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Introduction
Neurocognitive impairment is considered one of the core features 
among patients with schizophrenia and is attributable to multiple 
causes. A blockade of dopamine D2 receptors above approximate-
ly 80 % with antipsychotics could impair neurocognitive function, 

including overall neurocognitive function and vigilance [1]. Antip-
sychotic drugs have been associated with mixed results in terms of 
their effects on neurocognitive impairment due to the illness [2, 3]. 
The presence of psychotic symptoms has also been reported to be 
associated with cognitive impairment. In one longitudinal follow-
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Introduction  The complex nature of neurocognitive impair-
ment in schizophrenia has been discussed in light of the mixed 
effects of antipsychotic drugs, psychotic symptoms, dopamine 
D2 receptor blockade, and intelligence quotient (IQ). These fac-
tors have not been thoroughly examined before.
Methods  This study conducted a comprehensive re-analysis 
of the CATIE data using machine learning techniques, in par-
ticular Conditional Inference Tree (CTREE) analysis, to investi-
gate associations between neurocognitive functions and mod-
erating factors such as estimated trough dopamine D2 receptor 
blockade with risperidone, olanzapine, or ziprasidone, Positive 
and Negative Syndrome Scale (PANSS), and baseline IQ in 573 
patients with schizophrenia.
Results  The study reveals that IQ, age, and education consist-
ently emerge as significant predictors across all neurocognitive 
domains. Furthermore, higher severity of PANSS-negative symp-
toms was associated with lower cognitive performance scores 
in several domains. CTREE analysis, in combination with a ge-
netic algorithm approach, has been identified as particularly 
insightful for illustrating complex interactions between varia-
bles. Lower neurocognitive function was associated with fac-
tors such as age > 52 years, IQ < 94/95, < 12/13 education years, 
and more pronounced negative symptoms (score < 26).
Conclusions  These findings emphasize the multifaceted na-
ture of neurocognitive functioning in patients with schizophre-
nia, with the PANSS-negative score being an important predic-
tor. This gives rise to a role in addressing negative symptoms 
as a therapeutic objective for enhancing cognitive impairments 
in these patients. Further research must examine nonlinear 
relationships among various moderating factors identified in 
this work, especially the role of D2 occupancy.
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up study of patients with first-episode schizophrenia, a decrease in 
positive symptoms was related to improvements in neurocognitive 
functions, including executive function, spatial memory, concen-
tration/speed, and global cognition [4]. Moreover, baseline and 
current intelligence quotient (IQ) are reported to affect neurocog-
nitive function in patients with schizophrenia [5, 6]. Thus, neuro-
cognitive impairment in patients with schizophrenia needs to be 
comprehensively interpreted from multiple angles. To the best of 
our knowledge, no study has investigated the associations of neu-
rocognitive function, dopamine D2 receptor blockade with antip-
sychotics, illness severity, and baseline IQ in a comprehensive man-
ner. The Clinical Antipsychotic Trials of Intervention Effectiveness 
(CATIE) [7] provides the ideal dataset for such analyses since its 
dataset includes a large number of subjects with scores of symp-
tomatology and neurocognitive functions as well as plasma antip-
sychotics concentrations that can be used to estimate dopamine 
D2 receptor blockade of antipsychotics in the brain [8–10]. To fur-
ther highlight this important issue, we re-analyzed the CATIE data 
using a machine learning technique to examine if the neurocogni-
tive functions could be classified based on moderating factors such 
as dopamine D2 receptor blockade with antipsychotics, illness se-
verity, and baseline IQ in patients with schizophrenia.

Methods

Study Population, Assessments, and Study Design
The CATIE trial was funded by the National Institute of Mental 
Health to compare the effectiveness of five antipsychotic drugs in 
patients with schizophrenia [7]. In the present study, we used data 
from the CATIE study from subjects who received risperidone, olan-
zapine, or ziprasidone treatment. Demographic and study popula-
tion characteristics are summarized in ▶table 1.

Overall, we included subjects who completed assessments for 
neurocognitive function and psychopathology and provided plas-
ma samples for the assessment of plasma antipsychotic concentra-
tions. The present study sample was chosen due to previous works 
that have already established nonlinear mixed-effect models for 
this sample [8–10].

