
Introduction
The development of capsule endoscopy (CE) enhanced exami-
nation of the small bowel [1]. Today, it is commonly used as

the initial exam in situations of suspected mid-gastrointestinal
bleeding, after normal upper and lower endoscopy [2]. It is
minimally invasive, has a higher diagnostic yield than other
noninvasive methods, and it has proven to be cost-effective in
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ABSTRACT

Background and study aims Capsule endoscopy (CE) is

commonly used as the initial exam for suspected mid-gas-

trointestinal bleeding after normal upper and lower endos-

copy. Although the assessment of the small bowel is the pri-

mary focus of CE, detecting upstream or downstream vas-

cular lesions may also be clinically significant. This study

aimed to develop and test a convolutional neural network

(CNN)-based model for panendoscopic automatic detec-

tion of vascular lesions during CE.

Patients and methods A multicentric AI model develop-

ment study was based on 1022CE exams. Our group used

34655 frames from seven types of CE devices, of which

11091 were considered to have vascular lesions (angiecta-

sia or varices) after triple validation. We divided data into a

training and a validation set, and the latter was used to

evaluate the model’s performance. At the time of division,

all frames from a given patient were assigned to the same

dataset. Our primary outcome measures were sensitivity,

specificity, accuracy, positive predictive value (PPV), nega-

tive predictive value (NPV), and an area under the preci-

sion-recall curve (AUC-PR).

Results Sensitivity and specificity were 86.4% and 98.3%,

respectively. PPV was 95.2%, while the NPV was 95.0%.

Overall accuracy was 95.0%. The AUC-PR value was 0.96.

The CNN processed 115 frames per second.

Conclusions This is the first proof-of-concept artificial in-

telligence deep learning model developed for pan-endo-

scopic automatic detection of vascular lesions during CE.

The diagnostic performance of this CNN in multi-brand de-

vices addresses an essential issue of technological intero-

perability, allowing it to be replicated in multiple technolo-

gical settings.

Additional material is available at

https://doi.org/10.1055/a-2236-7849
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these clinical scenarios [3, 4, 5]. Nonetheless, it is time-con-
suming and error-prone, because crucial frames might be over-
looked, especially if there are just a few of them [6].

Vascular lesions are the most common cause of gastrointes-
tinal bleeding, not only in the small bowel, but also in other lo-
cations [7]. Although the assessment of the small bowel is the
primary focus of CE, detection of upstream or downstream le-
sions in other areas of the gastrointestinal system may also be
clinically significant. In fact, because the majority of gastroin-
testinal bleeding occurs beyond the duodenal ampulla or distal
to the ileocecal valve, it might be considered a second examina-
tion of the upper or lower digestive tract, especially if the initial
examination did not yield conclusive results [7].

The introduction of dual-camera capsule has prompted to
discussion a CE-based panendoscopic evaluation of the diges-
tive tract, especially for colorectal cancer screening and for
Crohn’s assessment [8, 9]. It would be beneficial if CE allowed
for complete assessment of the whole digestive tract, exclud-
ing all potential vascular lesions while avoiding repeat exams.
Nonetheless, it is associated with an even greater reading bur-
den which, along with its significant cost and lack of experience
in the majority of centers, may limit its use in clinical practice,
mainly in low-volume ones [9].

Convolutional neural networks (CNNs) have revolutionized
image pattern recognition. This type of deep learning technol-
ogy was inspired by the neural architecture of the human cor-
tex and it emulates the neurobiological process of accomplish-
ing complex tasks combining multiple layers of interconnected
neurons [10]. Many articles have been published using this type
of artificial intelligence (AI) system in different image-base pro-
cedures, including CE. Currently, there is published research in
the field of automatic detection of vascular lesions during CE, in
the small bowel, which has high overall accuracy [11, 12, 13, 14,
15]. These algorithms can not only identify different types of
vascular lesions (red spots, angiectasia and/or varices), but
also predict their likelihood of bleeding, according to Saurin
classification [14, 16]. Nonetheless, no studies on panendo-
scopic assessment of vascular lesions have been published.

