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Abstract We disclose a useful synthetic method for preparing the
propellane-type 5/5/6-tricyclic system that is present in diquinane-
based natural products such as quadrone, terrecyclic acid A, or terrecy-
clol. The method involves an LDA-mediated regio- and stereoselective
allylation and a tandem metathesis as key steps. The target molecules
were assembled in just two steps starting from a readily available build-
ing block, a 3B-vinyl tricyclic ketone prepared from endo-dicyclopenta-
diene-1-one. All the compounds prepared were characterized by NMR
analyses and/or chemical methods. The synthetic methods demonstrat-
ed here are useful in syntheses of quadranoid-type natural products.

Keywords allylation, olefin metathesis, diquinanes, tricyclic com-
pounds, dicyclopentadienone, natural products

Diquinane (octahydropentalene) is the simplest bicyclic
system among the various cyclopentanoids, and is present
in numerous polycyclic natural products as a critical struc-
tural unit.! Compounds in which a carbocyclic ring (a three-
, four-, five-, or six-membered ring, etc.) is fused to the ring
junction of a diquinane moiety are called propellanes. Pro-
pellanes are highly strained systems and have useful appli-
cations in various fields of chemistry.?

Among various propellane systems, six-membered-
ring-fused diquinanes have attracted a great deal of atten-
tion from the synthetic community, due to the challenges
involved in their synthesis, and because they are found as
core units in many natural products.? Also, natural products
containing a fused 5/5/6-tricyclic system are known to ex-
hibit a wide range of biological properties.*

Depending on the mode of fusion of the six-membered
ring to the diquinane moiety, 5/5/6-tricyclics are classified
into various types 1-6 (Figure 1).°> The six-membered ring
can be fused to the diquinane in a 1,2- or a 1,3-fashion (Fig-
ure 1a). The 1,2-fused 5/5/6-tricyclics are of three types:
linear (1), angular (2), or propellane (3). Along similar lines,
1,3-fused 5/5/6-tricyclics are categorized into 1,3-fused (4),
1,3-bridged (5), or 1,3-propellane (6) types. Furthermore,
the 1,2- and 1,3-fusions can exist in either cis and/or trans
forms. Linear and angularly fused 5/5/6-tricyclic systems (1
and 2) exist in both cis forms (Figures 1b and 1c; 1a and 2a)
and trans-forms (1b and 2b), whereas propellanes (3) exist
only in a cis form (3a; exo or endo) because of the stereo-
chemistry of the cis ring junction (Figure 1d). Along similar
lines, the 1,3-fused type 4 exists in both cis (4a) and trans
forms (4b) (Figure 1e), whereas the 1,3-bridged (5) and 1,3-
propellane (6) types exist in a cis form (5a and 6a; exo or
endo) only (Figure 1f).

All these skeletal types 1-6 (Figure 1) are found in many
natural products, such as alkaloids or terpenoids, and show
useful biological properties.® Among these, the syntheses of
skeletal types 1-5 have been well explored by several
groups,’” including our group. We have recently reported
syntheses of skeletal types 1, 2, and 4 through metathesis
approaches.>® However, synthetic efforts toward 1,3-pro-
pellane-type skeletons 6 have been limited. The 1,3-propel-
lane-type skeleton 6 is present in the sesquiterpenoid
quadrone and its analogues (Figure 2).° These are isolated
from the fungus Aspergillus terreus and contain a complex
structural unit with a propellane-type 5/5/6-tricyclic core 6
and they exhibit useful biological properties that include
antitumor activity.'? Also, they are prone to undergo skele-
tal rearrangements due to the presence of ring strain.!!
Hence, they have become attractive targets for the synthet-
ic community to develop new synthetic strategies.
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Figure 1 Types of fused 5/5/6-tricyclic skeletons
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Figure 2 Representative examples of natural products containing 1,3-fused 5/5/6-tricyclic framework

