criteria of
eligible microarray datasets is represented in ►Fig. 1A.

Batch Effect Correction and Preprocessing of
Individual Datasets of Microarray
IntegrativeMeta-Analysis of Expression Data (INMEX), aweb
interface for integrative meta-analysis (http://www.
networkanalyst.ca/faces/home.xhtml) tool was used for pre-
processing and normalization of individual datasets using
log2transformationwith quantile autoscaling.14All gene and
probe IDs were annotated by converting them to their
corresponding Entrez IDs. The batch effect correction option
was applied before performing the meta-analysis, to reduce
the potential study-specific batch effect heterogeneity using
the combat procedure of the INMEX tool. This step is
mandatory for integrative analysis and reducing contradic-
tory factors due to nonbiological variation. We performed
principal component analysis (PCA) to visualize the sample
clustering patterns before and after applying the ComBat

Fig. 1 Workflow and processing of mRNA and microRNA microarray datasets. (A) Diagram depicting the workflow of the retrieval and selection
of the microarray datasets along with inclusion and exclusion criteria of individual datasets included in the meta-analysis. (B) Workflow of
the process of microarray and microRNA datasets through meta-analysis. Depiction of the flow chart of the process involved in integrated meta-
analysis of selected microarray datasets of mRNA and miRNA expression. BOEC, blood outgrowth endothelial cells; GEO, gene expression
omnibus; IBD, inflammatory bowel disease; PBMCs, peripheral blood mononuclear cells; PE, pulmonary embolism; RA, rheumatoid arthritis; SLE,
systemic lupus erythematosus; VT, venous thrombosis.
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procedure. It was done to ensure identical distribution
among the samples.15 Using empirical Bayes methods, the
ComBat procedures stabilize the expression of genes with
too-high or too-low ratios along with stabilizing the individ-
ual gene variances by shrinking variances across all the other
genes.

Microarray Meta-analysis: Discerning Shared
Differentially Expressed Genes
INMEX was used to independently perform the differential
expression analysis for each dataset using an adjusted
p-value <0.05. The analysis was done based on the false
discovery rate (FDR) using the Benjamini–Hochberg proce-
dure and moderated t-test based on the Limma algorithm.16

While conducting the meta-analysis, data integrity was
checked to confirm the consistency and completeness of
class labels across all the datasets. We conducted the differ-
ential expression meta-analysis across the diseased patients
and healthy individuals (controls) by the random effects
model (REM) based on combining the effect sizes (ESs).
The analysis was done based on changes in gene expression
from the different studies to obtain an overall mean with a
significance level of p-value <0.05.17 To avoid significant
cross-study heterogeneities based on the Cochran’s Q test,
REM was chosen over the fixed effects model.18

Biological Process Analysis Using Kobas3.0
To explore the biological functions and reveal the significant
and enriched pathway analysis of the shared differentially
expressed genes (DEGs) of the above-mentioned diseases, an
online user-friendly platform “Kobas3.0” (http://kobas.cbi.
pku.edu.cn/kobas3/?t=1), was used under the option of
“Gene list Enrichment” including Gene Ontology (GO),
KEGG, Reactome, PANTHER, and few other pathway analy-
ses.19 Kobas3.0 implements hypergeometric test/Fisher’s
exact test as a statistical test method with Benjamini–
Hochberg as FDR correction method.

Network-Based Hub Gene Analysis and Gene miRNA
Interaction of the Shared DEGs
NetworkAnalyst/INMEX was used for network-based analy-
sis for generating a protein–protein interaction (PPI) net-
work depicting generic PPI and gene–miRNA interaction. A
compiled list of DEGs was uploaded to the web-based server
of NetworkAnalyst. To allow the proper visualization of the
interaction network and avoid the “hairball effect,” the
generic PPI network construction was restricted to contain
only the original seed proteins and minimum associated
protein by selecting the minimum network interactors and
the obtained result was used for hub gene analysis by the
Cytoscape tool, giving detailed information on nodes within
the current network, including degree and betweenness
centrality.19 The gene–miRNA interaction network was
also obtained similarly using INMEX bymiRTarBase database
and was restricted to a minimum network and fed into
Cytoscape. The degree and betweenness centrality were
explained as the number of connections to the other nodes
and the number of shortest paths going through a node,

respectively.20 ►Fig. 1B depicts the complete workflow of
the process followed throughout the analysis from acquiring
the dataset to determining the miRNAs of the hub genes.