The neurocognitive function composite scores, furthermore re-
ferred to as domain scores, were calculated from the z score of the 
average of the following five standardized domain scores at month 
two: verbal memory (the Hopkins Verbal Learning Test, N = 426), 
vigilance (the Continuous Performance Test, N = 389), processing 
speed (the Grooved Pegboard, and the Revised Wechsler Adult In-
telligence Scale Digit Symbol Test, N = 427), reasoning (the Wis-
consin Card Sorting Test and the Revised Wechsler Intelligence 
Scale for Children Mazes, N = 427), and working memory (the Let-
ter-number test of auditory working memory and a computerized 
test of visuospatial working memory, N = 427). In case of missing 
values, we have used the available domain scores.

Nine patient-specific moderating factors were selected for fur-
ther analysis, which were age, baseline IQ, years of education, Pos-
itive and Negative Syndrome Scale (PANSS) positive score, PANSS 
negative score, mean Simpson-Angus Scale (SAS), anticholinergic 
drug use, drug type (risperidone, ziprasidone or olanzapine), and 
estimated minimum dopamine D2 receptor blockade. Baseline IQ 

was measured using the Wide Range Achievement Test-third ver-
sion (WRAT-3) at baseline in the CATIE trial. PANSS scores were as-
sessed after month one. Model-predicted trough values of plasma 
concentrations of antipsychotics were used to calculate the esti-
mated minimum dopamine D2 receptor blockade levels on the day 
of neurocognitive assessment by using a previously reported model 
[11]. During the CATIE trial, drug concentrations of risperidone plus 
9-hydroxyrisperidone (active moiety), olanzapine, or ziprasidone 
were measured at multiple time points. Plasma antipsychotic con-
centrations at the trough were calculated on the day of the neuro-
cognitive assessment using established population pharmacoki-
netic models and extracting the Empirical Bayes Estimates for the 
pharmacokinetics parameters [12, 13]. Thereafter, dopamine D2 
receptor blockade levels were estimated by incorporating the pre-
dicted plasma concentration of risperidone plus 9-hydroxyrisperi-
done, olanzapine, or ziprasidone in the following one-site binding 
model:

Blockade ( %) = a × [plasma level/(plasma level + ED50)] (1)
Here, ‘a’ represents the maximum receptor blockade attribut-

able to the antipsychotic drug and ‘ED50’ is the estimated plasma 
level of antipsychotic drug associated with half of the maximum 
receptor blockade (Risperidone plus 9-hydroxyrisperidone: 
a = 88.0 %, ED50 = 4.9 ng/mL; olanzapine: a = 90.7 %, ED50 = 7.1 ng/
mL; and ziprasidone: a = 88.2 %, ED50 = 32.9 ng/mL) [11]. The accu-
racy of these predicted models was previously confirmed with 32 
clinically stable outpatients with schizophrenia, as the mean (95 % 
confidence interval) prediction errors for the prediction of D2 block-
ade were 0.64 % (−6.18 to 7.46) for risperidone and −1.76 % (−5.22 
to 1.58) for olanzapine [14].

Statistical Methods
Feature selection
Feature selection was performed on the dataset consisting of one 
continuous target variable and nine feature variables, where there 
was no apparent linear correlation between the features and the 
outcome. To obtain a comprehensive perspective on the impor-
tance of predictors in our dataset, we utilized a three-pronged ap-
proach for feature selection that compared the outcomes of ge-
netic algorithm (GA), random forest (RF) feature importance, and 
recursive feature elimination (RFE). The GA utilizes a binary string 
to represent each potential solution, where each position in the 
string corresponds to a predictor variable. The mean squared error 
(MSE) of an RF model was utilized to determine the fitness of each 
individual, taking into account the predictors represented by the 
binary string. GA optimization was executed for 100 generations, 
with a population size of 50. Convergence of the GA over time was 
visualized by plotting the best fitness values across generations. 
The second approach involved employing the built-in feature im-
portance measure of RF. An initial RF model was trained on the com-
plete dataset, where the feature ranking was determined by the 
“IncNodePurity” measure. This measure indicates the overall re-
duction in node impurity, measured by the Gini index, from split-
ting on a variable, averaged over 500 trees. After selecting features 
with importance values greater than zero, the final RF model was 
trained. Our third step involved using the RFE algorithm, which 
eliminates features with the least importance in a sequential man-
ner. RFE was conducted using RF as the base model, with a repeat-
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ed cross-validation method. Initially, the complete set of predictors 
was employed, and then, each predictor was systematically elimi-
nated one at a time based on their importance scores. Computa-
tion and visualization of variable importance for the selected fea-
tures in the final RF models from each method were undertaken to 
provide additional insights into the relative importance of the fea-
tures. Each feature selection method utilized a 10-fold cross-vali-
dation. The cross-validation was integrated within the feature se-
lection process in both the GA and RFE. The final model of the RF 
feature importance approach was validated using cross-validation 
to obtain an unbiased estimate of the model prediction error. By 
doing so, we mitigate the risk of overfitting, provide a more unbi-
ased estimate of model performance, and ensure that our feature 
selection process was not overly optimistic towards our training 
data. Subsequently, an exploratory analysis excluding two of the 
main predictors, IQ at baseline and age, from the data was per-
formed, and each process was repeated using the adapted dataset. 
Statistical analyses were performed using R version 4.2.3 [15]. The 
R packages ̒caret̓ and ̒randomForest̓ were used for model training 
and feature importance, ̒GA̓ was used for feature selection via a 
genetic algorithm, ̒Metrics̓ for calculating MSE, and ̒ggplot2̓ for 
data visualization.

