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Abstract Sepsis represents a syndromic response to infection and frequently acts as a common
pathway leading to fatality in the context of various infectious diseases globally. The
pathology of severe sepsis is marked by an excess of inflammation and activated
coagulation. A substantial contributor to mortality in sepsis patients is widespread
microvascular thrombosis-induced organ dysfunction. Multiple lines of evidence
support the notion that sepsis induces endothelial damage, leading to the release of
glycosaminoglycans, potentially causing microvascular dysfunction. This review aims
to initially elucidate the relationship among endothelial damage, excessive inflamma-
tion, and thrombosis in sepsis. Following this, we present a summary of the involve-
ment of glycosaminoglycans in coagulation, elucidating interactions among
glycosaminoglycans, platelets, and inflammatory cells. In this section, we also intro-
duce a reasoned generalization of potential signal pathways wherein glycosaminogly-
cans play a role in clotting. Finally, we discuss current methods for detecting
microvascular conditions in sepsis patients from the perspective of glycosaminogly-
cans. In conclusion, it is imperative to pay closer attention to the role of glycosami-
noglycans in the mechanism of microvascular thrombosis in sepsis. Dynamically
assessing glycosaminoglycan levels in patients may aid in predicting microvascular
conditions, enabling the monitoring of disease progression, adjustment of clinical
treatment schemes, and mitigation of both acute and long-term adverse outcomes
associated with sepsis.
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Introduction

Sepsis is defined as a life-threatening organ dysfunction and
is attributed to a dysregulated host response to infection in
the new Sepsis-3 definitions.1 It poses a significant global
health threat and serves as a common pathway to death in
cases of severe infectious diseases, particularly those man-
ifested as pulmonary infections, which exhibit a high inci-
dence rate and mortality in intensive care patients.2

Annually, sepsis is responsible for approximately 20% of
global deaths.3 The existing data are predominantly derived
from developed countries with advancedmedical infrastruc-
ture, potentially resulting in a higher mortality rate than
currently reported, underscoring the urgency of addressing
sepsis as a crucial health concern.4 Moreover, data obtained
from numerous cohorts indicate that sepsis is the primary
cause of death in the unprecedented outbreak of COVID-19
(coronavirus disease 2019).5–9 Consequently, to mitigate the
annual deaths caused by infections worldwide, it is impera-
tive to comprehend the underlyingmechanisms and advance
the development of detectionmethods throughout the sepsis
process.

For decades, the extracellular matrix was regarded as an
inert scaffold, serving functions such as providing essential
elements for environmental support, mechanical support,
and tissue protection.10 However, it is now acknowledged as
a highly dynamic partner of the immune system, gaining
significance in the field of sepsis. Recent reviews highlight
the significance of the glycocalyx in microcirculation.
The glycocalyx, constituting the extracellular matrix, is

composed of membrane-attached proteoglycans, glycosami-
noglycans (GAGs), and other adherent plasma proteins. Near
the plasma membrane, the membrane-tethered scaffold
comprises syndecans, glypican proteoglycan families, and
CD44, providing attachment sites for GAGs.11 The negatively
charged sulfatedGAGs combinewith plasma proteins such as
albumin, fibrinogen, fibronectin, antithrombin (AT) III, and
thrombomodulin. Additionally, unsulfated hyaluronan (HA)
can form the complexes with sulfated GAG-containing pro-
teoglycan, for example, versican.12,13 These GAGs not only
aid in maintaining dynamic tissue integrity but also act as
signaling molecules, actively participating in and driving
biological processes.13

Moreover, prior studies have hinted at an undiscovered
connection between the glycocalyx and thrombosis. Schmidt
et al demonstrated that urinary indices of GAG fragmenta-
tion correlate with outcomes in patients facing critical ill-
nesses such as septic shock or acute respiratory distress
syndrome.14 Shalaby et al showed that endothelial dysfunc-
tions exhibited by endothelial-derived microparticles pos-
sess procoagulant properties but elude detection through
conventional coagulative tests.15 Stemming from these stud-
ies, we hypothesize that free GAGs released from the glyco-
calyx likely play a crucial role in coagulation during sepsis.
Consequently, we have undertaken a comprehensive review
of the research advancements related toGAGs,with a specific
focus on their involvement in sepsis-induced thrombosis
dysfunction and their potential role in promoting micro-
thrombosis. Additionally, we delve into ongoing progress in
detection methods.
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Thrombosis, Inflammation, and Endothelial
Cells in Microvasculature of Sepsis

The microvasculature, which includes first-order arterioles,
first-order venules, and the capillary network, plays a crucial
role in the functionality of tissues and organs. It regulates
blood flow, vascular permeability, and acts as the principal
site for gas and solute exchange between the bloodstream
and tissues. The inner layer of the microvasculature consists
of closely connected endothelial cells, which represent one of
the initial cell types to encounter and respond to insults by
amplifying the immune response and the coagulation
system.