Functional Enrichment Analysis of Common DEGs in
between Inflammatory Diseases and Thrombosis
To understand the nexus of the shared DEGs on inflammatory
diseases and thrombosis, a functional analysis was performed
using ClueGO, a user-friendly Cytoscape plug-in. It was utilized
to gain insights into a functionally grouped network of an
enriched biological pathway on the shared DEGs.21 The mini-
muminteractionnetworkwith760nodes and2,144 edgeswas
downloaded from the INMEX and fed into the Cytoscape with
their expression values and additionally, the names of the top
50 hub genes were provided to ClueGo for exploring the
enriched and significant pathways andbiological terms related
toournetworksofDEGs.Thetop50hubgeneswerespecifically
shortlisted based on the high degree of connectivity in the PPI
network for functional analysis. ClueGO as a tool examines the
interrelations of terms and functional groups in biological
networks. It enables the user to make various flexible adjust-
ments for a profound exploration of gene clusters in biological
networks. Thenonredundantbiological terms for large clusters
of genes/pathways obtained from functional enrichment anal-
ysis in a grouped network can be visualized by it. Enrichment
(right-sided) hypergeometric distribution tests were used in
the present study. The GO terms and pathways were ranked
based on their significance with a cutoff p-value �0.05, fol-
lowed by the Bonferroni adjustment for the terms. Using the
Biological Networks Gene Ontology (BiNGO) tool,22 an open-
source Cytoscape plug-in to assess the overrepresentation of
GO, we verified which GO biological process terms are signifi-
cantlyoverrepresented ina setofDEGsbyhyper-geometric test
statistics, followed by Benjamini–Hochberg FDR correction.
Heatmap visualization of the chromatin organization pathway
of the DEGs from the meta-analysis was performed using the
“Pattern extractor” tool from INMEX data for this heatmap
normalized within each study before being pooled together.

Processing and Screening of DEmiRs
After selecting desirable miRNA datasets, they were proc-
essed independently in the GEO2R (http://www.ncbi.nlm.
nih.gov/geo/geo2r/) tool, a web tool of the GEO repository,
NCBI. GEO2R is an R-based platform used to perform com-
parisons between different groups of samples in each GEO
dataset. DEmiRs were screened using a p-value of less than
0.05 as the threshold. After processing eachmiR dataset, they
were compared with other datasets in a combinatorial
method to find the common DEmiRs with the help of online
Bioinformatics and Research computing website tools pro-
vided byMassachusetts Institute of Technology (MIT; http://
barc.wi.mit.edu/tools/compare/index.php). By comparing
each miR dataset, the common DEmiRs in all the pathologies
from the analysis are compared to miRNAs obtained com-
putationally through mRNA expression via hub gene analy-
sis. From the comparison, the obtained DEmiRs were
subjected to Cytoscape to see the interaction of common
DEmiRs with their target hub genes.
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Statistical Analyses
For conducting the meta-analysis, we adopted the ES combi-
nationusing theREMbyaweb-based tool, INMEX.Anadjusted
p-value of <0.05, based on the FDR using the Benjamini–
Hochberg procedure, was used to obtain and select shared
DEGs. For the functional enrichment analysis, the hypergeo-
metric test (right-sided) and Benjamini–Hochberg FDR correc-
tion with an adjusted p-value �0.05 were used. Important
enriched pathways were identified using a hypergeometric
test/Fisher’s exact test as a statistical test method with Benja-
mini–Hochberg as the FDR correction method.

Results

Batch Effect Removal of Eligible Dataset Selection
Atotal of fourmicroarray studiesmet the inclusioncriteria and
were selected further for the meta-analysis. The datasets for
VT and datasets for inflammatory diseases, viz. SLE, RA, and
IBDwere included in thestudies asmentioned in►Fig. 1A. The
publicly availablemicroarray gene expression datasets related
to VT, SLE, RA, and IBD were mined on NCBIGEO. On initial
search, we found 390 hits for VT, 8,482 hits for SLE, 6,971 hits
for RA, and 1,002 hits for IBD. After filtering each hit on the
basis of organism and study type, we were left with 44 hits of
VT, 133 hits for SLE, 193 hits for RA, and 174 hits for IBD. Then,
the remaining hits were filtered based on the entry type.
Overall, 17 hits fit for VT, 124 hits for SLE, 21 for RA, and 18