This study aimed to develop and test a CNN-based algorithm
for panendoscopic automatic detection of vascular lesions dur-
ing CE.

Patients and methods
Study design

A multicenter retrospective cohort study was conducted in two
different centers (Centro Hospitalar Universitário de São João
and ManopH Gastroenterology Clinic, both in Porto, Portugal),
which included 1188CE and colon CE (CCEs) which were per-
formed between June 2011 and August 2023.

The project was developed without direct intervention on
patients; therefore, their clinical management was not affec-
ted. To protect patient identity, identifying information was
omitted and random numbers were allocated to each one. A le-
gal team with Data Protection Officer (DPO) certification
(Maastricht University) ensured data protection, regarding to

its non-traceability as well as compliance with General Data
Protection Regulation.

Capsule endoscopy protocol

Seven different CE devices were used for CE procedures: Pill-
Cam COLON (Medtronic Corp., Minneapolis, Minnesota, United
States), PillCam Crohn's Capsule (Medtronic Corp., Minneapo-
lis, Minnesota, United States), PillCam SB1 (Medtronic Corp.,
Minneapolis, Minnesota, United States), PillCam SB3 (Medtro-
nic Corp., Minneapolis, Minnesota, United States), OMOM HD
Capsule (JINSHAN Co., Yubei, Chongqing, China), Olympus En-
docapsule 10 (Olympus Corp., Tokyo, Japan), and MiroCam (In-
tromedic Corp., Seoul, South Korea). PillCam COLON 1, PillCam
Crohn’s, PillCam SB1 and PillCam SB3 images were examined
with PillCam Software version 9 (Medtronic, Minneapolis, Min-
nesota, United States), while OMOM HD images were reviewed
with Vue Smart Software (Jinshan Science & Technology Co,
Chonqing, Yubei, China), Olympus with EC-10 System (Olym-
pus) and MiroCam with MiroView Software. To protect patient
identification, image processing was used to erase personal in-
formation (name, operation number, and procedure date).
Each frame was then labeled with a sequential number.

The European Society of Gastrointestinal Endoscopy recom-
mendations were followed for bowel preparation [7]. Patients
were advised to have a clear liquid diet the day before taking
the capsule, and to fast the night before the examination. Prior
to ingestion, patients underwent bowel preparation, which in-
volved taking 2 L of polyethylene glycol (PEG) solution. For the
PillCam Crohn’s capsule, patients were given 2 L of PEG solution
the night before the procedure and another 2 L on the morning
of the procedure. An anti-foaming agent, namely simethicone,
was used, and if the capsule remained in the stomach for more
than 1 hour after ingestion (which implied image review on the
patient’s data recorder), domperidone 10mg was given.

Categorization of lesions

The existence of vascular lesions, defined as angiectasias (tor-
tuous and clustered capillary dilatations, resulting in well-de-
fined brilliant red lesions) or varices (elevated venous dilata-
tions with serpiginous appearance), was subsequently assessed
in each frame. The images were separated into two groups:
those with normal mucosa and those with vascular lesions. A
consensus among three experienced gastroenterologists in CE
was required for the final inclusion of each frame. A total of
152,312 frames, from seven types of CE devices, were used to
develop the CNN, of which 14,942 contained pleomorphic vas-
cular lesions.

Development of the CNN and performance analysis

We constructed a deep learning CNN to automatically detect
vascular lesions, allowing for panendoscopic assessment of the
presence of this lesion throughout the gastrointestinal system.
This was accomplished by a two-step process. First, we used
90% of the dataset to perform a 5-fold cross-validation, during
training and validation, to ascertain the robustness and assess
the global performance of the CNN. Second, the remaining
10% of the dataset was used for testing with the average model
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resulting from the five training sessions of the cross-validation.
During this phase, the test set was used to screen eventual dis-
crepancies in the algorithm. The whole process was iterated
five times in total, using different combinations. ▶Fig. 1 shows
a graphical flowchart of the research design.