In the state of sepsis, several complex factors are involved
in and contribute to the formation of microvascular throm-
bosis. These factors include the direct role of certain patho-
gens, the activation of the plasma coagulation cascade,
activated platelets, injured endothelial cells, and the activat-
ed complement system by pathogens.16–19 Bacteria can
promote platelet activation and aggregation, thereby exac-
erbating inflammation and coagulation reactions, ultimately
leading to the microcirculation thrombosis.

Endothelial cells are excessively stimulated by pathogens
and a large number of host-derived infection mediators,
which damage the glycocalyx. The degradation of the glyco-
calyx increases the exposure and expression of molecules
from endothelial cells, including adhesionmolecules, growth
factors, and cytokines. This, in turn, results in the accumula-
tion of leukocytes, erythrocyte networks, and stacks. Leuko-
cytes, such as neutrophils, macrophages, and eosinophils,
release neutrophil extracellular traps (NETs). NETs are ex-
tracellular, web-like decondensed nuclear or mitochondrial
DNA structures composed of histones, cytosolic and granule
proteins.20–22 Notably, neutrophils and NETs stimulate pro-
inflammatory and pro-angiogenic responses in endothelial
cells, causing further dysregulation in both innate and ac-
quired immune systems.23–25

Moreover, NETs can also serve as a scaffold for both
thrombosis and complement activation. The complement
system, a crucial component of the innate immune system,
plays a significant role in seeking and defending against
pathogen invasion. The activation of the complement system
is closely related to promoting inflammation and activating
the coagulation cascade reaction. For example, complement
C5 is considered as an unconventional procoagulant mole-
cule and is associated with complement activators, such as
thrombin and damaged endothelium.26 The neutrophil–
complement–coagulation system has been shown to facili-
tate the formation of microthrombi and clots in the
microvasculature.27–29

Particularly, when pathogens invade the vascular system,
pattern recognition receptors (PRRs) within the innate im-
mune system, consisting of neutrophils, monocytes, natural
killer cells, among others, are triggered by binding to patho-
gen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns.30–32 The PRRs activate the
Toll-like receptors (TLRs) and nucleotide-binding domain
leucine-rich repeat-containing protein inflammasome signal

transduction, ultimately prompting the transcription of
proinflammatory factors in innate immune cells.33–36 These
proinflammatory factors also play a crucial role in activating
endothelial cells, innate immune cells, and platelets, thereby
contributing to coagulation pathways aimed at initially
containing the infection.37–40 This initial controlled vascular
response, during minor infections, represents an immune-
protective effect coordinated by the tissue response to local
infection. However, in severe sepsis, this vascular response
becomes overactivated, resulting in an inflammatory storm
that damages the vascular endothelium.41 Recent research
studies have demonstrated that the adhesion of pathogens to
host cells relies on the mediation of GAGs.42,43 The hyper-
activation of innate immune cells and endothelial cells
dysregulates the glycocalyx barrier, giving rise to systemic
microvascular thrombosis.44 This, in turn, causes the accu-
mulation of leukocytes, impaired perfusion, and albumin
filtration, ultimately accelerating the progression of multi-
organ dysfunction.22,45–48

Nevertheless, it is essential to highlight that microvascu-
lar inflammation, as mentioned earlier, is not the sole
contributor to coagulation disorders in the host during
sepsis. Common bacteria such as staphylococci and strepto-
cocci are equippedwith proteins capable of directly interfer-
ing with the human coagulation cascade or the fibrinolytic
system. The interaction between staphylocoagulase and
prothrombin results in the formation of staphylothrombin,
independently inducing coagulation without reliance on
other vascular (cellular) mechanisms of coagulation activa-
tion. Additionally, staphylokinase and streptokinase can
dysregulate fibrin through the activation of fibrinolytic
cascades, representing another cause of coagulation dysfunc-
tion in bacteria sepsis for the host.49–51

The Structures and Physiological Functions
of GAGs

GAGs are linear, highly charged, and heterogeneous acidic
polysaccharides expressed in various types of cells. Their
backbones are regular and consist of repeating disaccharides
with alternating uronic acid (UA)/galactose (Gal) and hexos-
amine (HexN) units.52 GAGs can be categorized into four
groups based on the combinations of units, sulfation pat-
terns, and residues: heparan sulfate (HS)/heparin (Hp),
chondroitin sulfate (CS)/dermatan sulfate (DS), keratan sul-
fate, and HA. Most GAGs are sulfated and attached to core
proteins (e.g., syndecans 1–4 and glypicans 1–6), except for
HA, which is attached to the receptor CD44.11

GAGs exhibit two main characteristics: combination di-
versity and electronegativity. The combinations of disacchar-
ides occur randomly, stemming from their non-template-
driven nature, which is different from DNA semi-conserva-
tive replication. Previous research has demonstrated that six
disaccharide units can theoretically form 12 billion different
GAGs. This number is significantly larger than the combina-
tions of nucleic acids and peptides, implying their potential
for biological diversity.53 Furthermore, the degree of sulfa-
tion in GAGs is linked to various diseases.54
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GAGs act as sieves to limit the passage of molecules with
the same charge or those larger than 70kDa due to their
negatively charged characteristic. The negatively charged sul-
fate groups in GAGs provide binding and charge-neutralizing
sites for proteins with positively charged or polar residues,
thereby altering their structures and determining their func-
tions. This suggests that GAGs may play a role in regulating
signal transductions by (1) acting as activators that mediate
the formationof signal complexes, (2) servingas repressors, (3)
functioning as concatenators, and (4) acting as selectors that
favor the formation of one complex over another.55,56