There are a limited number of reports on the synthesis
of these carbocycles, including their total synthesis.d¢10e12
Some selected methods are based on key reactions that in-
clude cyclization,'? Claisen rearrangement,'# acid-catalyzed
rearrangements,'> cationic rearrangement,'® and skeletal
synthesis.?*17 Moreover, the reported methods involve lin-
ear syntheses and large numbers of steps starting from
commercially available materials or readily available build-
ing blocks. Additionally, we have not found any reports on
the use of olefin metathesis for their synthesis. Therefore,
we wish to report a rapid synthetic route to a propellane-
type 5/5/6-carbocyclic framework 6 from readily available
starting materials.

In view of our long-term interest in the use of C-C
bond-formation reactions (e.g., olefin metathesis) to devel-
op new synthetic strategies,'® we envisioned a rapid syn-
thetic approach to the propellane-type 5/5/6-carbocyclic
framework 6 from a readily available building block, a 3-
vinyl tricyclic ketone that can be prepared from endo-dicy-
clopentadiene-1-one,'8f by employing tandem metathesis
as a key step. Also, we aimed to investigate the feasibility of
metathesis between the olefin moieties present on the car-
bocyclic frameworks. Earlier reports on the feasibility of the
metathesis approach are shown in Figure 3.1 The trans-
disposition of olefinic moieties at 1,3- or 1,2-positions
seems to disfavor the ring-closing metathesis (RCM) se-
quence.

We aimed to study both an early-stage methylation se-
quence and an early-stage allylation sequence to construct
the propellane-type 5/5/6-carbocyclic framework 6, which
serves as a key intermediate for the synthesis of a core skel-
eton of quadranoids. An overview of the present work is
shown in Figure 4.

Our retrosynthetic approach to target compound 8 is
depicted in Figure 5. Tricyclic compound 8 could be pre-
pared by following a five-step synthetic sequence starting
from the vinyl derivative 7. The target compound 8 could be
synthesized through hydrogenation of the tricyclic ketone
9. The tricyclic ketone 9 could be assembled through a tan-
dem metathesis of allyl derivative 10. The ring-junction al-
lyl derivative 10 might be prepared from compound 7
through methylation followed by a bridgehead allylation se-
quence. The vinyl derivative 7, in turn, could be obtained
from endo-dicyclopentadiene-1-one through a conjugate
addition with vinylmagnesium bromide.

Our journey began with the preparation of the key
building block, the 3-vinyl tricyclic ketone 7, from commer-
cially available endo-dicyclopentadiene by following a
three-step synthetic sequence.'3%2° Having prepared a sub-
stantial amount of the starting material 7, we subjected it
to regioselective methylation to deliver the gem-dimethyl
derivative 11 (91%; Scheme 1). This compound was then
treated with allyl bromide in the presence of sodium
hexamethyldisilazide (NaHMDS) to furnish the correspond-
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Figure 3 Previous reports on ring-closing metathesis of 1,2-, and 1,3-trans-disposed olefinic moieties
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Figure 5 Retrosynthetic analysis to tricyclic ketone 7

ing ring-junction-allylated derivative 10 (89%).13f Next, this
compound was subjected to tandem metathesis with the
aid of the Grubbs II (G-II) catalyst (10 mol%) under an eth-
ylene atmosphere in an attempt to obtain the 5/5/6-tricy-
clic compound 9. Instead, however, the tandem metathesis
precursor 10 delivered the ring-opening metathesis prod-
uct 12 (85%) instead of the desired tricyclic compound 9
(Scheme 1).

