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Abstract tert-Butoxide mediates the Haller–Bauer-type (protode-
formylative) decarbonylation of readily accessed -quaternary homo-
benzaldehydes and related compounds at room temperature, generat-
ing cumene products. Both geminal dialkyl and geminal diaryl
substituents are tolerated. gem-Dimethyls are sufficient for decarbon-
ylation of polycyclic arenyl substrates whereas monocyclic aromatic ho-
mobenzaldehydes require cyclic gem-dialkyls or gem-diaryls for signifi-
cant decarbonylation.
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The decarbonylation of aldehydes is an important C–C

bond-cleaving reaction in synthesis and in nature.1,2 Che-

mosynthetic decarbonylations mediated by stoichiometric

rhodium complexes were first developed by Tsuji and

Wilkinson3 and are notable for their application in natural

products total synthesis;4 flow-type and catalytic variants

have been developed to lower the cost.5 Haller and Bauer

popularized the base-mediated debenzoylation of aromatic

ketones in the early 1900s;6 a room-temperature Haller–

Bauer-type tert-butoxide-mediated protodebenzoylation

was used as the third step to achieve formal protodeformy-

lation of non-enolizable aldehydes (Scheme 1A).7 Recently,

Madsen and co-workers studied the mechanism of Haller–

Bauer-type decarbonylations of enolizable aldehydes

(Scheme 1B) as well as non-enolizable aldehyde substrates

like 2,6-dichlorobenzaldehyde (not shown).8 Similar condi-

tions are known to be capable of deformylating certain non-

enolizable aldehydes like triphenylacetaldehyde9 despite

benzaldehydes being especially sensitive to hydroxide-me-

diated Cannizzaro-type disproportionation into the alcohol

and carboxylic acid.10 Other methods for formal protode-

formylation of aldehydes have also been described.11–13 Of

the single-pot approaches (specifically Wilkinson and

Haller–Bauer-type), a mild and general decarbonylation of

-quaternary aldehydes has not been described. Herein, we

show that a wide variety of readily accessed -quaternary

Scheme 1  Comparison of Haller–Bauer-type aldehyde decarbonylation 
methods

B. Examples of Haller–Bauer-type reactions from Madsen and co-workers’ 
     mechanistic study (2017)8

C. This work: tert-butoxide-mediated aldehyde decarbonylation and 
    putative Haller–Bauer-type mechanism
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homobenzaldehydes are deformylated at ambient tempera-

ture using tert-butoxide in THF to afford isopropyl arene

(cumene) derivatives (Scheme 1C).14 Mechanistically, this

presumably occurs via stabilized anion B generated from

tert-butoxide adduct A.15

The impetus for developing this method stemmed from

our interest in alkene functionalization reactions of -qua-

ternary homobenzylstyrenes and related compounds,16

whereby we occasionally observed competing decarbonyla-

tion of -quaternary homobenzaldehydes during Wittig

olefination if excess tert-butoxide was present. We sought

to optimize this reaction using the homonaphthaldehyde

substrate shown in Table 1.17 Excitingly, the use of 1.6

equivalents of KOt-Bu afforded complete substrate conver-

sion and good yield at ambient temperature upon aqueous

workup (entry 1). Evaluation of solvent effects showed that

DMF was also well tolerated (entry 2) whereas HOt-Bu did

not allow appreciable reaction (not shown).18 The reaction

must be performed air-free (entry 3), and the yield de-

creased somewhat when molecular sieves were employed

(entry 4). Adding TEMPO inhibited substrate conversion

somewhat (entry 5). NaOt-Bu was similarly effective as

KOt-Bu (entry 6), whereas the use of lithium diisopropyl

amide (LDA) resulted in complex decomposition (entry 7).

Potassium hydroxide afforded no reaction in THF, with or

without HOt-Bu present as additive (entries 8 and 9, re-

spectively). Taken together, none of these data refute the ca-

nonical mechanism shown in Scheme 1C.19 It should be

noted that product formation can take place prior to work-

up via quench by adventitious water, but excess water in

the reaction will lead to competing detrimental Cannizzaro

disproportionation.