Under physiological conditions, the intact structure of the
glycocalyx and GAG components play a crucial role in
regulating cell adhesion and maintaining vascular homeo-
stasis. GAGs mediate cell adhesion by acting as mechano-
sensors, regulator of nitric oxide (NO) production, and
barriers to inhibit cell adhesion. NO, a vasodilator and anti-
atherogenic molecule, is primarily regulated by vascular
shear stress. NO and endothelial NO synthase (eNOS) are
commonly used indicators to define endothelial cell
dysfunction.

In the vascular system, sustained directed mechanical
forces contribute tomaintaining vascular homeostasis, while
the mechanical forces lacking a definitive direction result in
sustained molecular signaling of pro-inflammatory path-
ways.57 GAGs, in collaboration with other mechanosensors
such as syndecans, PECAM-1, and Gαq/11, function as
mechanotransducer signal platforms.58,59 They transduce
mechanical stimuli, leading to the production of NO, sup-
porting the overall functions of endothelial cells.60 Particu-
larly, when the HS structure is preserved, eNOS can be
upregulated to produce NO.61 Therefore, in the context of
minor inflammation and coagulation, intact endothelial cells
with a preserved glycocalyx can generate NO. This inhibits
further platelet activation and leukocyte adhesion to the
endothelium, thereby maintaining the local vascular
homeostasis.62,63

Biosynthetic Pathways of GAGs

GAGs, whether existing independently or in conjunction
with proteins,64 are extensively distributed throughout the
extracellular matrix, cell surface, and cytoplasm. The specific
sites for GAG synthesis are intricately determined by the
presence of particular enzymes and precursors. Sulfated
GAGs are synthesized within the Golgi apparatus, and their
extension relies on attachment to the core protein linkage
oligosaccharides with a glucuronosyl-galactosyl-galactosyl-
xylosyl tetrasaccharide structure, which is linked to serine
residues of the core proteins.65 Subsequently, these proteo-
glycans are excreted into the extracellularmatrix or localized
on the plasma membrane. Following this, the necessary
glycosyltransferases and other enzymes, provided by the
Golgi apparatus, elongate and modify the sulfated GAG
chains through processes such as epimerization and
sulfation.66

Unlike sulfated GAGs, HA undergoes self-elongationwith-
out the assistance of anchor proteins. Its synthesis occurs at

the inner plasma membrane, where the essential initial
materials, including UDP-GlcNAc (uridine diphosphate-N-
acetylglucosamine) and UDP-GlcUA (uridine diphosphate-
glucuronic acid), as well as HA synthase enzymes (HAS1,
HAS2, and HAS3) are present. Among HA synthase enzymes,
HAS2 serves as the primary HA synthase, responsible for the
production of HA. HAS3, on the other hand, exhibits high
expression under specific conditions.67 Following its synthe-
sis, HA is directly secreted into the extracellular matrix after
undergoing modifications.68

The Golgi apparatus exhibits a fascinating phenomenon
by acting as a central hub for the synthesis of sulfated GAGs.
Additionally, it serves as the activation site for the stimulator
of interferon genes (STING), an immune adaptor protein
associatedwith the endoplasmic reticulum (ER). STING plays
a crucial role in initiating and amplifying inflammatory
responses to PAMPs.69,70 This unique occurrence opens up
numerous possibilities for the interaction between STING
and GAGs. Our laboratory conducted molecular docking
experiments to simulate and investigate the in vitro affinity
between GAGs and STING. Furthermore, the interactionwith
STAT was examined, which is another significant immune
regulatory protein responsible for transducing cytokine sig-
nals from the cell membrane to the nucleus following
phosphorylation by Janus kinases. Results revealed that
STAT1, STAT4, STAT3, and STAT6 can mediate cell death
during sepsis.71,72 Additionally, robust interactions between
GAGs and both STING and STAT in vitro were revealed. These
findings established a foundation for studying the potential
molecular pathways throughwhich GAGsmay be involved in
the microcoagulation associated with sepsis.