H
o}
;7 Mel, KO'Bu
H PhMe, rt, 0.5 h
91%
AN
7 o
NaHMDS THF, -78°C, 24 h
B 89%

tandem-metathesis
CaoHg,
G-Il (10 mol %)
DCM, 1, 16 h

9 (0%)

12 (85%)

Scheme 1 Attempted synthesis of tricyclic ketone 9 by a tandem me-
tathesis route

Alternatively, compound 12 might be obtained by a
two-step sequence involving ROM and allylation of the
gem-dimethyl derivative 11 (Scheme 2). To this end, the
diquinane derivative 13 (88%) was obtained by exposing the
norbornene derivative 11 to G-II catalyst (5 mol%) under an
ethylene atmosphere. Next, compound 13 was allylated at
the ring-junction carbon in the presence of allyl bromide
and t-BuOK to obtain the corresponding allyldiquinane 12
(86%). However, when this compound was subjected to
RCM with the aid of the G-II catalyst (10 mol%), the ring-
closure product 9 was not obtained, even when the reaction
was carried out under heated conditions for a prolonged re-
action time, and the starting material was recovered.'8

SynOpen 2024, 8, 39-46
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Scheme 2 Attempted synthesis of tricyclic ketone 9 by a ROM/RCM sequence.

Because early-stage methylation (Figure 5) failed to give
the desired tricyclic system 9, we could not proceed further
with a synthesis of the target compound 8. We therefore re-
vised our retrosynthetic strategy to one involving a late-
stage methylation to quadranoid skeleton 8 (Figure 6). The
target compound 8 might be synthesized from the tricyclic
ketone 14. The key intermediate 14 might, in turn, be as-
sembled by tandem metathesis of ring-junction-allylated
derivative 15, which could be synthesized from vinyl deriv-
ative 7 by regio- and stereoselective allylation.

To realize this strategy, compound 7 was subjected to a
regio- and stereoselective allylation at the a’-position (i.e.,
the ring-junction carbon) of the tricyclic system in the
presence of a base to deliver the ring-junction-allylated de-
rivative 15. For this purpose, we screened several reaction
conditions by changing the base (mild — strong and small
— bulky) and its loading at various temperatures (Scheme 3
and Table 1). Initially, when we used potassium carbonate
(K,CO;) as a base, the allylation did not occur at any posi-
tion of compound 7, and the starting material was recov-
ered. With 1.2 to 2.0 equivalents of potassium tert-butoxide
(t-BuOK), the a-monoallyl product 16 was formed as a dias-
tereomeric mixture (Table 1, entries 1 and 2). When the
amount of this base was increased to 4.0 equivalents by
adding it in two portions at 0.5 hour intervals, the gem-dial-
lyl derivative 17 (major) was also formed along with com-
pound 16 (minor), and 10% of the starting material was re-
covered (entry 3). At this stage, conventional column chro-
matography failed to separate these compounds. However,

=
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methylation H

==

8 14

- 0]
‘ ?j /f tandem-metathesis

Figure 6 Revised retrosynthetic analysis toward the quadranoid skeleton 8
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when lithium diisopropylamide (LDA), freshly prepared
from BuLi and diisopropylamine (DIPA), was used as a base
at a low temperature (-78 °C) and the reaction mixture was
stirred for three hours, the reaction merely initiated, and no
further progress was observed. We therefore screened sev-
eral reaction conditions by changing the amount of base
and the reaction temperature (entries 4-9).18¢

When the reaction temperature was slowly increased to
-30 °C by stirring the mixture for various times, monoal-
lylation occurred at the desired a'-position, and the corre-
sponding ring-junction-allylated product 15 (21%) was ob-
tained exclusively, along with 68% recovery of the starting
material (Table 1; entry 4). Although the conversion im-
proved to 69% on increasing the reaction temperature and
reaction time, compound 15 and compound 16 were
formed as a chromatographically inseparable mixture in
52% yield (entry 5). However, with the use of HMPA solvent
as an additive, both the conversion and the yield of the de-
sired allyl derivative 15 were improved to a certain extent
(entries 6-9). We therefore carefully screened several reac-
tion conditions by increasing the loading of the base in the
presence of HMPA as an additive at various reaction tem-
peratures and time intervals. Eventually, the desired com-
pound 15 was obtained in a 42% yield under the optimized
reaction conditions (entry 8). From these results, we con-
cluded that the amount of base does not affect the regiose-
lectivity whereas the reaction temperature does influence
the regioselectivity to yield the requisite allyl product 15.18¢

regio- and stereoselective
allylation

Scheme 3 Synthesis of allyl Derivative 15 by regio- and stereoselective allylation of compound 7