for IBD remained. Again, the remaining articles were filtered
on thebasis of title or abstractduplication, andweare leftwith
13 articles of VT, 38 articles of SLE, 10 articles of RA, and 3
articlesof IBD.Wefinallyfiltered the remainingdatasetsonthe
basis of our inclusion criteria, i.e., healthy/patient studies
having blood and its comparable as a source and a comparable
condition in each condition. We finally observed one gene
expression dataset fit for each disease for performing meta-
analysis in accordance with all the above-mentioned criteria.

The detailed information of each dataset giving details of
the disease condition, sample groups, source of samples,
microarray platform used, and references is depicted in
►Supplementary Table S1. The dataset GSE1707823 was
selected for VT, and datasets GSE46907,24 GSE1402,25 and
GSE336526 were selected for inflammatory diseases, viz. SLE,
RA, and IBD, respectively. The detailed information of each
dataset is given in ►Supplementary Table S1. The datasets
included in this meta-analysis were control/patient studies
with a collective number of 27/3, 5/5, 11/26, and 42/85 for VT,
SLE, RA, and IBD, respectively. Prior to the common DEG
identification between inflammatory diseases and VT, the
datasets were preprocessed and normalized using the INMEX
tool. It was necessary to reduce the potential study-specific
“batch effects,” which was observed using PCA. It was taken
care of by the ComBat procedures.►Fig. 2A visually examines
the sample clustering patterns and distribution of the variable
prior to applying the batch adjustment algorithm using a

Fig. 2 Analysis of datasets for the identification of gene and its share with other disease. (A) Density plot to compare clustering and
distribution patterns before batch removal and (B) after applying batch removal using the Combat procedure. (C) Visualization of volcano plot
showing DEGs of the microarray datasets. (D) The Venn diagram showing the distribution of DEGs between individual diseases and their
relationship between them. DEGs, differentially expressed genes.
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density plot.►Fig. 2B visualizes the inter-mixing of all studied
samples from the datasets after the batch effect correction.
This depicts the removal of the confounding factors because of
the nonbiological variations and thus reducing the potential
study-specific “batch effects.”

Identification of Shared Transcriptomics Signature of
the DEGs among VT and Inflammatory Diseases (SLE,
RA, and IBD)
The implementation of ES and REM statistical analysis of
INMEX identified a common transcriptional signature shared
between VT and inflammatory diseases. A total of 613 DEGs
including 229 over-expressed and 384 under-expressed genes
were identified under the significance threshold of adjusted
p-value <0.05. ►Fig. 2C illustrates the volcano plot of signifi-
cant genes which are over-expressed and under-expressed.
Based on the values of CombinedES, Cathepsin L (CTSL), C-X-C
motif chemokine 3 (CXCL3), C-X-Cmotif chemokine 5(CXCL5),
protein sprouty homolog 2 (SPRY2), transmembrane protein
158 (TMEM158), C-X-C motif chemokine 2 (CXCL2), spermine
oxidase (SMOX), a disintegrin and metalloproteinase with
thrombospondin motifs 2 (ADAMTS2), epiregulin (EREG),
C-X-C motif chemokine ligand 8 (CXCL8), or IL-8 were among
the most overexpressed genes with significant p-values.
While, Ras association domain-containing protein 1 (RASSF1),
microtubule-actin cross-linking factor 1 (MACF1), zinc finger
and BTB domain-containing protein 16 (ZBTB16), O-linked
N-acetylglucosamine (GlcNAc) transferase (OGT), gamma-sec-
retase-activating protein (GSAP), E74-like ETS transcription
factor 2 (ELF2), nuclear factor of activated T cells 2 interacting
protein (NFATC2IP), PNN interacting serine and arginine rich
protein (PNISR), phosphorylase kinase catalytic subunit gam-
ma2 (PHKG2), and E3 ubiquitin-protein ligase (MYCBP2)were
the most under-expressed genes with significant p-values
across the four microarray datasets. The compiled list of
significantly over-expressed and under-expressed DEGs from
the meta-analysis with combined ES and adjusted p-value
<0.05 is provided in ►Supplementary Table S2. The Venn
diagramof significantDEGsdepicted in►Fig. 2D illustrates the
shareof significantgenes in independentstudies and in total as
416 genes lie inVT, 32 genes in SLE, 795 genes in RA, and3,223
genes in IBD along with 613 DEGs are shared by all the four
diseases.