The Degradation of GAGs in Sepsis

During sepsis, the functionality of endothelial cells becomes
compromised, and the structural integrity of the glycocalyx
is disrupted, leading to the degradation and shedding of a
substantial amount of GAGs. The initiation of GAG degrada-
tions is triggered by the activation of enzymes, lysosome
impairment, and the generation of reactive oxygen species
(ROS).73 Several enzymes play a role in this degradation
process, including heparinase, hyaluronidases, and matrix
metalloproteinases (MMPs). Heparinase, found in masto-
cytes and platelets, induces the cleavage of HS chains at-
tached to core proteoglycans.74,75 MMPs present in vascular
endothelial cells and macrophages cleave proteoglycans
from the endothelial cell membrane.76 Neutrophilic granu-
locytes house proteolytic enzymes such as serine proteases
elastase and proteinase-3, which can shed the HA by cleaving
the binding of the HA–receptor CD44 complex.77 Endothelial
cells themselves contain hyaluronidases that cleave the HA
into tetrasaccharides.78,79 Beyond the enzymatic degrada-
tion, various cell types, including endothelial cells, platelets,
and neutrophils, can be induced to release ROS by activated
TLRs during sepsis, contributing to the further degradation of
GAGs.44

Several degradation components of glycocalyx have been
identified as valuable biomarkers for endothelial cell damage
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in sepsis. Among these components, Syndecan-1, a type of
proteoglycan, has garnered significant attention, being the
foremost glycocalyx shedding component in sepsis.80 Nu-
merous studies have established a significant correlation
between the plasma Syndecan-1 levels in the early stages
of sepsis patients and the severity and incidence of late-stage
organ failure. This correlation proves to be instrumental in
predicting the development and prognosis of the patient,
thereby establishing Syndecan-1 as a biomarker for clinical
adjuvant diagnosis and treatment of sepsis.81,82

Another promising biomarker for the degradation com-
ponents of glycocalyx is the shedding GAGs.83 Recent studies
have indicated notably higher plasma levels of free HS or HA
in sepsis patients or model animals compared with healthy
individuals. Importantly, these elevated levels have been
found to be associated with severity of the subjects’ condi-
tion.14,84 Given the diversity of types and combinations of
GAGs, assessing the quantitative level and composition of
shedding GAGs in patients may offer richer information and
data for clinical prediction, diagnosis, and treatment of
sepsis, warranting further research.

GAGs and Coagulopathy

Recent research has increasingly demonstrated a strong
connection between thrombosis and inflammation through
immunothrombosis, revealing platelets and innate immune
cells as the main cellular drivers of this process.44,85 Al-
though the precise trigger mechanism remains unclear,
GAGs may play a significant role, primarily through two
mechanisms: (1) upregulating the procoagulant pathway by
activating the contact system, enhancing cell adhesion, and
inhibiting kallistatin; and (2) downregulating physiological
anticoagulants by interfering with AT activation and inhibit-
ing tissue factor pathway inhibitor (TFPI). This, in turn,
further activates the microthrombotic pathway and ampli-
fies inflammation.

GAGs and Coagulation System
The contact system is an intrinsic coagulation system re-
sponsible for inducing a hypercoagulable state in septic
patients. Factors XIa (FXIa), XIIa (FXIIa), and plasma kallikre-
in (PKa) of the contact system of coagulation appear to
contribute to thrombosis.86 Traditionally, the contact system
and the tissue factor (TF) pathway are considered mutually
independent main coagulation pathways.87 Additionally, the
traditional perspective holds that GAGs are primarily recog-
nized for their anticoagulant properties, such as the high-
affinity Hp, which can stimulate the inhibition of several
coagulation enzymes by interacting with AT and Hp cofactor
II (HC II).88 However, recent evidence showed that endoge-
nous negatively charged GAGs can also activate the contact
system in normal human plasma.89 The abnormal generation
of GAGs from diverse sources, exhibiting varying degrees of
sulfation, encompasses chemically oversulfated GAGs, GAGs
produced by tumors, and the IgG/PF4/Hp complexes. These
entities collectively contribute to thrombin generation
by activating the contact system. In addition, the IgG/PF4

complex stimulates platelets, subsequently initiating coagu-
lation on the negatively charged surface of activated
platelets.

Platelets, anucleate blood cells originating from megakar-
yocytes, play fundamental roles in coagulation as they
engage with endothelial and leukocytes cells. During sepsis,
these cells undergo activation, releasing chemokines, inflam-
mation mediators, and microparticles. PF4, a Hp-binding
protein with specific procoagulant activity, is released
from stimulated mature platelets.90 Upon release, PF4 binds
to GAGs, forming an antigenic complex.91,92 In patients with
severe sepsis facing a dual risk of Hp-induced thrombocyto-
penia and thrombosis, IgG combines with PF4. This complex
then binds to platelet Fcγ receptors, inducing platelet acti-
vation and aggregation.93 Additionally, PF4 has the capacity
to neutralize the negative charge of GAGs. This action
facilitates the adherence of negatively charged platelets to
the endothelium, thereby promoting thrombus formation
with increased efficacy.94

Hayes et al utilized confocal microscopy to illustrate that
PF4, released from activated platelets, binds to surface GAG
side chains on intravascular and vascular cells. Furthermore,
PF4 adheres more effectively to the peri-injury endothelium,
characterized by a glycocalyx rich in high-affinity HS and
DS.95

TFPI, which binds to HS, acts as a negative regulator of the
extrinsic coagulation pathway. It accomplishes this by down-
regulating coagulation function through interactions with
TF–factor VIIa and factor Xa. Additionally, TFPI plays a crucial
role in coagulation regulation by augmenting the inhibition
of factor Xa and decreasing prothrombinase activity. The
shedding of HS is shed from endothelial cells, disrupting TFPI
and leading to coagulation.96