In terms of breadth of scope, phenyl analogues (1a–c)

afford lower yield than the optimized naphthyl substrate

(Scheme 2A). In particular, cumene (2a) was only produced

in 11% NMR yield; the yield improved significantly by sub-

stitution with a para-phenyl group, thereby accessing 2d in

67% yield. In revision, the para-trifluoromethyl analogue

was prepared and protodeformylated to afford a modest

20% yield of the corresponding cumene by 1H NMR analy-

sis.20 Strained cyclic gem-dialkyl-containing substrates like

-cyclopropyl (1e) and -cyclobutyl (1f) afford just 9% and

24% yield of their respective methine products, whereas cy-

clopentyl (1g) and cyclohexyl (1h) substrates were decar-

bonylated in useful yield (44% and 76%, respectively). Other

monoarenyl substrates evaluated include tetralin 1i and

triphenylacetaldehyde 1j, both of which afforded decarbon-

ylation products in good yield (61% and 79%, respectively).

tert-Butanol was a common byproduct after workup, po-

tentially arising from hydrolysis of the implied tert-butyl-

formate byproduct of C–C bond cleavage of intermediate A
in Scheme 1C.

Fused bicyclic and tricyclic substrates afforded generally

excellent decarbonylation yields (Scheme 2B and C), pre-

sumably because the extended conjugation in these com-

pounds affords a relatively stabilized benzylic anion. Among

bicyclic arenes (Scheme 2B), cyclopentane-containing

product 4a was accessed with double the yield of the analo-

gous monocyclic arene 2g. A 1.0 mmol scale reaction of 1-

naphthyl substrate 3b afforded the highest decarbonylation

yield that we observed in the study (93% yield of 4b). 2-

Naphthyl and 4-benzofuranyl analogues (4c and 4d) were

also accessed in good yield. In contrast, 3-benzofuranyl ana-

logue 4e was not prepared efficiently and a significant

amount of dearomatized product 7 was formed (Scheme 3).

A number of benzyl-protected 4-substituted indole ana-

logues (3f–j) were also decarbonylated efficiently, as were a

number of benzothiophenyl substrates (3k–n), with the ex-

ception of the 3-substituted analogue 3o, which may be

prone to dearomatization as observed for 3e.

Finally, we evaluated four fused tricyclic arenes as

shown in Scheme 2C, including carbazoles (5a and 5b), a

dibenzothiophene (5c), and a dibenzofuran (5d), all of

which afforded the corresponding decarbonylated products

(6a–d) in good yield.

In conclusion, we have developed a tert-butoxide-medi-

ated protodeformylative decarbonylation of -quaternary

homobenzaldehydes.21,22 The method enables efficient ac-

cess to a variety of cumenes. Efforts to expand the scope and

better understand the mechanism are ongoing in our lab.

Table 1  Optimization of Aldehyde Decarbonylationa

Entry Baseb Additive Conv. (%) Yield (%)

1 KOt-Bu none >95 89

2c KOt-Bu none >95 74

3d KOt-Bu air >95 17

4e KOt-Bu 4 Å MS >95 70

5 KOt-Bu TEMPO 78 62

6 NaOt-Bu none >95 87

7 LDA none >95 <5

8f KOH HOt-Bu <5 n.d.

9 KOH none <5 n.d.

a Reactions were conducted on 0.1 mmol scale in solvent (1.1 mL) under an 
atmosphere of N2 unless otherwise noted. Conversions and yields were de-
termined by 1H NMR analysis using 1,3,5-trimethoxybenzene as an internal 
standard (n.d. = not detected).
b Formulations of bases unless otherwise noted: KOt-Bu = 1.6 M solution in 
THF; KOH = solid; LDA = 2.0 M solution in THF/n-heptane/ethylbenzene; 
NaOt-Bu = 2.0 M in THF.
c Solid KOt-Bu and DMF as solvent.
d Reaction was conducted open to air.
e 100% w/w of molecular sieves.
f Base and HOt-Bu (1.6 equiv) sonicated for 5 minutes.
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