Chromatin-Modifying Pathway Enrichment
Overrepresented biological pathways and GO terms were
identified by gene set enrichment analysis. This was execut-
ed by Kobas3.0 tool using the complete list of significant
over-expressed and under-expressed DEGs. ►Fig. 3C repre-
sents the results for the enriched biological pathways from
various pathway analysis libraries like the KEGG, BioCyc,
Reactome pathway, and PANTHER with adjusted p-value
<0.05 using hypergeometric test/Fisher’s exact test with
the Benjamini–Hochberg FDR correction method. The pres-
ent meta-analysis showed posttranslational protein modifi-
cation (R-HSA-597592), cytokine signaling in the immune
system (R-HSA-1280215), transcriptional regulation by TP53
(R-HSA-3700989), hemostasis (2.11E-13), signaling by ILs

(R-HSA-449147), chromatin organization (R-HSA-4839726),
chromatin-modifying enzymes (R-HSA-3247509), HATs
acetylate histones (R-HSA-3214847), transcription regula-
tion by TP53 (R-HSA-3700989), and posttranslational pro-
tein modification (R-HSA-597592) are the top enriched
significant pathways that regulate the epigenetic control of
gene expression as top enriched pathways with corrected
p-value <0.05.

Histone-Modifying Enzymes Are among the Top
Identified Hub Genes
APPI networkwasgenerated throughNetworkAnalyst/INMEX
by integrating the String database for the complete list of 609
DEGs. An original PPI network having 2,687 nodes with 5,291
edges was generated; however, for better visualizations of the
PPI network, the “minimum interaction network” with 760
nodes showing interaction with 2,144 edges was selected.
Based on their topological parameters, viz. degree and be-
tweenness centrality, the key hub genes were extracted using
Cytoscape through the network analyzer. Based upon the
network topology, the most highly ranked nodes across the
four datasetswerehistonedeacetylase 1 (HDAC1; degree¼89,
betweenness centrality¼3.91) and histone deacetylase 2
(HDAC2; degree¼62, betweenness centrality¼0.0) followed
by Fos Proto-Oncogene (FOS; degree¼46, betweenness cen-
trality¼1.72), protein kinase, DNA-activated, catalytic sub-
unit (PRKDC; degree ¼41, betweenness centrality ¼1.74),
cyclin-dependent kinase inhibitor 1A (CDKN1A; degree¼36,
betweenness centrality¼0.99275), RB binding protein 4,
chromatin remodeling factor (RBBP4; degree¼34 between-
ness centrality¼0.70), and Erb-B2 receptor tyrosine kinase 2
(ERBB2; degree¼33, betweenness centrality¼1.29). HDAC1
and HDAC2 are the top hub genes with the highest degree
which are histone-modifying enzymes. ►Table 1 shows a list
of the top 10 hub genes based on the degree and ►Fig. 3A

illustrates the expression pattern of the top 5 hub genes in all
the datasets concerning disease and control. The top pathway
enrichment using the ClueGO, a Cytoscape plug-in of the PPI
network based on the top 50 hub genes, is shown in ►Fig. 3C

whereas ►Fig. 3B depicts pathway enrichment in network
form where the significant pathways are highlighted.

miRNA Interacting Partners of Top 10 Hub Genes
With chromatin-modifying pathway enrichment and his-
tone-modifying enzymes among the top identified hub
genes, we were intrigued to screen the epitranscriptomic
signature among the shared hub genes. We enlisted miRNA-
interacting partners of the top 10 hub genes from our
analysis. ►Supplementary Table S3 shows the interaction
of the top 10 hub genes with their miRNA-interacting
partners. CDKN1A interacts with 331 miRNAs, FOS interacts
with 58 miRNAs, HDAC1 interacts with 10 miRNAs, HDAC2
interacts with 6 miRNAs, and PRKDC interacts with 2
miRNAs.

