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ABSTRACT

The high prevalence of preeclampsia (PE) is a major cause of

maternal and fetal mortality and affects the long-term prog-

nosis of both mother and baby. Termination of pregnancy is

currently the only effective treatment for PE, so there is an ur-

gent need for research into its pathogenesis and the develop-

ment of new therapeutic approaches. The NFκB family of tran-

scription factors has an essential role in inflammation and

innate immunity. In this review, we summarize the role of

NFκB in normal and preeclampsia pregnancies, the role of

NFκB in existing treatment strategies, and potential NFκB
treatment strategies.

ZUSAMMENFASSUNG

Die hohe Prävalenz von Präeklampsie (PE) ist eine wesentliche

Ursache mütterlicher und fetaler Mortalität und wirkt sich

auch auf die Langzeitprognose von Mutter und Kind aus. Der

Schwangerschaftsabbruch stellt zurzeit die einzig effektive

Therapie gegen PE dar. Damit besteht ein dringender Bedarf

nach weiterer Forschung zur Pathogenese von PE sowie zur

Entwicklung neuer Therapieansätze. Die NFκB-Familie der

Transkriptionsfaktoren spielt eine wichtige Rolle in Entzün-

dungsprozessen und für die angeborene Immunität. In dieser

Übersichtsstudie fassen wir die Rolle von NFκB bei normalen

und Präeklampsie-Schwangerschaften sowie die Bedeutung

von NFκB in bereits existierenden Therapien und potenzielle

NFκB-Behandlungsstrategien zusammen.
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Introduction

Preeclampsia (PE) is a hypertensive disorder of pregnancy (HDP),
characterised by oedema, proteinuria, and hypertension-related
symptoms, and can only be diagnosed after the 20 th week of
pregnancy [1]. PE is a common syndrome in pregnancy, affecting
approximately 3–5% of pregnancies worldwide. The incidence of
PE has been increasing for nearly 30 years [2]. It can lead to fetal
growth restriction (FGR), abortion, low birth weight and other fe-
tal and neonatal complications. Besides, it can adversely affect the
long-term prognosis of mother and baby and even lead to mater-
nal and infant death, such as increased risk of chronic hyper-
tension, diabetes mellitus, ischemic heart disease, cerebrovascular
disease, kidney disease, thromboembolism, hypothyroidism, and
even impaired memory in the later maternal period and [3] in-
creased risk of obesity in offspring and others metabolic diseases
with PE. When PE presents with severe symptoms of eclampsia or
haemolysis, elevated liver enzymes and low platelets (HELLP syn-
drome), maternal mortality is even higher. Some researchers have
found that the onset of PE is related to maternal immune imbal-
ance and placental inflammation [4]. However, the pathogenesis
of PE is not fully understood in humans because of this special pe-
riod of pregnancy. The only treatment currently available is termi-
nation of the pregnancy. Low-dose aspirin in early pregnancy has
been shown to prevent PE, but only if taken before 16 weeks’
gestation [5, 6, 7]. Thus, it is crucial to screen during the first tri-
mester in order to effectively prevent PE [8]. However, due to the
lack of comprehensive understanding of the pathogenesis of PE,
existing screening protocols are inaccurate. It is therefore impor-
tant to have a thorough understanding of the pathogenesis of PE.

PE has a complex pathogenesis involving a number of different
mechanisms. The main causes of PE are oxidative stress at the ma-
ternal–fetal interface, maternal inflammation, insufficient re-
modelling of the uterine spiral arteries and vascular endothelial
injury [9, 10, 11]. All these mechanisms are mediated by NFκB.
During pregnancy, women experience a physiological inflamma-
tory response that can promote remodelling of the uterine spiral
arteries by regulating trophoblast infiltration. Overactivation of
the inflammatory response leads to immune imbalance and vascu-
lar endothelial damage, which promotes the development of preg-
nancy complications associated with PE [2, 12]. Therefore, in this
review, we systematically elaborate on the role of NFκB in the de-
velopment and treatment of PE.

The NFκB family consists of seven proteins, RelA (p65), RelB,
c-Rel, NFB1 (p105/p50), and NFB2 (p100/p52), which are encoded
by five distinct genes and affect the expression of over 400 genes
[13, 14]. It plays an important role in normal and complex preg-
nancies by regulating pathways such as inflammation, oxidative
stress, cell proliferation, differentiation, apoptosis, and angio-
genesis [15]. In resting cells, NFκB is present in the cytoplasm and
bound to its inhibitor (IkB), which dissociates by phosphorylation
in an environment rich in reactive oxygen species and cytokines.
NFκB is translocated from the cytoplasm to the nucleus where it
recognises and binds to specific DNA sequences and acts as a tran-
scription factor regulating the expression of inflammatory factors
and MMPs (Matrix Metalloproteinases) [16, 17]. There are studies
suggesting that the development of PE may be a familial risk,

which may be due to genetic and epigenetic changes [18, 19].
Compared to women with no family history of PE, NFκB expression
in PE is increased by 23.35 percent [20].