After conducting feature selection to streamline our predictive 
variables, we implemented a Conditional Inference Tree (CTREE) 
analysis and subsequently performed a comprehensive perfor-
mance evaluation to assess the effectiveness and accuracy of the 
model. CTREE analysis was performed to construct a predictive de-
cision tree for the neurocognitive summary score as well as for the 
five domain scores based on age, baseline IQ, years of education, 
PANSS positive score, PANSS negative score, the mean SAS, anticholin-
ergic drug use, drug type (risperidone, ziprasidone or olanzapine), and 
estimated minimum dopamine D2 receptor blockade. The normal dis-
tribution of these values was tested by the Kolmogorov-Smirnov 
test for normality. The linearity between variables and outcomes 
was evaluated by producing plots for visual inspection, which al-
lowed for a direct examination of their relationship patterns. A cor-
relation matrix was constructed to evaluate multivariate correla-
tions.

Conditional Inference Tree analysis
CTREE analysis, which represents a non-parametric class of deci-
sion tree analysis, was applied using the ̒caret̓ [16] and ̒partykit̓ 
[17] libraries in R to establish predictive models on our dataset. 
CTREE is unbiased in variable selection and capable of handling 
both numerical and categorical data. The CTREE algorithm selects 
cut-offs for decision tree splits by performing statistical significance 
tests at each node. It identifies the most strongly associated fea-
ture with the target variable and uses a permutation test to deter-
mine the optimal binary split, adjusting for multiple testing to avoid 
overfitting. This process continues recursively, with splits made 
based on a significance level set at p < 0.05 until no significant as-
sociation can be found or other stopping criteria are met. Specifi-
cally, cut-offs for the CTREE models in our analysis were determined 
using the ctree2 method in conjunction with the ̒caret̓ package for 
hyperparameter tuning, facilitating the selection of optimal pa-
rameters for the decision trees. Our model tuning grid, defined 
using the ̒expand.grid̓ function, comprised of different depths 
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▶table 1 Demographic and clinical characteristics of the study sample.

characteristics Sample popula-
tion (N = 427)

total sample 
(N = 573)*

Age, years, mean ± SD (range) 41.3 ± 10.6 (18–66) 41.1 ± 10.8 (18–66)

Male, n ( %) 317 (74.2) 413 (72.5)

Ethnicity, n ( %)

White 262 (61.4) 352 (61.8)

Others 164 (38.4) 218 (38.3)

Duration of education, 
years, mean ± SD (range)

12.3 ± 2.0 (3–21) 12.1 ± 2.2 (3–21)

Duration of treatment, 
years, mean ± SD (range)

16.9 ± 11.1 (0–52) 16.6 ± 11.4 (0–56)

Use of anticholinergics, n ( %) 74 (17.3) 95 (16.7)

PANSS, mean ± SD (range)

Total score 69.3 ± 18.1 
(32–131)

70.2 ± 18 (32–131)

Positive score 16.6 ± 5.6 (7–35) 16.6 ± 5.5 (7–35)

Negative score 18.9 ± 6.4 (7–38) 19.3 ± 6.4 (7–38)

SAS mean score, mean ± SD 
(range)

0.2 ± 0.3 (0–1.8) 0.2 ± 0.3 (0–1.8)

IQ, mean ± SD (range) 89.6 ± 18.0 (44–125) 89.7 ± 17.9 (44–125)

Antipsychotics

Risperidone, n ( %) 162 (37.9) 214 (37.5)

Trough plasma level, 
mean ± SD (range)