Kallistatin, a serpin, exerts its inhibitory effect on kallikrein
by binding with GAGs. This interaction ultimately triggers the
activation of factor XII and the subsequent cleavage of high-
molecular-weight kininogen into bradykinin. Both processes
contribute to a pro-coagulation effect.97,98

GAGs and Cell Adhesion
GAGs located on the surface of endothelial cells play a pivotal
role in maintaining the antithrombotic properties of the
vascular system. In the context of sepsis, GAGs are suscepti-
ble to disruption caused by ROS, heparanases, and various
proteases. This disruption leads to the exposure of adhesion
molecules, particularly E-selectin is exposed to the endothe-
lial cell surface, subsequently promoting the recruitment of
platelets and leukocytes. Chaaban et al demonstrated thatHA
with a molecular weight below 1,000 has a significant
activating effect on histone-induced platelet aggregation.99

The degradation of GAGs also hampers the responses of
endothelial cells to shear stress and exacerbates adhesion,
resulting in thrombotic events.22,100

Platelet endothelial cell adhesion molecule-1 (PECAM-1)
and heterotrimeric C protein subunits Gαq and 11 (Gαq/11)
act as mechanosensors that respond to shear stress and
mediate downstream signals. Dela Paz et al found that
intact HS on endothelial cells promotes the formation of a
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complex between these two proteins and its removal
attenuates flow-induced Akt phosphorylation.101 Addition-
ally, Schabbauer et al demonstrated that inhibiting Akt
enhances lipopolysaccharide-induced coagulation and in-
flammation.102 Both findings suggest that the shedding of
HS may induce clotting.

GAGs and Signal Pathway in Coagulation
The central innate immune cells are responsible for initiate
both inflammatoryand coagulant responses.103,104 Excessive
activation of these host innate immune and coagulation
responses has been linked to multi-organ failure and death.4

As mentioned earlier, STING plays a crucial role in initiating
andmagnifying inflammatory responses to PAMPs. Research
has shown that GAGs can regulate STING in immune path-
ways, and the overactivation of STING is closely associated
with sepsis. Zhang et al revealed that STING drives coagula-
tion by initiating ER stress, leading to the activation of
gasderminD (GSDMD), an effector of pyroptosis. This process
subsequently releases TF, triggering the coagulation cascade
in sepsis patient samples,mice, and cellmodels.105 In a related
study, Fang et al identified that in vitro, the interaction

between STING and sulfated GAGs further promotes the
polymerization of STING through electrostatic attractions
between negatively charged sulfate groups of GAGs and posi-
tively chargedaminoacidsof STING.106Additionally, Chenet al
demonstrated that STING is essential for the virus-induced
activation of STAT6, members of the signal transducer and
activator of transcription family, in vitro.71,107,108

►Fig. 1 summarizes potential pathways. Interestingly,
GAGs can bind to STING, but the binding site, kinetics,
downstream effects, and the role of negative charge in this
interaction remain unknown. Further studies are needed to
explore these aspects, as theymay reveal one of the potential
pathways by which GAGs are involved in clotting.

IL-27 activates the STAT pathway and regulates immune
responses, particularly STAT1 and STAT3.109 Cavé et al
proved that GAGs bind to human and mouse IL-27, thereby
regulating the activation of STAT1 and STAT3.110 Further-
more, STAT3 mediates endothelial dysfunction and plays a
key role in sepsis-inducedmultiple organ failure by inducing
disseminated intravascular coagulation.71,111 Beckman et al,
using vascular endothelial cells, found that JAK-STAT inhibi-
tion limited the secretion of pro-adhesive and procoagulant

Fig. 1 Summary of potential signaling mechanisms of thrombosis induced by glycosaminoglycans. Summary of potential signaling mechanisms
of thrombosis induced by GAGs. (A) Sulfated GAGs in the Golgi apparatus or vesicles directly drive the STING polymerization
and activation through electrostatic attractions. (B) STING-mediated cleavage of GSDMD triggers the release of tissue factor F3, contributing
to coagulation. (C) STAT2 and STAT3 control the expression of endothelial adhesion molecules, initiating endothelial dysfunction during sepsis
and subsequently participating in coagulation. (D) Viruses or cytoplasmic nucleic acids trigger STING to recruit STAT6 to the endoplasmic
reticulum, leading to STAT6 phosphorylation independent of JAKs. (E) Apart from the classical STING and STAT pathways, sulfated GAG
fragments damaged by various infectious factors move into immune cells or endothelial cells by phagocytosis, activating STING and STAT to
regulate coagulation. (Created in BioRender.com). GAGs, glycosaminoglycans.
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factors. It also reduced endothelial TF and urokinase plas-
minogen activator expression.112 These imply that GAGsmay
regulate the STAT pathway by binding with IL-27, ultimately
influencing coagulation.