NFκB Signal Pathway in Normal Gestation
and PE

Semi-allogeneic fetuses exposed to maternal immune systems
during pregnancy are usually not rejected and develop in the
mother’s womb until birth. The fetal–maternal interface is the site
of regulation of this substantial immune tolerance and the placen-
tal chorionic villi are critical for this management. For a normal
pregnancy, inflammation must be tightly controlled. Macrophages
help to maintain pregnancy by promoting tolerance to semi-allo-
geneic fetuses and maintaining the homeostatic environment
necessary for healthy fetal development [21, 22]. Macrophage dif-
ferentiation can also be regulated by the NFκB pathway.

Normal gestation
In order to help control the window of implantation, NFκB is up-
regulated in the decidua prior to fertilisation. When the embryo
implants, there is a severe inflammatory response, which may be
triggered by the production of paternally derived alloantigens in
the embryo [23]. The uterus releases pro-inflammatory cytokines
during the implantation window to activate and attract numerous
immune cells to the endometrium, causing local endometrial in-
jury that aids effective implantation [24, 25]. Studies support the
idea that endometrial biopsies performed during the natural cycle
prior to IVF treatment can significantly increase the likelihood of
implantation and clinical pregnancy [25]. Furthermore, higher
NFκB expression in the first trimester is associated with increased
MMP expression. MMPs are important extracellular matrix (ECM)
remodeling proteinases that control uterine remodeling, a process
that is essential for healthy pregnancies [26]. High MMP-9 levels
promote uterine ECM degradation and relax intercellular connec-
tions, promoting extravillous trophoblast cells to invade and
uterine spiral artery remodeling [27, 28].

NFκB expression is also increased in late pregnancy, which can
enhance cervical maturation, induce membrane rupture, and
cause uterine contractions [15, 29]. When labor begins, inflamma-
tory cytokines in the chorion are increased and act on the myome-
trium via the NFκB pathway, boosting oxytocin receptor expres-
sion and starting labor [30]. At the same time, MMP activates at
the start of labor by lysing the cytoskeletal substrate, triggering
muscular contraction. By inhibiting the biological role of proges-
terone, a pregnancy-maintaining factor, and promoting the ex-
pression of oxytocin receptors and prostaglandin synthase, myo-
metrial inflammation plays a significant role in labor [31, 32, 33].

During pregnancy maintenance, maternal inflammatory levels
were largely suppressed and NFκB transcript levels decreased,
which was associated with increased regulatory T cells. A subset of
T cells called “Treg” cells play a role in regulating the immune sys-
tem and preventing organ rejection [34, 35]. Th1 and Th17 effec-
tor cells differentiate into regulatory T cells at this stage and me-
diate the development of immune tolerance [29]. The expression
of the Foxp3 gene and cytokines (e.g. IL-2 binding) are associated
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with the differentiation of Treg [36]. Meanwhile, placental macro-
phages differentiate towards the M2 phenotype under NFκB me-
diation. M2 macrophages promote tissue repair, angiogenesis and
homeostasis, whereas M1 macrophages are generally considered
to be anti-inflammatory. The intense maternal inflammatory re-
sponse is thus suppressed [37, 38] (▶ Fig. 1).

PE pregnancy
NFκB is generally activated at the beginning of pregnancy by the
action of IKKα and IKKβ proteins [39]. NFκB inhibitors are de-
graded by the combined action of IKKα and IKKβ, together with
IKKγ. IKKα is a key activator of NFκB in the canonical and non-
canonical pathways. CK2α, the catalytic subunit of the CK2 pro-
tein, is the key activator of the atypical NFκB activation pathway
[40]. Activators (IKKα and CK2α) are decreased and inhibitors
(IκBβ and IκBα) are increased in PE placenta, which may mean that
all three NFκB activation pathways are downregulated in PE [14].
Interestingly, the role of IKKα depends on its localization, i.e., acti-
vating NFκB in the cytoplasm and terminating NFκB-mediated
gene expression in the nucleus [41]. Therefore, depletion in the
cellular IKKα level may influence the nuclear transcriptional activity
of NFκB, leading to elevated concentrations of factors whose
genes are regulated by NFκB (▶ Fig. 2a). One possibility is that
the NFκB inhibitors whose levels are elevated in this paper may
favor NFκB activation by switching from an inhibitory role to a

chaperone-like function, thus supporting the transport of NFκB in
an inactive form into the nucleus [14]. The levels of p53/RSK1 in
HTR8/SVneo cells cultured with PE serum were elevated. The p53/
RSK1 complex is known to activate NFκB by its phosphorylation at
Ser536, independent of the cytoplasmic degradation of the kappa
B inhibitor. This suggests that factors existing in the serum of pre-
eclamptic women influence the activation of NFκB by the p53/
RSK1 pathway in hypoxic conditions [42] (▶ Fig. 2b). However, ex-
perimental data were obtained from placentas obtained during
late pregnancy. The activation pathway of NFκB in early and mid-
pregnancy is still worth exploring.