SynOpen 2024, 8, 39-46
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Table 1 Screened Reaction Conditions for Monoallylation of 152

Entry Base Equiv AlIBr® (Equiv) Temp (°C)  Time (h) Conve (%)  Yieldd (%)
15 16 17
1 t-BuOK 1.5 1.2 0.5 42 - 21 -
2 t-BuOK 2.0 2.2 1.0 63 0 38 -
3 t-BuOK 4.0 3.2 3.0 90 0 11 66¢
4 BuLi/DIPA 1.1/1.2 1.4 -78 4 32 21 trace -
-50 2
-30 2
5 BuLi/DIPA 1.1/1.2 1.4 -78 3 69 52 (15+16) -
-40 2
-20 2
rt 12
6 BuLi/DIPA/HMPA 2.2[2.4[2.2 2.8 -78 2 40 28 trace -
-50 2
-20 2
-10 2
7 BuLi/DIPA/HMPA 3.0/3.2/3.0 3.0 -78 2 52 36 trace -
-45 2
-20 2
-10 2
8 BuLi/DIPA/HMPA 3.0/3.2/3.0 3.0 -78 2 63 42 trace -
-10 3
9 BuLi/DIPA/HMPA 3.0/3.2/6.0 3.0 -78 2 78 32 12 16
-10 3
0 6

2 All reactions were carried out in anhyd THF under N, unless otherwise stated.
b Freshly distilled allyl bromide.

¢ Conversion of based on recovery of the starting material.

4 Isolated yield.

¢ Toluene was used as the solvent.

At this point, the formation of compounds 15 and 16
and their structures were initially confirmed by NMR anal-
yses. The structure of 15 was confirmed, as it exhibited five
CH, and eight CH signals in the DEPT-135 NMR spectrum,
whereas the structure of 16 was confirmed as it showed
four CH, and ten CH signals in the DEPT-135 NMR spec-
trum.

NaH

Mel, NaH
~ THF, 80°C, 2 h, 88%

Scheme 4 Structure-confirmation studies for compound 15

/\/BV
- - 0 5

THF, 80 °C, 2 h, 87%

Later, the structures of 15 and 16 were also confirmed
by various chemical transformations. When compound 15
was subjected to a methylation sequence, the gem-dimethyl
derivative 10 was obtained. Furthermore, compound 15
also gave the triallyl derivative 18 upon allylation with allyl
bromide in the presence of NaH. Here, the triallyl com-
pound 18 was identical to the compound obtained from the
vinyl derivative 7 (Scheme 4).

o KH
B

“N\== THF, 120°C, 24 h, 89%

SynOpen 2024, 8, 39-46
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Scheme 5 Structure-confirmation studies for compound 16

Along similar lines, when 16 was subjected to allylation
sequence delivered the same compounds, i.e. the diallyl de-
rivative 17 and the triallyl derivative 18 (Scheme 5). When
the ring-junction-allylated derivative 15 was exposed to the
Grubbs I catalyst (G-I catalyst; 10 mol%) under an ethylene
atmosphere overnight, only the ROM product 19 was ob-
tained, along with 75% of the starting material (by NMR:
3:1 ratio, 69%). Unfortunately, compound 19 could not be
isolated in a pure form at this stage by using conventional
column chromatography. However, compound 15 furnished
the rearranged product 14, along with 10% of the ROM
product 19 (by NMR: 9:1 ratio, 86%) on treatment with the
G-II catalyst (5 mol%) under an ethylene atmosphere over-
night. A complete conversion was achieved by using 10
mol% of G-II catalyst in a comparatively short reaction time,
giving the tricyclic ketone 14 in a good yield (88%).2!