The CNN was built using the RegNetY model [17]. Weights
between units were trained using ImageNet, a large-scale im-
age dataset created for object software recognition. We kept
its convolutional layers in order to transfer its learning to our
model. We deleted the last fully connected layers from our
own classifier of dense and dropout layers. Each of the two
blocks we utilized had completely connected layers first, fol-
lowed by dropout layers with a 0.2 drop rate. After that, we ad-
ded a dense layer the size of which was defined the number of
classification groups (two: normal or vascular lesions). Trial and
error were used to determine the learning rate (ranging be-
tween 0.0000625 and 0.0005), batch size (128) and the num-

ber of epochs (20). PyTorch and scikit libraries were used to
prepare the model. During training standard data augmenta-
tion techniques, such as picture rotations and mirroring were
used. A 2.1 GHz Intel Xeon Gold 6130 processor (Intel, Santa
Clara, California, United States) and double NVIDIA Quadro
RTX 80000 graphic processing unit (NVIDIA Corp, Santa Clara,
California, United States) powered the computer.

The algorithm calculated the probability of each frame being
considered normal and the probability of having a vascular le-
sion. Each frame was assigned to one of the aforementioned ca-
tegories, and the one with the highest probability was selected
(Supplementary Fig. 1). We generated heatmaps to identify
the features that contributed the most to the CNN prediction
(▶Fig. 2). The algorithm’s final classification was compared
with the equivalent evaluation supplied by the three expert
gastroenterologists, with the latter considered the gold stand-
ard.

Training and validation dataset

First, we performed a 5-fold cross-validation, to assess robust-
ness and assess the global performance of the CNN. From the
total dataset, 90% of data (n =1069 exams) was divided 5-fold
with equivalent dimensions. For this division, we utilized the
StratifiedGroupKFold method, ensuring that images from the
same procedure were grouped together within each fold, while
also ensuring that lesions were diversely represented. We con-
ducted a total of five separate runs. In each of these runs, four
folds were designated to train the model, while the remaining
one was used to validate it. The folds used to train and validate
the CNN changed within each run. This process was iterated a
total of five times. ▶Table 1 lists the number of frames, pa-
tients, devices, regions (esophagus, stomach, small bowel and
colon), and pleomorphic vascular lesions contained in each
fold. ▶Table2 lists the number of exams and corresponding
number of frames for each device during the 5-fold cross-vali-
dation experiment and the test set.

After completing five iterations of this 5-fold cross-valida-
tion, we calculated the mean sensitivity, specificity, accuracy,
positive predictive value (PPV), negative predictive value
(NPV). We also computed the mean area under the convention-
al receiver operating characteristic (AUC-ROC) curve and area
under the precision-recall curve (AUC-PR) for each one. We
chose to calculate booths (precision-recall calculation, in addi-
tion to conventional ROC curve), due the higher proportion of
normal mucosa frames (true negatives) over frames containing
vascular lesions (true positives), which could lead to a misinter-
pretation of the ROC curve [18].

Test dataset

In a second step, the testing phase involved the remaining 10%
of the dataset (n=119 exams), employing the average model
resulting from the five training sessions in the cross-validation.
Frames from a single exam were assigned to either the training/
validation or testing set, ruling out the possibility of their inclu-
sion in both. We repeated this process in five iterations, with
different random combinations. In this phase, the algorithm

Five fold cross validation in a exam split division

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Run 1

Run 2

Run 3

Run 4

Run 5

 Training set  Validation set

N 100 % (N) PV 89 % (PV)N NPV PV

1188 CE and CCE multi-brand exams

1. Training and validation phase
~90 % of total dataset, in a exam split division

2. Testing phase
~10 % of total dataset, in a exam split division

Robustness and performance assessment during training/
validation phase sensitivity, specifi city, accuracy, 