In essence, GAGs regulate the activities of enzymes,
chemokines, cytokines, and growth factors through binding
with proteins.55,113,114 However, their mechanisms of oper-
ation and their role in coagulation remain unclear. The
aforementioned pathways may contribute to our under-
standing of GAGs signaling pathways.

GAGs and Hp/HS–Antithrombin Axis
Thrombin serves as the final protease generated in the blood
coagulation cascade, responsible for cleaving fibrinogen and
forming the fibrin clot. AT, a significant plasma glycoprotein
belonging to serpin superfamily, acts by inhibiting thrombin
and activating factor X. It achieves its anticoagulation role
through interactionswith GAGs.115HC II also inhibits throm-
bin activity to facilitate anticoagulation.116 Both AT and HC II
bind to heparan through a pentasaccharide or hexasacchar-
ide sequence, respectively, inducing conformational changes
in the reactive center loop of the serpin. These changes
enhance the activity of serpin, contributing to its anticoagu-
lant properties.115 Simultaneous binding to AT and thrombin
requires a minimum chain length of 18 saccharides, while
binding to HC II and thrombin requires 30 saccharides.115

The longer the Hp, the greater chance of specific pentasac-
charide sequences appearing and an increased number of
negative charges are more likely to accumulate which will
enhance the anticoagulant effect.

However, during the initial phases of sepsis, numerous
glycosidases are released into the bloodstream, causing the
breakdown of GAGs. For example, heparanase is activated by
inflammatory cytokines and ROS, resulting in the degradation
of Hp. Although the low-affinity Hp which without specific
sequences maintains its AT activity, its affinity diminishes in
comparison to that with specific sequences, rendering it
incapable of executing anti-activated factor X activity.117

Additionally, products produced by pathogens can bind to
GAGs, inhibiting the Hp-dependent anticoagulant function
of AT and promoting coagulation pathways. Concurrently,
they exert a proinflammatory effect. Histidine-rich protein II
(HRPII), a protein exclusively produced by Plasmodium falci-
parum, binds to GAGs to prevent their interaction with AT
and FXa or thrombin in vitro.118,119 Dinarvand et al demon-
strated that HRPII may also interact with the AT-binding
vascular GAGs, thereby inhibiting the anti-inflammatory
signaling function of the serpin.120 Inflammatory stimula-
tion has been shown to downregulate and impair GAGs in
endothelial cells, leading to a decrease in the effective
binding betweenGAGs and AT.121,122 In a study by Kobayashi
and colleagues, porcine aortic endothelial cells were pre-
treated with IL-1β or rTNFα, resulting in suppressed HS
synthesis and a subsequent reduction in binding of AT III
to the cell surface.123 Moreover, it has been noted that
plasma fibronectinmaintains a compact conformationwhile
circulating in the bloodstream. However, upon binding to
GAGs, its structure undergoes a transformation into an

extended conformation, forming fibrils that disrupt the
interaction between GAGs and AT.124

Detection Methods of GAGs

Detectionmethods for GAGs in vivo, particularly quantitative
analysis techniques, are crucial for a comprehensive explo-
ration of the mechanisms through which GAGs contribute to
coagulation disorders in sepsis. These methods are also vital
for early prediction and dynamic monitoring of disease
progression and prognosis in sepsis patients. Additionally,
they play a key role in anticipating when alternative treat-
ment strategies can be applied. Currently, the predominant
method employed in clinical settings is the imaging detec-
tion. Notably, recent advancements have been made in
achieving precise and rapid quantification of GAGs. In con-
trast to thewidely used imagingdetectionmethods for GAGs,
liquid chromatography-mass spectrometry (LC-MS) quanti-
tative technology stands out. This approach not only enables
accurate quantification of different GAG disaccharide com-
ponents but also facilitates qualitative analysis of the com-
position of GAGs. This dual capability is constructive for
simultaneously analyzing changes in both the content and
composition of GAGs in sepsis patients.

Imaging Detection of GAGs
As theprimary line ofdefense for bloodvessels, the endothelial
glycocalyx exhibits a thickness ranging from 200 to
2,000nm.125 Current imaging detection methods face limita-
tions in directly identifying GAGs but instead measure the
overall thickness of glycocalyx, as these methods struggle to
distinguish the individual components of the glycocalyx.
Researchers have observed dissociative glycocalyx using
immunogold staining through transmission electron micros-
copy.126–128 Another experimental approach is scanning
electron micrographs, offering a three-dimensional represen-
tation of glycocalyx coverage.125,129,130 In clinical research,
noninvasive microscopic camera techniques like sidestream
dark field (SDF) imaging and orthogonal polarization spectral
(OPS) have been applied to measure and visualize glycocalyx
damage.131,132 However, these methods are susceptible to
various factors, including differences in thickness algorithms
and observation discrepancies between in vivo and in vitro
conditions.133 To overcome these challenges, a novel analysis
software named GlycoCheck was developed, specifically
designed to work with two main SDF devices (Microscan
and CapiScope HVCS). This software aims to standardize the
results obtained from both methods.134 Furthermore, Xiao
et al reported the use of PLL-MNPs, positively charged nanop-
robes that can selectively target GAGs through electrostatic
interactions, revealing the relationship between GAG compo-
nents and progression of osteoarthritis.135