24.9 ± 15.5 
(2.8–90.2)

24.9 ± 15.6 
(2.8–90.2)

Estimated D2 occupancy, 
mean ± SD (range)

70.4 ± 8.0 
(40.9–83.4)

70.4 ± 7.9 
(40.9–83.4)

Olanzapine, n ( %) 186 (43.6) 246 (43.2)

Trough plasma level, 
mean ± SD (range)

32.2 ± 19.5 
(7.0–119.9)

32.2 ± 18.9 
(6.6–119.9)

Estimated D2 occupancy, 
mean ± SD (range)

70.5 ± 9.0 
(44.9–85.6)

70.6 ± 8.9 
(43.8–85.6)

Ziprasidone, n ( %) 79 (18.5) 110 (19.3)

Trough plasma level, 
mean ± SD (range)

50.1 ± 35.9 
(8.2–228.2)

47.0 ± 33.5 
(5.1–228.2)

Estimated D2 occupancy, 
mean ± SD (range)

48.3 ± 13.2 
(17.5–77.1)

47.1 ± 13.2 
(11.8–77.1

Use of anticholinergics, n ( %) 74 (17.3) 95 (16.7)

PANSS, mean ± SD (range)

Total score 69.3 ± 18.1 (32–131) 70.2 ± 18 (32–131)

Positive score 16.6 ± 5.6 (7–35) 16.6 ± 5.5 (7–35)

Negative score 18.9 ± 6.4 (7–38) 19.3 ± 6.4 (7–38)

SAS mean score, mean ± SD 
(range)

0.2 ± 0.3 (0–1.8) 0.2 ± 0.3 (0–1.8)

IQ, mean ± SD (range) 89.6 ± 18.0 (44–125) 89.7 ± 17.9 (44–125)

Neurocognitive score, mean ± SD (range)

Verbal memory (N = 426) 0.1 ± 1 (−2.4–2.8)

Processing speed (N = 427) 0.1 ± 0.9 (−2.6–3.1)

Working memory (N = 427) 0.2 ± 0.9 (−2.8–2.0)

Reasoning (N = 427) 0.2 ± 0.9 (−2.4–2.2)

Vigilance (N = 389) 0.2 ± 1 (−2.8–3.3)

Neurocognitive summary 
score (N = 427)

0.2 ± 1 (−2.6–2.9)

*IQ: N = 535; PANSS: N = 526; SAS: N = 527; estimated D2 occupancy & 
trough plasma level: N = 528; IQ, intelligence quotient; PANSS, Positive 
and Negative Syndrome Scale; SD, standard deviation.
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ranging from 1 to 10 and mincriterion values ranging from 0.1 to 
1. These parameters were applied to the ̒ctree2̓ method, a variant 
of CTREE, to train our models. We aimed to maintain a model that 
was sufficiently complex to capture the necessary relationships in 
the data while remaining interpretable. The CTREE algorithm aids 
in this by stopping growth when the addition of another split does 
not significantly increase the fit of the model. The robustness of our 
selected cut-offs was further assessed through a 10-fold cross-val-
idation approach during the training phase using the ̒trainControl̓ 
function from ̒caret̓ [16], which helped confirm the consistency of 
the results. The reported (optimal) cut-offs were then selected 
based on their performance in the cross-validation, with a focus on 
achieving the lowest possible MSE and root mean squared error 
(RMSE), indicative of the best model fit.

Four distinct models were trained to evaluate the effect of fea-
ture selection methods on the performance of the CTREEs. The first 
model utilized all available features in the dataset. The next three 
models employed different feature selection methods: GA, RF, and 
RFE. In the context of predictive modeling, these strategies are fre-
quently employed to enhance both model interpretability and per-
formance. To achieve this, the techniques aim to reduce dimen-
sionality, mitigate overfitting, and improve generalization. Model 
performance was assessed using the MSE and RMSE, with lower val-
ues of MSE and RMSE indicating better model fit. Comparing MSE 
and RMSE values across different models trained on the same data 
set can inform about relative model performances. A model with 
the lowest MSE or RMSE was considered the most effective and ac-
curate. Features in the model were considered statistically signifi-
cant if the p-value was less than 0.05.