Processing and Screening of DEmiRs
In addition to the list of miRNA-interacting partners of the
top 10 hub genes, our study also screened shared DEmiR
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signatures among inflammatory diseases (SLE, RA, and IBD)
and VT. For these, miRNA expression datasets were also
mined on NCBI GEO for each disease as described earlier
(►Fig. 1A). In total, 7 hits for VT, 27 hits for SLE, 52 hits for RA,
and 163 for IBDwere observed in the beginning. Filtering the
initial results based on organism and study type gave us the
remaining 7 hits for VT, 22 hits for SLE, 42 hits for RA, and 138
hits for IBD. These results were then filtered on the basis of
entry type and 4 articles for VT, 15 articles for SLE, 37 articles
for RA, and 43 articles for IBD were left. These results were
again filtered on the basis of title or abstract duplication and
observed 1 article for VT, 8 articles for SLE, 16 articles for RA,
and 19 articles for IBD. Finally, we selected the datasets with
healthy/patient studies, blood, and its component as a source
and with a comparable condition from the remaining articles.
One miRNA expression dataset for each disease was selected
for performing the meta-analysis. A total of four microRNA
studiesmet the inclusion criteria andwere selected further for
the meta-analysis. The dataset GSE2414927 was selected for
pulmonary embolism (PE), and datasets GSE79240,28

GSE124373,29andGSE3227330wereselected for inflammatory

diseases, viz. SLE, RA, and IBD, respectively. The detailed
information of each dataset is given in ►Supplementary

Table S1. The datasets included in this meta-analysis were
control/patient studies with a collective number of 10/10, 5/5,
18/28, and 66/66, for PE, SLE, RA, and IBD, respectively.

After the preprocessing of eachmiRNAdataset independent-
ly, DEmiRswere screenedusing ap-value of less than 0.05 as the
threshold. We obtained 376, 2,006, 2,578, and 6,804 DEmiRs
from PE, SLE, RA, and IBD, respectively. After this, each dataset
was compared with other datasets and in a combinatorial
method to find the common DEmiRs with the help of online
Bioinformatics and Research computing website tools provided
by MIT (http://barc.wi.mit.edu/tools/compare/index.php). By
comparing each miR dataset in the combinatorial method,
only 30 miRNAs were found that were common to all four
selected studies. Out of these 30 miRNAs, 23 DEmiRs were
up-regulated and 7 DEmiRs were down-regulated. The com-
plete list of DEmiRs from the analysis is provided in
►Supplementary Table S4. Some of the up-regulated DEmiRs
are hsa-mir-107, hsa-mir-133b, hsa-mir-137, hsa-mir-346,
hsa-mir-147b, hsa-mir-198, hsa-mir-301b, hsa-mir-326, and

Fig. 3 Hub gene expression and their regulated pathways. (A) Expression pattern of selected hub gene which shows the expression in different
disease conditions. I. HDAC1 (p-value¼ 0.0125), II. HDAC2 (p-value¼ 0.002), III. PRKDC (p-value¼ 0.002), IV. CDKN1A (p-value¼ 0.000769), V.
RBBP4 (p-value¼ 0.0074). (B) Pathway enrichment interaction showing the significant pathway. Network overrepresentations of enriched
pathway and gene ontology integrating the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathways for the top 20 hub genes
using Cytoscape plug-in, ClueGO. Right-sided hypergeometric distribution tests, with an adjusted p-value of 0.05, followed by the Bonferroni
adjustment based on the highest significance. (C) Enriched pathway of shared DEGs using online tool Kobas3.0 in a tabular format. HATs,
gomerization domain; TP53, tumor protein p53.
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hsa-mir-422a, and some of the down-regulated DEmiRs are
hsa-mir-184, hsa-mir-298, and hsa-mir-325. The Venn
diagram of significant DEmiRs depicted in ►Fig. 4A shows
the share of significant miRs in independent studies with only
30 DEmiRs that were shared by all four diseases
(►Supplementary Table S4).