Several studies have shown that, compared to normal preg-
nancy, NFκB in the placenta and maternal circulation of PE women
is significantly increased, which leads to an increase in maternal in-
flammation levels [43, 44, 45, 46]. Hofbauer cells (HBCs) are nat-
ural macrophages of the human placenta, predominantly with an
anti-inflammatory M2 phenotype. However, under the influence
of persistent inflammation during pregnancy, there is a transition
to the M1 phenotype, which may be based on an increase in NFκB
expression [47]. Syncytiotrophoblast dysfunction is a key feature
in PE, reports have observed disruption of syncytiotrophoblast
apical microvilli, indicating a loss of apical polarity, which can be
disrupted by pro-inflammation [48].
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▶ Fig. 1 Mechanism of action of NFκB in normal pregnancy. (a) In the first trimester, pre-eclampsia expression increases significantly, secreting a
large number of inflammatory factors and MMPs, promoting endometrial damage and spiral artery remodelling, and enabling embryos to implant
successfully. (b) During pregnancy maintenance, NFκB levels decrease, immune cells differentiate towards the anti-inflammatory phenotype, Th1
and Th17 differentiate into T2 and Treg cells, and macrophages differentiate towards the M2 phenotype, inducing maternal immune tolerance
to the fetus. (c) NFκB levels rise again in the third trimester, promoting the expression of prostaglandins, MMPs and oxytocin receptors, inducing
cervical maturation, leading to rupture of the membranes and uterine contractions.
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Pro-inflammatory or Anti-inflammatory
Factors Affect NFκB Signaling Pathway

The NFκB signaling pathway is regulated by a variety of regulators
in human. The risk factors for PE are similar to those for cardio-
vascular diseases, such as elderly pregnancy, obesity, metabolic
disorders, kidney disease, autoimmune diseases [49], and a family
history of preeclampsia. These factors can lead to placental inflam-
mation. However, the exact aetiology of PE is unclear, but it has
been hypothesized that while genetic and environmental factors
both affect how the condition develops, genetic factors have a
greater impact [50]. In addition, a number of special pathogens,
such as periodontal pathogens and gut microbes, are also involved
in the development of PE through the NFκB pathway [11, 51].

Periodontal pathogens
A large number of clinical studies have found a positive correlation
between periodontitis and the incidence of PE [52, 53]. One of the
“key pathogens” in the aetiology of periodontitis is Porphyromo-
nas gingivalis, which is also the most common pathogenic bacteri-
um in amniotic fluid and placental tissue [54, 55]. Transmission of
specific periodontal bacteria to placental tissue via the blood-
stream stimulates upregulation of Toll-like receptor 4 (TLR-4) ex-
pression and downregulation of Peroxisome proliferator-activated

receptor γ (PPAR-γ) expression. This in turn increases NFκB activity
in placental tissue, ultimately promoting the development of PE
[51, 56]. The possibility that these bacteria are part of the placen-
tal microbiome is controversial, as there is no agreement on
whether the placental microbiome is present in healthy full-term
pregnancies [57, 58]. However, periodontal disease during preg-
nancy is significantly associated with unfavorable short- and long-
term offspring outcomes, which may be due to epigenetic
changes [57]. Early diagnosis and treatment of periodontal disease
in the first trimester or even before conception may be helpful in
preventing and effectively minimising problems with conception
and obstetrical issues [59, 60].

Gut microbe
Studies have shown that patients with PE have significant dysbiosis
and a reduced diversity of gut bacteria. Among these, the intes-
tinal flora associated with LPS production was significantly ele-
vated in the intestinal flora of the PE group. Alterations in the gut
microbiota may alter the profile of short-chain fatty acids released
by bacteria, potentially leading to metabolic syndrome and hyper-
tension [61, 62, 63, 64]. Early pregnant rats exposed to ultra-low
doses of lipopolysaccharide (LPS) develop PE due to placental TLR4
activation [65]. LPS induces Prostaglandin-endoperoxide synthase
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2 (PTGS2) and LncRNA BC030099 manipulates the inflammatory
response via the NFκB pathway [33, 66].