The general advantage of these imaging methods lies in
their ability to directly depict the shedding of GAGs or reflect
their damage throughmicrovascular visualization, rendering
them noninvasive. However, they fall short in accomplishing
both quantitative and qualitative analyses of distinct and
individual GAG components.
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Nonvisual Detections of GAGs
Currently, LC-MS, nuclearmagnetic resonance,136,137 enzyme-
linked immunosorbent assay,138,139 and chemometric analy-
sis140 are commonly used nonvisual methods for quantifying

GAGs.141 ►Table 1 lists the commonly used visual and nonvi-
sual methods for GAG detection, including biological sample
types and the associated disease. Bio-layer interferometry
(BLI) is employed to detect intermolecular interactions and

Table 1 Summary of samples in detection methods of GAGs

Detection
methods

Object Sample Diseases Ref.

TEM HA Extraocular muscles (human) Thyroid-associated
ophthalmopathy

126

Glycocalyx Implanted homograft valves
(human)

Cardiac homograft valve
implantation

127

Glycocalyx Hearts (guinea pig) Ischemia/reperfusion 128

SEM Glycocalyx Male Sprague-Dawley rats Cardiac arrest and
cardiopulmonary resuscitation

125

Glycocalyx Umbilical cord postpartum
(human)

Healthy 129

Glycocalyx Brains, hearts, lungs (mice) Healthy 130

SDF Glycocalyx Human Emergency room 134

OPS Glycocalyx Human Healthy 131,132

NMR GAGs Thymus、brain、kidney (mice) Healthy mice and mice with
genetic alterations in
glycosyltransferases

137

GAGs Solvents – 136

ELISA HA HS Serum (SD rats) Cardiac arrest and
cardiopulmonary resuscitation

125

HS Arterial blood (human) Coronary artery bypass graft
surgery with bypass

138

Chemometric
analysis

CD/DS and HS Urinary (human) Systemic sclerosis 140

LC-MS GAGs Samples from human and animals – 144,159,164–171

Abbreviations: ELISA, enzyme-linked immunosorbent assay; GAGs, glycosaminoglycans; LC-MS, liquid chromatography-mass spectrometry; NMR,
nuclear magnetic resonance; OPS, orthogonal polarization spectral; SDF, sidestream dark field; SEM, scanning electron microscopy; TEM,
transmission electron microscopy.

Table 2 Bio-layer interferometry methods of GAGs

Biosensors Binding protein Instrument Ref.

1 Streptavidin biosensors (ForteBio) Heparin AND binding PF4 Octet Red96
system (ForteBio)

159

2 Sensor streptavidin (SA) chips were from
GE Healthcare (Biacore AB, Uppsala,
Sweden)

Tissue inhibitor of metalloproteinases-3
(TIMP-3) AND biotinylated heparin was
immobilized to the streptavidin (SA) chip

BIAcore 3000 160

3 SA sensor chips were from GE Healthcare
(Uppsala, Sweden)

The biotinylated HP was immobilized to
streptavidin (SA) chip based on the
manufacturer’s protocol AND SARS-CoV-2
S-protein

BIAcore 3000 161

4 Sensor SA chips were from Cytiva
(Uppsala, Sweden)

The biotinylated GAGs were immobilized
onto streptavidin (SA) chips AND
Monkeypox Virus Protein A29

BIAcore 3000 or
T200 SPR
(Uppsala, Sweden)

162

5 IAsys auto plus device (Affinity Sensors,
Cambridge, United Kingdom)

Biotinylated albumin–heparin was
immobilized on an avidin-activated sensor
chip AND hIL-10

– 163

Abbreviation: GAGs, glycosaminoglycans.
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can provide relative affinity information between binding
partners. ►Table 2 presents a summary of recent studies
utilizing BLI to assess the affinity between GAGs and proteins.

In this review,we focus on the rapid, sensitive, and accurate
LC-MSmethod for its promising prospect in the study of GAGs
in sepsis. This method allows for the fast quantification of
multiple GAG components simultaneously and can analyze
changes in GAG composition. As a result, it provides richer
information for the clinical prediction, diagnosis, and treat-
ment of sepsis.142,143 Numerous researchers have utilized LC-
MS to measure GAGs in plasma and urine samples from both
healthy and diseased adults.14,144–146 Li et al determined the
average contents of HA, CS, and HS in 20 cell lines.147 Further-
more, LC-MS offers a new strategy for analyzing the proteome
that interactswith GAGs.148–150Golden et al employed the LC-
MSmethod to demonstrate the significant roles of HS and HA
in neutrophil trafficking and subsequent pathological throm-
bosis in the liver vasculature of sepsis mice.151

The composition of disaccharides, commonly referred to
as the GAGome, is impacted by the progression of diseases,
particularly sulfated disaccharides. Various cells express
diverse disaccharides, contributing to the formation of
GAGs, which can serve as a foundational aspect for compre-
hending mechanisms underlying multi-organ dysfunction.
LC-MS stands out from other methods as it not only quan-
tifies concentrations of GAGs but also provides insights into
the GAGome from a unique perspective.152,153Here, we offer
an overview of the literature related to the separation of
GAGs based on LC-MS, presented in ►Table 3.