Common DEmiRs Selected from the list of miRNA-
Interacting Partners of Top 10 Hub Genes and Shared
Significant DEmiRs from microRNA Dataset
Acquisition
The obtained 30 DEmiRs from the independent miRNAs array
studies were subjected to comparison with miRNAs obtained
from gene–microRNAs interaction on the basis of the top 10
hub genes. A list of 9 DEmiRs was common from the list of
miRNA-interacting partners of the top 10 hub genes and the
shared 30 DEmiRs from the microRNAs meta-analysis
(►Table 2). ►Fig. 4B depicts the interaction of common 9

DEmiRswith their partnerDEGs,which are10hubgenes in the
present case. MicroRNAs, has-mir-198, hsa-mir-298, and hsa-
mir-520b fromthecommonnineDEmiRsare involvedwith the
CDKN1A gene. MiRNAs, hsa-mir-422a, and hsa-mir-484 play
role in regulating the YY1 gene. miRNA hsa-mir-449 regulates
HDAC1 and FOS gene, while hsa-mir-429 regulates RBBP4.
Finally, miRNAs, hsa-mir-326, and hsa-mir-375 regulate the
function of the ERBB2 gene. Thus, a total of six hub genes are
demonstratedas the interacting partners for thecommonnine
DEmiRs.

Discussion

Adiseased condition that causes inflammationmayalso alter
the hemostatic balance leading to endothelial dysfunction
and activation, platelet and immune cell activation, and the
release of various cytokines. All these alterations create a
prothrombotic milieu in several inflammatory diseases like

Table 1 List of top 10 hub gene based on their topological parameter such as degree and p-value <0.05

Entrez ID Gene symbol Degree Betweenness
centrality

Closeness
centrality

Combined
ES

p-Value

3065 HDAC1 89 3.918389 0.666667 �0.80456 0.012591

3066 HDAC2 62 0 0 �0.80045 0.002007

2353 FOS 46 1.721673 0.459854 0.68654 0.042176

5591 PRKDC 41 1.743195 0.440895 �0.6355 0.002753

1026 CDKN1A 36 0.9275 0.392701 0.80497 0.000769

5928 RBBP4 34 0.708424 0.459459 �0.79299 0.007486

2064 ERBB2 33 1.291217 0.36413 �0.5804 0.007874

7528 YY1 33 0.834459 0.370739 �0.56943 0.00908

7329 UBE2I 32 1.077831 0.45 �0.9885 0.001474

1386 ATF2 28 0.833348 0.33694 �0.52418 0.019178

Abbreviations: ATF2, activating transcription factor 2; CDKN1A, cyclin-dependent kinase inhibitor 1A; ERBB2,Erb-B2 receptor tyrosine kinase 2; FOS,
Fos proto-oncogene; HDAC1, histone deacetylase 1; HDAC2, histone deacetylase 2; PRKDC, protein kinase, DNA-activated, catalytic subunit; RBBP4,
RB binding protein 4, chromatin remodeling factor; UBE2I, ubiquitin conjugating enzyme E2 I; YY1,Yin Yang 1.

Fig. 4 Analysis of miRNA dataset for the identification of DEmiRs and its interaction with the associated DEGs. (A) The Venn diagram showing the
distribution of DEmiRs between individual diseases, their relationship between them, and the common DEmiRs among all the diseases.
(B) Interaction of top 10 hub genes with the common DEmiRs from the microRNA list of the top 10 hub genes and DEmiRs selected from the
microRNAs datasets.
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SLE, RA, and IBD.8–13 However, the underlying molecular
mechanisms of the thrombotic events are still largely ob-
scure. Microarray studies have enabled the acquisition of
large quantities of data for specific settings, but the small
sample size of these studies remains a major limiting factor.
Performing a meta-analysis of multiple available microarray
datasets not only increases the sample size but also provides
the opportunity to identify shared DEGs with greater confi-
dence and authenticity. Thus, the present work attempts to
identify shared gene signatures between inflammatory pa-
thology observed in inflammatory diseases such as SLE, RA,
and IBD with VT.31–37 Publicly available microarray datasets
for VT, SLE, RA, and IBD identified the shared transcriptomics
and epitranscriptomics signatures among them. The meta-
analysis provided 613 shared DEGs including 229 overex-
pressed and 384 under-expressed genes under the signifi-
cance threshold of adjusted p-value <0.05. The functions of
shared DEGs were ascertained through pathway enrichment
analysis and hub gene identification using the comprehen-
sive enrichment library of Kobas3.0 and Cytoscape. Chroma-
tin-modifying pathway, histone-modifying enzymes,
hypoxia-related pathways, activation of “cytokine signaling
in immune system,” “inflammation mediated by chemokine
and cytokine signaling pathway,” “metabolism of RNA,”
“transcriptional regulation,” and “platelet activation” were
among the enriched biological pathways. All of these
enriched pathways indicated hypoxia-related pathways
along with chromatin-modifying pathways such as chroma-
tin organization, chromatin-modifying enzymes, HAT acety-
late histones, and histone-modifying enzymes. Hypoxia-
related pathways show a strong correlation with inflamma-
tion and coagulation through an interplay between HIF1α