Results

Feature selection
Our findings show a substantial impact of IQ, age, and education 
years on all assessed neurocognitive scores across all applied fea-
ture selection methods. A detailed summary of the features select-
ed by each method, including the MSE for each of the five neuro-
cognitive domains and the neurocognitive summary score, is given 
in supplementary table S3. Significant variations exist in the 
choice of additional variables between the methods. After remov-
ing the most important features, IQ and age, years of education re-
mained the most significant feature, followed by the PANSS nega-
tive score, the estimated dopamine D2 receptor blockade, and the 
PANSS positive score. Selected features of minor importance were 
the use of anticholinergic comedication, the type of the adminis-
tered drug, and the mean SAS score. As expected, the MSE values, 
which are indicative of the model's performance, increased when 
the features of age and IQ were removed, thus confirming their crit-
ical role in predicting neurocognitive outcomes. GA, in general, 
showed better performance (lowest MSE score) when compared 
to the RF and the RFE approach (i. e., summary score MSE = 0.623 
(GA); 0.645 (RFE); 0.646 (RF)).

Conditional Inference Tree analysis
Our analysis yielded valuable insights into the performance of 
CTREE models. IQ is consistently presented as a significant factor 

in nearly all domains and models. The impact of age was prominent 
in most domains. Yet, as expected, education years and the PANSS 
negative score were the most prevalent without these two key pre-
dictors, emphasizing their potential influence on neurocognitive 
scores. Detailed information on model performance (MSE, RSME) 
and included features are presented in ▶table 2. Also, in this anal-
ysis, models based on the GA approach, showed better perfor-
mance when compared to the RF and RFE approach, and the mod-
els without previous feature selection. The final tree for the neuro-
cognitive summary score is presented in ▶Fig. 1. For each cognitive 
domain, the included features and final model performances of the 
GA-based model were as follows (Roman letters indicating tree 
node structure; only nodes p < 0.05 reported; number of partici-
pants and mean ± SD z-score for each node in brackets):
a. Verbal memory (N = 426, MSE = 0.96115 and RMSE = 0.97712):

I. IQ ≤ 94 (N = 234; 0.225 ± 0.937) vs. IQ > 94 (N = 192; 
0.458 ± 0.999), p < 0.001

b. Processing speed (N = 427, MSE = 0.71158 and RMSE = 0.83753):
I. IQ ≤ 95 (N = 235; −0.234 ± 0.902) vs. IQ > 95 (N = 192; 

0.433 ± 0.865), p < 0.001
II. Age ≤ 41 (N = 98; 0.116 ± 0.784) vs. IQ > 41 (N = 137; 

−0.484 ± 0.899), p < 0.001
III. Age ≤ 47 (N = 137; 0.650 ± 0.831) vs. age > 47 (N = 55; 

−0.110 ± 0.695), p < 0.001
c. Working memory (N = 427, MSE = 0.70179 and RMSE = 0.83417):

I. IQ ≤ 94 (N = 234; −0.140 ± 0.888) vs. IQ > 94 (N = 193; 
0.543 ± 0.807), p < 0.001

II. Age ≤ 52 (N = 203; −0.030 ± 0.845) vs. age > 52 (N = 31; 
−0.856 ± 0.839), p < 0.001

I. PANSS neg. ≤ 30 (N = 185; 0.581 ± 0.778) vs. PANSS neg. > 30 
(N = 8; −0.341 ± 1.005), p = 0.042

I. Age ≤ 49 (N = 148; 0.696 ± 0.683) vs. age > 49 (N = 37; 
0.120 ± 0.956), p = 0.022

d. Reasoning (N = 427, MSE = 0.73589 and RMSE = 0.85346):
I. Age ≤ 41 (N = 195; 0.535 ± 0.800) vs. age > 41 (N = 232; 

−0.126 ± 0.939), p < 0.001
II. IQ ≤ 105 (N = 154; 0.387 ± 0.790) vs. IQ > 105 (N = 41; 

1.092 ± 0.563), p < 0.001
III. IQ ≤ 88 (N = 111; −0.443 ± 0.909) vs. IQ > 88 (N = 121; 

0.164 ± 0.874), p < 0.001
IV. IQ ≤ 64 (N = 20; −0.124 ± 0.937) vs. IQ > 64 (N = 134; 

0.464 ± 0.739), p = 0.042
V. Age ≤ 54 (N = 92; −0.314 ± 0.830) vs. age > 54 (N = 19; 

−1.064 ± 1.037), p = 0.029
e. Vigilance (N = 389, MSE = 0.84388 and RMSE = 0.91316):