PPV, NPV, AUC-ROC, AUC-PR

Panendoscopic automatic detection of vascular lesions

Normal mucosa Vascular lesion

×5

×5

▶ Fig. 1 Flowchart illustrating the study design. AUC-PR, area un-
der the precision-recall curve; AUC-ROC, area under the conven-
tional receiver operating characteristic curve; CE, capsule endos-
copy; CCE, colon capsule endoscopy; CNN, convolutional neural
network; N, normal mucosa; NPV, negative predictive value; PPV,
positive predictive value; PV, vascular lesion.
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was scrutinized for potential discrepancies through the exami-
nation of the independent test set.

During the testing phase, we calculated the mean sensitiv-
ity, specificity, accuracy, NPV and PPV. In addition, the mean
AUC-ROC and AUC-PR were also calculated. Furthermore, we
determined the CNN computational performance through the
determination of processing time of all frames within the test
set. We performed statistical analysis using scikit-learn v0.22.2
[19]. All the outcomes derived from this five-iteration process
are presented as means along with their respective 95% confi-
dence intervals.

Results
A total of 1188 exams were included for the development and
testing of the CNN, 1097 corresponding to small bowel CE (Pill-
Cam SB3, n =941 OMOM HD Capsule, n =152; Olympus Endo-
capsule, n =1; PillCam SB1, n =2; MiroCam, n=1), and 210 to
devices allowing CCE (PillCam Crohn’s Capsule, n =192; PillCam
COLON, n=18). From these exams, 152312 images were ulti-
mately validated and incorporated in the dataset, from which
14942 showed vascular lesions (angiectasias or varices).

Training and validation dataset

▶Table 3 shows the results obtained from the five iterations of
this five-fold cross-validation experiment. The mean sensitivity
was 87.5% (IC95% 81.5–93.6%) and median specificity was
99.5% (IC95% 99.3–99.7%). The mean PPV and NPV were
94.9% (IC95% 93.1–96.8%) and 98.6% (IC95% 98.0–99.3%),
respectively. Mean global accuracy was 98.4% (IC95% 97.7–

99.1 %). The mean AUC-ROC was 0.987 (IC95% 0.980–0.995)
while the mean AUC-PR was 0.998 (IC95% 0.997–1.000)
(▶Fig. 3).

Test set

The testing dataset comprised an independent group of images
(10% of the full dataset). Supplementary Table1 displays the
metrics of the test set for each of the five iterations performed.

The model’s mean sensitivity and specificity were 72.8%
(IC95% 55.8–89.6%) and 99.0% (IC95% 98.5–99.5%), respec-
tively. The PPV was 83.3% (IC95% 76.1–90.4%), while the NPV
was 97.8% (IC95% 96.0–99.8%). The algorithm’s overall accura-
cy was 97.0 (IC95% 94.8–99.2%). The AUC-ROC value was 0.984
(IC95% 0.9772–0.991), while AUC-PR value was 1.000.

There were two main reasons why the model was typically
incorrect: existence of large air bubbles and inadequate cleans-
ing during CE (Supplementary Fig. 2).

The CNN algorithm processed each frame in 26±3 millise-
conds.

Discussion
This was the first study to evaluate the application of AI deep
learning models in panendoscopic automatic detection of vas-
cular lesions, not only in the small intestine, but also in other
gastrointestinal topographies. This model not only performed
well in all of the evaluated outcomes, but the results also sug-
gest that it could possibly be used effectively with various types
of CE devices. We believe that these results are promising and
might contribute to implementation of AI-assisted panendo-

▶ Fig. 2 Examples of generated heatmaps showing how CNN distinguishes a vascular lesion. 1-esophagus, 2-stomach, 3-small bowel, 4-colon.
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scopic CE in routine clinical practice, independent of the device
brand.