Additionally, MS can be utilized for offline determination
of GAG sequences, providing essential data for elucidating
precise structures, including carbohydrate chains and

modifications.154,155 The analysis of the GAGome, however,
relies heavily on a robust database. To meet the growing
demand for data analysis, numerous algorithms have
emerged. MaatrixDB (http://matrixdb.univ-lyon1.fr/) is ded-
icated to biomolecular interactions involving extracellular
matrix proteins and GAGs.156 The GAGfinder was specifically
designed to identify tandem mass spectrum peaks, address-
ing the issue of time-consuming analysis.157 Duan et al
developed a genetic algorithm approach to examine the
theoretical structure of GAGs in its entirety, as opposed to
constructing a structure from the ground up. This approach
has been proven successful in examining both moderately
sulfated GAGs and more highly sulfated GAGs.158

Conclusion

This review highlights the significance of GAGs as crucial
components within the intact glycocalyx, playing a key role
in maintaining vascular microenvironment homeostasis.
These functions include endothelial protection, serving as
a selective permeability barrier for the vascular wall, and
acting as vital shear stress receptors to prevent thrombosis
and leukocyte adhesion. Pathological conditions, such as
pathogen stimulation, can result in endothelial cell damage
leading to the shedding of GAGs from the glycocalyx. The
shed GAGs, in turn, serve as potent signaling molecules,
participating in and driving the formation of immunemicro-
thrombosis in sepsis. This process ultimately contributes to
the development of multiple organ dysfunctions in sepsis.

The potential role and significance of shedding GAGs in
the formation of microcirculatory thrombosis in sepsis are
gradually being discovered and studied, which is expected to

Table 3 LC-MS methods for analysis of GAGs

Derivati-zation pH Samples Labels Time of
separation

Ref.

1 Yes – Human urine AMAC 15min 144

2 Yes 5.6 Human serum, human red blood cells, human
platelets, human granulocytes

AMAC 39min 164

3 Yes 6.8 Cell cultures, liver tissue, urine AMAC 60min 165

4 Yes – Fish liver and intestines 1-Phenyl-3-methyl-
5-pyrazolone (PMP)

7min 166

5 Yes 5.6 Cell cultures AMAC – 159

6 Yes 4.4 Human IgG 2-Aminobenzamide
(2-AB)

55min 167

7 No – Heparin and heparan sulfate (pharmaceutical
products)

– 8min 168

8 No – Mouse tissues – 20min 169

9 No Alkaline Human synovial fluid – 40min 170

10 No 11 Porcine articular cartilage and yellow ligament – 35min 171

11 No Acidic Human urine – 21min 172

12 No 4.4 Tissue sections – 20min 173

13 No – Human brain – – 174

14 No Acidic Mouse tissues – �8min 175
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have a profound impact on deepening our understanding of
the complex pathogenesis and clinical treatment of sepsis. Our
laboratory has recently conducted research revealing a strong
affinity between STING and STAT with GAGs in vitro, using
moleculardockingmodels. Thisfinding suggests that shedding
GAGs may induce the formation of microvasculature immune
thrombosis in sepsis byactivating STING, amajor immune and
inflammatory signaling pathway. Consequently, we have de-
duced the potential STING-mediated signaling pathways that
interact with the shedding GAGs, hoping to provide new
insights into the mechanism underlying sepsis thrombosis.
This area of study merits increased attention and exploration.
Additionally, our laboratory has made noteworthy progress in
the LC-MS analysis of GAGs. This analytical method enables
rapid and high-throughput detection without the need for
sample derivatization pretreatment (the data are not dis-
played). We believe that the LC-MS methods for analyzing
GAGs will increasingly play a crucial role in advancing our
understanding of sepsis pathogenesis.

In summary, GAGs play a key role in the microvascular
coagulationobserved in sepsis. However, themolecularmech-
anisms underlying this phenomenon remain unclear and
warrant further investigation. The utilization of sensitive
and accurate quantitative techniques forGAGswill significant-
ly contribute to elucidating the mechanism of microcoagula-
tion in sepsis. Furthermore, these techniques can serve as
dynamicmonitoringmethods for sepsis patients, enabling the
efficient prediction and adjustment of clinical treatment
strategies.

What is known about this topic?

• Coagulation dysfunction in sepsis is closely related to
endothelial damage.

• Glycosaminoglycans, covering the surface of endothe-
lial cells, have the potential to predict the state of
endothelial cell injury.

• Little is known about the association between glyco-
saminoglycans and thrombosis.

What does this paper add?

• We summarized the potential pathways of glycosami-
noglycans participating in sepsis-induced thrombosis.

• Generalizing the advanced detection methods of glyco-
saminoglycansandcomparingdifferentLC-MSmethods.
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