I. IQ ≤ 90 (N = 181; −0.139 ± 0.899) vs. IQ > 90 (N = 208; 
0.488 ± 0.974), p < 0.001

II. Age ≤ 52 (N = 158; −0.014 ± 0.868) vs. age > 52 (N = 23; 
−0.994 ± 0.603), p = 0.007

f. Neurocognitive Summary Score (N = 427, MSE = 0.67609 and 
RMSE = 0.81961):
I. IQ ≤ 95 (N = 235; −0.196 ± 0.901) vs. IQ > 95 (N = 192; 

0.637 ± 0.855), p < 0.001
II. Age ≤ 52 (N = 204; −0.06 ± 0.845) vs. age > 52 (N = 31; 

−1.089 ± 0.736), p < 0.001
I. Age ≤ 47 (N = 137; 0.821 ± 0.792) vs. age > 47 (N = 55; 

0.178 ± 0.839), p < 0.001

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Hart XM et al. Neurocognition in schizophrenia … Pharmacopsychiatry 2024; 57: 53–60 | © 2024. Thieme. All rights reserved. 57

II. IQ ≤ 57 (N = 23; −0.656 ± 0.765) vs. IQ > 57 (N = 181; 
0.016 ± 0.827), p = 0.003

I. Education years ≤ 13 (N = 108; 0.727 ± 0.764) vs. education 
years > 13 (N = 29; 1.172 ± 0.807), p = 0.018

II. Anticholinergic comedication yes (N = 31; −0.353 ± 0.847) vs. 
no (N = 150; 0.092 ± 0.804), p = 0.044

Discussion
Our CTREE analysis, guided by GA or RFE feature selection or by RF 
feature importance, revealed interesting findings regarding the in-

fluence of moderating factors on various neurocognitive domains. 
IQ represents the most important predictor among all neurocog-
nitive domains. In this sample, the mean IQ was 90 ± 18, ranging 
from 44–125. Decision trees based on GA models suggested di-
verse cut-offs for the IQ ranging from 64 to 105. Four models sug-
gested a quite consistent threshold of 94/95 for moderating cog-
nitive scores. Patients with a baseline IQ below 94/95 were, in gen-
eral, predicted to have significantly lower z-scores in the verbal 
memory, processing speed, and working memory domain. This 
also holds true in the model for the neurocognitive summary score.

▶table 2 An overview of CTREE analysis results.

Neurocognitive 
score

Method Included features 
(p < 0.05)

MSE RMSE Included features 
without IQ and age 
(p < 0.05)