There are a few methodologic details concerning this study
that should be highlighted. Because each exam’s frames were
assigned to a single fold in the cross-validation experiment and
to a single dataset (training or testing) in the subsequent phase
of assessing CNN global performance, the risk of overfitting was
reduced. When frames from the same patient are given to both
groups, the probability of having similar images and producing

too accurate prediction measures increases. Exam split design
improves the external validity of the results, as well as inclusion
of CE exams from two distinct high-volume centers. In addition,
the CNN was developed using frames from different types of CE
devices, including not only one but even two camera capsules,
which may improve its effectiveness in real-world clinical prac-
tice. Furthermore, in the 5-fold cross-validation experiment in-
volving different patients and device distributions, the model
demonstrated excellent median diagnostic performance me-

▶Table 1 Number of frames, patients, devices, regions (esophagus, stomach, small bowel and colon) and pleomorphic vascular (PV) lesions pres-
ented within each fold, during the 5-fold cross-validation experiment (five iterations total) and the test set (five iterations total).

Frames (n) Patients (n) Devices (n) Regions (n) PV lesions (n)

Iteration 1 Fold 1 30889 226 4 4 2634

Fold 2 23848 222 4 4 5662

Fold 3 33063 228 5 4 1834

Fold 4 23324 237 5 4 2155

Fold 5 28045 156 6 4 1516

Test set 13143 119 4 4 1141

Iteration 2 Fold 1 23951 231 4 4 3898

Fold 2 24024 225 4 4 2016

Fold 3 31039 214 5 4 3459

Fold 4 40274 245 3 4 3243

Fold 5 21617 154 6 4 1665

Test set 11407 119 5 4 661

Iteration 3 Fold 1 29035 231 5 4 1684

Fold 2 24753 222 4 4 2658

Fold 3 37927 233 4 4 4454

Fold 4 17612 155 4 4 1428

Fold 5 27551 228 5 4 3775

Test set 15434 119 5 4 943

Iteration 4 Fold 1 40446 213 5 4 4490

Fold 2 25285 219 4 4 2927

Fold 3 26678 201 4 4 1109

Fold 4 21997 207 4 4 3054

Fold 5 22657 229 5 4 1883

Test set 15249 119 6 4 1479

Iteration 5 Fold 1 27056 226 4 4 2323

Fold 2 32663 226 6 4 2506

Fold 3 28752 229 5 4 4955

Fold 4 28836 234 5 4 3004

Fold 5 18127 154 4 4 1511

Test set 16878 119 4 4 643

PV, pleomorphic vascular lesions.
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trics. This implies that the CNN performance remains robust,
regardless of the type of CE device employed. The development
of a proficient deep learning model with this many (seven) dif-
ferent brands of CE devices marks a noteworthy achievement

which, to the best of our knowledge, has not previously been
documented. Addressing this important interoperability barri-
er may increase the technology readiness level (TLR), allowing

▶Table 2 Number of exams and corresponding number of frames for each device during the 5-fold cross-validation experiment (five iterations total)
and the test set (five iterations total).

Fold 1 Exams

(frames)

Fold 2 Exams

(frames)

Fold 3 Exams

(frames)

Fold 4 Exams

(frames)

Fold 5 Exams

(frames)

Test set Ex-

ams (frames)

Iteration 1 PillCam COLON 1 1
(28)

5
(1636)

4
(206)

3
(653)

1
(34)

2
(128)

PillCam Crohn’s 43
(14818)

24
(5557)

31
(6577)

33
(9154)

27
(11508)

17
(8056)

PillCam SB1 0
(0)

0
(0)

0
(0)

1
(10)

1
(10)

0
(0)

PillCam SB3 158
(12825)

169
(13721)

161
(25080)

166
(12576)

111
(15075)

88
(4834)

OMON 24
(3218)

24
(2934)

31
(1197)

34
(931)

15
(1391)

12
(125)

Olympus 0
(0)

0
(0)

0
(0)

0
(0)

1
(27)

0
(0)

Mirocam 0
(0)

0
(0)

1
(3)

0
(0)

0
(0)

0
(0)