and inflammasome.3 Likewise, chromatin-modifying path-
ways such as chromatin-modifying enzymes, HAT acetylate
histones, and histone-modifying enzymes suggest the influ-
ence of epigenetic changes on the occurrence and progres-
sion of thrombotic diseases.38 For example, histones play a
significant role in the manifestation of thrombosis and
inflammation.38 Histone H4 binds to prothrombin and by
autoactivation generates thrombin.39 Histone also acceler-
ates fibrin formation and induces platelet activation in a Toll-
like receptors-2 (TLRs-2) and TLR-4-dependent manner.40,41

Histones can bind to protein C and thrombomodulin and
impair protein C activation.42 Further, histone complexes
with DNA can impair fibrinolysis by binding to fibrin.43 The
procoagulant effects of histones, coupledwith their ability to
kill endothelial cells, activate platelets and inhibit fibrinoly-
sis, contribute to tissue injury andmicrovascular thrombosis.
Evidence of epigenetic regulators in ourmRNAmeta-analysis
intrigued us to look for epitranscriptomics profiles targeting
miRNAs in the mentioned diseased conditions as well.
Human miRNAs like miR-126 and miR-146a regulate the
expression of genes involved in the pathways leading to
immunothrombosis.44,45 Further, the altered biogenesis of
miRNAs like miR-15, miR-125a, miR-142, miR-146a, miR-
155, and miR-181 is observed in patients suffering from
SLE.46 Another study on SLE showed a rise in the expression
of pro-inflammatory miRNAs and a decline in anti-inflam-
matory miR146a in the peripheral blood mononuclear cell
(PBMCs) isolated from patient subjects as compared to
healthy subjects.47 Similarly, miR-21 and miR-124 are found
to increase inflammation leading to IBD,whilemiR-146a and
miR-155 are altered in RA.48,49 Sahu et al have demonstrated
that a decrease in the expression of miR-145 in PBMCs,

Table 2 Total of ninemiRNAs that are shared between the two studies’ analysis, Hub gene–miRNA interacting partners andmiRNA
meta-analysis for four datasets, VT/PE, SLE, RA, and IBD with their functional role

Common miRNAs Their hub genes Functional role of hub gene References

hsa-mir-449a HDAC1, FOS HDAC1 catalyzes the deacetylation of lysine residues on the N-
terminal part of core histones. It serves as an epigenetic repression
and modulates transcription.
FOS gene is member of genes known as immediate early genes. It
heterodimerized with JUN family genes to form activator protein-1
(AP-1) and binds with TGAC/GTCA consensus sequences in the
promoter region of target genes.

65,66

hsa-mir-198 CDKN1A CDKN1A is essential in cellular response to DNA damage and its over-
expression due to p53 checkpoint pathway leads to cell arrest.

67

hsa-mir-298

hsa-mir-520b

hsa-mir-429 RBBP4 RBBP4 exists in protein complexes and plays a significant role in
histone acetylation, methylation, and chromatin-modifying
complexes.

68

hsa-mir-326 ERBB2 ERBB2 is present in protein complex involved in chromatin
remodeling and modulates transcription with histone
acetylation/deacetylation.

69

hsa-mir-375

hsa-mir-422a YY1 YY1 is a transcription factor that modulates transcription. It
regulates histone alpha complex and replication.