MSE RMSE

Verbal memory – IQ 0.95578 0.97572 Education years, PANSS 
negative

0.96967 0.97963

GA IQ 0.96115 0.97712 – – –

RFE IQ 0.95358 0.97330 Education years 0.96784 0.98077

RF IQ 0.94401 0.96651 Education years 0.98277 0.98889

Processing speed – IQ, age, education 
years, PANSS 
negative

0.74602 0.86022 Education years, PANSS 
negative

0.81257 0.89785

GA IQ, age 0.71158 0.83753 Education years, PANSS 
negative

0.81843 0.89757

RFE IQ, age, education 
years, PANSS 
negative

0.72371 0.84485 Education years, PANSS 
negative

0.80783 0.89257

RF IQ, age, education 
years

0.70018 0.82931 Education years, PANSS 
negative

0.81342 0.89790

Working memory – IQ, age 0.71445 0.84385 Education years 0.79657 0.89079

GA IQ, age, PANSS 
negative

0.70179 0.83417 – – –

RFE IQ, age, PANSS 
negative

0.72460 0.84549 Education years, 
anticholinergic 
comedication

0.77356 0.87637

RF IQ, age, PANSS 
negative

0.71153 0.83486 Education years 0.79500 0.88817

Reasoning – Age, IQ 0.78274 0.88234 No model – –

GA Age, IQ 0.73589 0.85346 – – –

RFE Age, IQ 0.75616 0.86710 Education years 0.87050 0.92966

RF Age, IQ 0.75232 0.86181 Education years 0.86284 0.92735

Vigilance – IQ, age 0.89557 0.94169 Education years 0.94561 0.96882

GA IQ, age 0.84388 0.91316 – – –

RFE IQ, age 0.88846 0.93566 Education years 0.94823 0.96912

RF IQ, age 0.86142 0.91974 Education years 0.94684 0.96777

Neurocognitive 
summary score

– IQ, age, education 
years

0.740366 0.85965 Education years 0.86634 0.92461

GA IQ, age, education 
years, anticholiner-
gic comedication

0.67609 0.81961 – – –

RFE IQ, age 0.71209 0.84267 Education years 0.867101 0.92890

RF IQ, age, education 
years

0.71670 0.84232 Education years 0.86900 0.92921

CTREE, Conditional Inference Tree; GA; genetic algorithm, OQ, intelligence quotient; MSE, mean squared error; RMSE, root mean squared error; RF; 
random forest to show feature importance, RFE; random forest feature elimination.
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The age of patients played a role in all neurocognitive domains 
except for verbal memory, where other factors (IQ and years of ed-
ucation) were more important. The mean patient age was 
41.1 ± 10.8 years, ranging from 18 to 66 years. The decision tree 
models revealed several cut-offs, ranging from 41 to 54 years. An 
age above 52 years was suggested to be predictive for significant-
ly lower z-scores in the working memory domain and the vigilance 
domain, as well as for the results of the neurocognitive summary 
score (based on GA models).

While being one of the main predictors of neurocognitive do-
main scores, the years of education have not been found predomi-
nant in the primary GA models (see supplementary Figure S4 for 
details). However, after the exclusion of age and IQ, education years 
was represented in all final models independent from the method 
used. While the number of education years fluctuated widely 
among the patient sample from 3 to 21 years (mean 12.1 ± 2.2 
years), the cut-off among all models consistently found a minimum 
number of 12/13 years being relevant in terms of better cognitive 
performance.

However, other factors, predominantly a higher severity of 
PANSS negative symptoms, seem to cancel out these effects, result-
ing in significantly lower z-scores (different models processing 
speed, verbal memory, working memory domains (data not 
shown)). For the working memory domain, two models (GA and 
RFE) identify the feature as significant. Here, increased negative 
symptom scores are associated with lower cognitive performance 
when compared to the patient group with the same IQ ( > 94) but 
a negative symptom score above 30 (p = 0.042). In the processing 
speed domain, the PANSS negative score becomes significant 
(p < 0.05) in all models after removing age and IQ from the equa-
tion, thus suggesting an interplay between these variables. Patients 

with the same level of education ( > 12 years) but a negative symp-
tom score above 26 showed, in general, a lower cognitive perfor-
mance compared to the patient group with a score below 26 or 
equal.

Drug type, mean SAS score, and PANSS positive score were, in gen-
eral, not found to represent strong moderators for neurocognitive 
functioning, according to feature importance ranking and the final 
models.

The concomitant use of anticholinergic medication was represent-
ed as a significant feature in the neurocognitive summary score 
GA-based model (see ▶Fig. 1), with the use of this drug class being 
in general predictive for lower z-scores in 31 patients. However, this 
finding must be regarded in terms of the complex interactions pre-
sented in the models.

Our findings furthermore underline the nuanced role of the es-
timated minimum dopamine D2 receptor blockade on neurocognition 
as presented in a previous analysis of the same patient sample [1]. 
The feature of estimated D2 occupancy was frequently selected/
ranked among the significant features across all methods in the 
vigilance, reasoning, working memory, and verbal memory do-
mains and the neurocognitive sum score. It was further included in 
the final model for the processing speed domain alongside IQ, age, 
education years, and PANSS negative score when no prior feature 
selection was applied, with an estimated D2 occupancy threshold 
above 77.6 % indicating poorer performance. However, it did not 
become significant (p = 0.22). This threshold would be well in line 
with the findings from previous studies on olanzapine that indicate 
that D2 occupancies of around 80 % are related to maximum attain-
able therapeutic effects (measured by schizophrenia symptom 
scales) [18]. Of note, D2 occupancy showed a moderate correlation 

▶Fig. 1 Decision tree summarizing the importance of various features on the neurocognitive summary score (N = 427) including number of pa-
tients, decision criterion and mean ± standard deviation z-score for each node.
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with the type of antipsychotic being used for the treatment in the 
patient cohort.