Iteration 2 PillCam COLON 1 3
(319)

4
(563)

4
(331)

0
(0)

3
(883)

2
(589)

PillCam Crohn’s 30
(9480)

41
(10735)

30
(8468)

41
(15776)

27
(10236)

6
(975)

PillCam SB1 0
(0)

0
(0)

1
(10)

0
(0)

1
(10)

0
(0)

PillCam SB3 161
(9618)

163
(11404)

153
(20322)

179
(24006)

101
(10242)

96
(8519)

OMON 37
(4534)

17
(1322)

26
(1908)

25
(492)

21
(219)

14
(1321)

Olympus 0
(0)

0
(0)

0
(0)

0
(0)

1
(27)

0
(0)

Mirocam 0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

1
(3)

Iteration 3 PillCam COLON 1 5
(1146)

2
(178)

1
(150)

3
(56)

5
(1155)

0
(0)

PillCam Crohn’s 37
(6590)

33
(10704)

44
(14021)

20
(6703)

28
(11020)

13
(6632)

PillCam SB1 1
(10)

0
(0)

0
(0)

0
(0)

1
(10)

0
(0)

PillCam SB3 160
(19723)

160
(12180)

162
(21353)

107
(9918)

170
(12323)

94
(8614)

OMON 28
(1566)

27
(1691)

26
(2403)

25
(935)

24
(3043)

10
(158)

Olympus 0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

1
(27)

Mirocam 0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

1
(3)
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for earlier implementation of AI-assisted gastroenterology pro-
cedures into routine clinical practice.

The study has some limitations. First, it was conducted ret-
rospectively, which may introduce selection bias because the
studied sample may not be as representative as it should be.
Second, the study included a relatively small number of frames,
mainly in the test dataset, which could also compromise the ex-

ternal validity of our findings. To corroborate these results, pro-
spective and multicenter studies are required before introdu-
cing these deep learning models in clinical practice. Third,
achieving excellent performance outcomes with still frames
may not guarantee comparable performance with video seg-
ments or full-length videos. Nonetheless, we hypothesize that
the algorithm computational performance, with a reading rate

▶Table 2 (Continuation)

Fold 1 Exams

(frames)

Fold 2 Exams

(frames)

Fold 3 Exams

(frames)

Fold 4 Exams

(frames)

Fold 5 Exams

(frames)

Test set Ex-

ams (frames)

Iteration 4 PillCam COLON1 1
(588)

3
(453)

1
(150)

6
(1333)

4
(152)

1
(9)

PillCam Crohn’s 35
(15992)

33
(10215)

27
(9392)

26
(5951)

35
(8600)

19
(5520)

PillCam SB1 1
(10)

0
(0)

0
(0)

0
(0)

1
(10)

0
(0)

PillCam SB3 154
(19985)

153
(13481)

149
(14536)

155
(14254)

158
(13158)

84
(8697)

OMON 22
(3871)

30
(1136)

24
(2600)

20
(459)

31
(737)

13
(993)

Olympus 0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

1
(27)

Mirocam 0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

1
(3)

Iteration 5 PillCam COLON1 2
(408)

4
(1193)

3
(257)

4
(696)

2
(130)

1
(1)

PillCam Crohn’s 44
(14649)

30
(10093)

38
(13128)

30
(7186)

21
(7960)

12
(2654)

PillCam SB1 0
(0)

0
(0)

1
(10)

1
(10)

0
(0)

0
(0)

PillCam SB3 163
(11546)

161
(20614)

158
(10535)

169
(17910)

110
(9579)

92
(13927)

OMON 17
(453)

29
(733)

29
(4822)

30
(3034)

21
(458)

14
(296)

Olympus 0
(0)

1
(27)

0
(0)

0
(0)

0
(0)

0
(0)

Mirocam 0
(0)

1
(3)

0
(0)

0
(0)

0
(0)

0
(0)

▶Table 3 Five-fold cross-validation with exam split (repeated a total of five iterations).