70

hsa-mir-484

Abbreviations: AP-1, activator protein 1; CDKN1A, cyclin-dependent kinase inhibitor 1A; ERBB2,Erb-B2 receptor tyrosine kinase 2; FOS, Fos, proto-
oncogene; HDAC1, histone deacetylase 1; RBBP4, RB binding protein 4, chromatin remodeling factor; TP53, tumor protein p53; YY1,Yin Yang 1.
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platelets, vascular endothelial, and smooth muscle cells is
associatedwith the development of thrombus.50 Restoration
of normal miR-145 levels in thrombotic animals further
resulted in reduced thrombogenesis via decreased tissue
factor levels.50 Thus, examining shared miRNA involved in
the interplay of inflammation and thrombosis is crucial. A
total of 30 miRNAs with adjusted p-value <0.05 were iden-
tified as a shared DEmiRs signature among inflammatory
diseases (SLE, RA, and IBD) and VT. These 30 DEmiRs were
subjected to comparison with miRNAs obtained from gene–
microRNAs interaction of the top 10 hub genes that gave nine
miRNAs. The miRNAs such as has-mir-449a targets HDAC1
and FOS, hsa-mir-198, hsa-mir-298, and has-mir-520b target
CDKN1A, hsa-mir-429 targets RBBP4, hsa-mir-326 and hsa-
mir-375 target ERBB2, and hsa-mir-422a and hsa-mir-484
target YY1. hsa-mir-449a regulates HDAC1 and FOS genes,
which plays a significant role in posttranslational protein
modification, transcriptional regulation by TP53, hemosta-
sis, chromatin organization, chromatin-modifying enzymes,
and SUMOylation.51,52 Studies have demonstrated down-
regulation of endothelial nitric oxide synthase (eNOS) ex-
pression during the silencing of HDAC1 by hsa-mir-449a,
which indicates their involvement in maintaining the integ-
rity of endothelial cells whose functions are pivotal in
inflammatory and coagulatory responses.53 Hsa-mir-198,
has-mir-298, and hsa-mir-520b modulate the expression of
CDKN1A, which is involved in cytokine signaling in the
immune system, signaling by IL, HIF-1 signaling pathway,
and cellular response to stress.54 Hsa-mir-326 and hsa-mir-
375 regulate ERBB2, which is involved in pathways like
signaling by IL and HIF.55,56 Over-expression of ERBB2 is
associated with inflammation in disease pathologies.57 Hsa-
mir-422a and hsa-mir-484 modulate the function of YY1
gene associated with posttranslational protein modification
to regulate inflammation through different pathways like
TLRs, NOD-like receptors, and inflammasome.58 Additional-
ly, Hsa-mir-484 is reported in endothelial dysfunction by
alleviating the expression of eNOS59 and has been involved in
coronary artery disease, cardiac ischemia-related diseases,
and inflammation including others.60 Our results indicate a
strong association of epigenetic changes and histone modi-
fication with miRNAs in inflammation and coagulation and
gave us an insight into the involvement of epigenetic path-
ways in the context of immunothrombosis and inflammato-
ry disease. The study gave us specific pathways and their
interconnections with pathological miRNA that exhibited a
significant causal influence on driving inflammation-related
thrombosis. However, there are certain limitations to the
study that should be discussed. All of the publicly available
microarray datasets used in the studies are derived from
blood cells such as PBMCs that may not be an ideal model to
understand tissue or organ-specific inflammatory or throm-
botic responses; however, PBMCs can mirror inflammatory
changes within the body61,62 and can enable the real-time
monitoring of the patients and their disease progression and
responses of the treatment. In addition, dataset-specific
information from the individual microarray dataset could
get lost when integratingmultiple microarray datasets using

meta-analysis. Integration unintentionally adds confounding
factors that mask the real biological signals, inadvertently
introduce or amplify biases, and produce erroneous relation-
ships. However, the usage of a random effect model, as is the
case in this study, can help in minimizing the biases if not
circumventing them. A random effect model employs differ-
ent weights to different studies such that smaller studies are
often given less weight in the analysis than larger studies
with more participants. Hence, it assists in controlling
unobserved heterogeneity. Furthermore, the ComBat proce-
dure to remove the batch effect can excessively influence the
data and inadvertently mask true biological variation.63,64

ComBat procedures make certain assumptions about the
data distribution that could compromise its functionality
and may increase the chance of overfitting when there are
few samples in a batch. Although there are previous individ-
ual gene expression microarray reports on either individual
diseases or in combination, the present work, however, is the
first one, as per our knowledge, where datasets of mRNA and
miRNAs on these four disorders have been integrated, to
define shared biological processes. In addition, the work
provides biological insights into the mechanisms underlying
the modulation of the coagulation cascade.
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