To sum up, in contrast to the findings from Sakurai and col-
leagues [1], the role of estimated D2 occupancy was rather negli-
gible among the model predictions and might rather be mediated 
by other factors. Thus, the role of D2 occupancy on neurocognitive 
performance remains elusive, pointing to the need for further study 
to disentangle its effects. Besides the dominant factors, age and 
IQ, the PANSS negative scores appear to broadly impact multiple 
cognitive domains. In everyday patient care, variables such as IQ, 
age, and years of education remain rather unmodifiable. Negative 
symptoms, however, offer an interesting area for potential treat-
ment interventions. Previous studies have demonstrated a strong 
link between negative symptoms and impaired cognitive function 
in patients with schizophrenia [19]. The focus of treatment that 
targets negative symptoms may not only ameliorate these symp-
toms but may also lead to improvements in cognitive function. Sev-
eral studies have found that interventions targeting negative symp-
toms, i. e., cognitive remediation therapy and social skills training, 
can positively affect cognitive abilities [20, 21]. Furthermore, clin-
ical focus on negative symptoms to enhance cognitive function in 
schizophrenia is of major importance since cognitive impairments 
are also strongly linked to functional outcomes, such as employ-
ment and social interaction [22]. Thus, by better management of 
negative symptoms, clinicians may open a pathway to enhance the 
overall real-world performance and functional recovery of patients 
with schizophrenia [22, 23].

Several limitations should be taken into account when interpret-
ing the findings of this study and considering their broader appli-
cability. First, the study relies on specific statistical techniques and 
models such as GA, RF, and RFE, which could lead to biases depend-
ing on underlying assumptions and parameter tuning. The chosen 
feature selection methods, while comprehensive, might have over-
looked interactive or nonlinear effects between variables, poten-
tially limiting the interpretation of certain predictors like the esti-
mated D2 occupancy. Second, we have chosen not to set aside a 
separate holdout set for external validation; all data is used for both 
training and validation. We relied on 10-fold cross-validation to 
provide a robust estimate of the model’s performance, avoiding 
any reduction in training data. The potential for over-optimistic re-
sults still exists, and the lack of a separate, independent validation 
sample may affect the true estimation of the model’s predictive 
power. Furthermore, we refrained from using a weighting or en-
richment scheme to maintain the integrity of the distribution in 
our standardized outcome data, manage the risk of overfitting, and 
ensure a clear interpretability of the model. Third, since the effects 
of dopamine D2 blockage by antipsychotic medication on neuro-
cognition can not only be altered by changes in age and IQ; prob-
lems may also occur, with negative symptoms being a strong pre-
dictor for the outcome domains. Negative symptoms are highly 
complex and may arise from various underlying neural deficits. No 
single receptor or pathway can be clearly pinpointed as the media-
tor of negative symptoms. Moreover, the impact of antipsychotic 
medications on negative symptoms may be indirect, arising from 
improvements in other symptom domains, or from interactions 
between various neurotransmitter systems with, i. e., serotonin 
5-HT2A antagonism being repeatedly highlighted in these terms. 

Whereas olanzapine [24] and risperidone [25] predominantly exert 
their antipsychotic action via D2 and 5-HT2A receptors, ziprasidone 
also has activity at 5-HT1A receptors [26], which may contribute to 
its clinical effects on negative symptoms. Fourth, the exclusion of 
key predictors like IQ and age in the secondary analyses might raise 
questions about the validity of the models in generalizing to broad-
er populations. The study's focus on specific neurocognitive scores 
and certain medications (e. g., risperidone, ziprasidone, or olan-
zapine) may limit applicability to other clinical settings or cogni-
tive functions. Lastly, our study establishes associative links rather 
than causal connections, and these findings prompt further re-
search to investigate the potential for causality.

Conclusion
The work presented shows a robust approach, employing various 
feature selection methods and CTREE analyses to proficiently ex-
hibit the clinical relevance of particular factors, primarily IQ, age, 
the number of education years, and the severity of negative schiz-
ophrenia symptoms (assessed by PANSS negative score) across mul-
tiple cognitive domains. Overall, smaller z scores, which indicate 
lower neurocognitive function, were associated with advanced age 
(i. e., age above 52 years), lower IQ (i. e., IQ below 94/95), lower 
number of education years (i. e., less than 12/13 school years), and 
more severe negative symptoms (i. e., PANSS negative score above 
26). While the verbal memory, processing speed, reasoning, and 
vigilance domains were dominated by age and IQ as the most rel-
evant factors, the working memory and neurocognitive summary 
domains seem to be attributable to a highly multifaceted interplay 
of influencing factors. Our findings confirm a strong connection 
between negative symptoms and impaired cognitive function, as 
discussed in previous studies [19, 22, 23]. Personalized treatment 
plans might benefit from a focus on better management of nega-
tive symptoms to enhance real-world performance and functional 
recovery in schizophrenia patients. Of note, the presented results 
offer insights into the predictive importance of clinical factors on 
neurocognitive scores but do not infer causality. Further investiga-
tions are warranted to understand the nature of these relationships 
fully.
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