Sensitivity % Specificity % PPV % NPV % Accuracy % AUC-ROC AUC-PR

Iteration 1 87.9 99.4 93.4 98.3 98.1 0.984 0.998

Iteration 2 91.1 99.5 95.8 98.9 98.5 0.990 0.998

Iteration 3 93.3 99.7 96.1 99.4 99.2 0.996 1.000

Iteration 4 83.2 99.4 92.8 98.1 97.7 0.986 0.998

Iteration 5 82.0 99.7 96.2 98.4 98.2 0.980 0.998

AUC-PR, area under the precision-recall curve; AUC-ROC, area under the conventional receiver operating characteristic curve; PPV, positive predictive value; NPV,
negative predictive value.
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of approximately 38 frames per second, gives it the capacity to
adjust to real-life settings. Although our results look promising,
more studies are needed to determine whether the use of AI
models is cost-effective. Fourth, by comparing the perform-
ance metrics obtained from cross-validation during training/va-
lidation with those derived from the testing set, we observed a
slight decrease in sensitivity and PNV in the latter. This discre-
pancy could be attributed to various factors. On the one hand,
despite our efforts to mitigate overfitting during training, it
cannot be entirely ruled out. On the other hand, differences in
representation between the validation and test sets may also
contribute to this variation.

Research on AI and CE is increasing exponentially. However,
most studies focus on the development of deep learning mod-
els in automatic identification of a specific type of lesion in ei-
ther the small bowel or the colon. In the small bowel, there are
very accurate deep learning models capable of detecting differ-
ent types of vascular lesions, as well as predicting their bleed-
ing risk accuracy [14]. In the colon, although the vast majority
of retrospective studies focus on the detection of protruding le-
sions, there are already published AI algorithms not only for au-
tomatic detection of blood or hematic residues [20]. In addi-
tion, there is also a published trinary network aiming to detect
and differentiate blood from normal colonic mucosa and from
mucosa lesions (including ulcers and erosions, vascular lesions
and protruding lesions) with high sensitivity, specificity, and ac-
curacy [21].

Panendoscopic evaluation of the entire gastrointestinal tract
is still in the developmental stage, even though it has a wide
range of potential and exponential growth is anticipated in it.
To our knowledge, there are no published papers that reporting

on development of a deep learning algorithm to detect vascular
lesions, not only in the small bowel and colon, but also in the
esophagus and stomach, allowing a true panendoscopic evalu-
ation of the entire digestive tract mucosa. This may be impor-
tant in clinical practice in patients who present with overt gas-
trointestinal bleeding. Our results demonstrated not only ex-
ceptional CNN robustness, but also high global performance
levels with 98% overall accuracy, supporting AI use in a live
healthcare practice environment.

Conclusions
In conclusion, this was the first proof-of concept AI deep learn-
ing model, worldwide, that was developed and validated for pa-
nendoscopic automatic detection of vascular lesions during CE.
The high diagnostic performance of this CNN in multibrand de-
vices addresses an important issue of technological interoper-
ability, allowing it to be replicated in multiple technological
settings. The enhancement in diagnostic efficiency of CE
provided by AI, combined with increased interest in minimally
invasive techniques, may contribute to increased access to this
diagnostic method, thus promoting its performance when a
purely diagnostic endoscopic exploration is expected.
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▶ Fig. 3 Representative example of an area under the conventional receiver operating characteristic curve (AUC-ROC) (1) and an area under the
precision-recall curve (AUC-PR) (2) of CNN performance in detection of vascular lesions in iteration 3 of the training/validation phase. Precision
(on the y axis), also known as positive predictive value, is related to the proportion of cases in which the CNN algorithm was correct. Recall (on
the x axis), also known as sensitivity, is related to the proportion of frames containing vascular lesion that were retrieved by the CNN model. A
higher precision indicates a lower false-positive rate, whereas a higher recall means a lower false-negative rate. The higher the precision and
recall, the bigger the AUC-PR.
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