Later, mixtures of 15 and 19 and of 14 and 19 were also
converted into the ring-closure product 14 in yields of 66%
and 82%, respectively, by using 10 mol% of G-II catalyst
(Scheme 6).

tandem-metathesis
o == [¢]
i CaHa, G-1I (5-10 mol %) -
H DCM, t, 8 h andfor
N < H
RCM
15 19 — 14
G-Il (10 mol %),
DCM, rt, 8 h

Scheme 6 Tandem metathesis route to a key intermediate, the tricy-
clic ketone 14

Next, the keto derivative 14 was subjected to methyla-
tion in the presence of Mel and t-BuOK in an attempt to
prepare the gem-dimethyl derivative 20; however, this
compound was not formed and, instead, a complex mixture
was obtained. Alternatively, when compound 14 was sub-

KO®Bu,

B KH

~N\ . Mel /\/Br

\ PhMe, rt, 2 h THF, 120 °C, 16 h
= H then reflux

Scheme 7 Attempted synthesis of dimethyl and diallyl derivatives 20 and 21

22 (78%; observed)

KO'Bu
/\/B'

s

PhMe, rt, 0.5 h, 89%

jected to an allylation sequence in the presence of KH and
allyl bromide under reflux conditions, the rearranged prod-
uct 22 was obtained instead of the gem-diallyl derivative 21
(Scheme 7). As a result, we could not proceed further with a
synthesis of compound 8 or its spiro analogue 23 by follow-
ing this route. However, compounds 8 and 23 might be ac-
cessible from tricyclic compound 14 by hydrogenation fol-
lowed by alkylation and/or an RCM sequence.'®¢ These stud-
ies will be reported in due course.

We have successfully assembled the propellane-type
5/5/6-carbocyclic framework 14 in a good yield by employ-
ing early-stage regio- and stereoselective allylation, fol-
lowed by a tandem metathesis sequence. Compound 14
could act as a key intermediate to access target compounds
8 and 23. The present strategy involves commercially avail-
able inexpensive starting materials and operationally sim-
ple reactions. Consequently, this methodology might be
useful in medicinal chemistry to design various drug-like
molecules. Further investigations into the synthesis of
quadrone natural products would be a useful exercise.
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IR (neat): 3074, 3026, 2923, 2877, 1737, 1636, 1454, 1429,
1412, 1325, 1156, 1098, 1070, 995, 955, 911, 775, 752, 721, 700,
676, 521 cm™'. 'H NMR (400 MHz, CDCl,): § = 6.25 (tdd, J =
17.83, 11.78, 8.52 Hz, 1 H), 6.12-6.08 (m, 1 H), 5.99 (ddd, J =
16.81, 10.58, 6.00 Hz, 1 H), 5.52 (ddd, J = 9.31, 3.77, 2.58 Hz, 1
H), 5.09-5.04 (m, 4 H), 3.04-2.95 (m, 1 H), 2.77 (t, ] = 5.94 Hz, 1
H), 2.62 (d, J = 11.99 Hz, 1 H), 2.52-2.45 (m, 1 H), 2.39-2.31 (m,

2 H),2.18 (dq, J = 17.70, 2.48 Hz, 2 H), 2.04 (ddd, J = 13.16, 7.61,
5.92 Hz, 1 H), 1.45 (dd, J = 23.92, 12.70 Hz, 1 H). 3C{'H} NMR
(100 MHz, CDCl;): 8 = 223.2 (C0O), 139.1 (CH), 137.4 (CH), 136.4
(CH), 126.1 (CH), 115.5 (CH,), 115.4 (CH,), 61.2 (C), 54.1 (CH),
51.8 (CH), 49.3 (CH,), 41.1 (CH), 38.4 (CH,), 38.3 (CH,), 34.3
(CH). HRMS (ESI, Q-ToF): m/z [M + K]* calcd for Cy5H;gKO:
253.0989; found 253.0989.
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