Genetic factors
Placental omics analysis provides clues for exploring the occur-
rence and therapeutic targets of PE at the genetic level. Daniel
Vaiman et al. identified 16 specific genes associated with placental
disease, such as PKN3, PTTG1, etc., through a new method, which
are involved in the development of PE through various pathways
[67]. The NFκB pathway can be activated by the expression of in-
flammation-related genes such as NEMO, which is a key regulator
of NFκB activation [68]. Agata Sakowicz et al. suggest that the
presence of identical NEMO gene variants in the maternal and fetal
genomes may increase the likelihood that PE offspring will develop
PE [69]. This view may provide new insights into the genetic
causes and pathogenesis of PE.

Over the past few years, microRNAs (miRNAs) have emerged
as important regulators of gene expression in inflammatory and
immune responses. Numerous miRNAs modify the activity of
NFκB either by targeting upstream and downstream NFκB activat-
ing kinases or other NFκB signaling elements [13]. For example,
MiR-517–3 p, which has high levels in the placenta of PE, targets
the mRNA encoding TNFAIP3-interacting protein 1 (TNIP1), an in-
hibitor of the NFκB pathway, to activate NFκB pathway. Activation
of NFκB increases production of the cytokine TNF superfamily
member 15 (TNFSF15), leading to the upregulation of anti-angio-
genic soluble vascular endothelial growth factor receptor 1 (sFlt-
1). The Cajal bodies (CBs) are upstream regulators of miR-517–
3 p, highly expressed in PE [13, 70]. By suppressing the production
of HDAC2, miR-23a was able to stimulate the NFκB pathway [71].
In addition to inhibiting downstream phosphorylated AKT (p-AKT)
and NFκB expression, unidirectional miR-219a can also inhibit
downstream VEGF/NFκB signaling to inhibit trophoblast prolifera-
tion and invasion [72]. And other microRNAs, such as miR-21,
miR-155, miR-31–5 p and miR-138, are involved in the develop-
ment of PE through the NFκB pathway [73, 74, 75, 76, 77].

Despite lacking the ability to encode proteins, long non-coding
RNAs regulate disease progression, possibly by affecting microRNA
function [78, 79]. Placental overexpression of the lncRNA MIR503
host gene (MIR503 HG) is a microRNA-competitive endogenous
RNA (ceRNA) whose cna inhibits the phosphorylation of IκB and
the nuclear translocation of the NFκB signaling subunit p65 to
regulate NFκB pathway [80].

Other factors
Many physical and social factors can also contribute to the devel-
opment of PE, such as race or ethnicity, economic level, maternal
disease, genetic polymorphisms and amniotic stretch [81, 82].
One interesting study found that polyhydramnios and multiple
gestations were associated with an increased risk of preterm birth
[83]. Justin et al. believe that stretching causes a downregulation
of nuclear factor-E2-related factor 2 (Nrf2), accompanied by acti-
vation of the NFκB, leading to a pro-inflammatory state, which in
turn leads to membrane thinning [84]. This may be explained by
the subsequent infiltration of white blood cells that produce MMPs
[85]. Studies have found that MTHFR (methylenetetrahydrofolate

reductase) polymorphisms and diabetes can lead to impaired pla-
cental development [86], which may also be one of the reasons
for the occurrence of PE, but the specific mechanism is still worth
studying.

Protective factor
PPARγ, a transcription factor involved in glycolipid metabolism
[87], is involved in placental cell metabolism, anti-inflammatory
pathways, and oxidative stress [88]. PPARγ can regulate NFκB sig-
nal, inhibit its DNA binding activity, and promote its degradation
[89, 90]. In multiple studies, PPARgamma appears to be down-
regulated in the placenta of PE patients [91, 92]. Due to the de-
crease in PPAR-γ, NFκB is overactivated, resulting in the release of
pro-inflammatory factors such as IL-6, IL-8, and TNF-α from the
placenta [93], resulting in vascular dysfunction and maternal PE
[56]. In addition, abnormal expression of the PPAR gene is also as-
sociated with increased cardiovascular risk in PE offspring. De-
creased PPAR expression increases the sensitivity of blood vessels
to Ang II. Adult children with complicated pregnancies are more
sensitive to Ang II, resulting in endothelial dysfunction [94, 95].

Some interesting studies suggest that smoking may reduce the
risk of PE [96, 97]. In animal studies, LPS-induced PE-like symp-
toms in pregnant rats are greatly reduced by nicotine activation of
alpha7 nicotinic acetylcholine receptors (7nAChRs). In human
blood samples have shown that activating 7nAChR reduces NFκB
activation in monocytes from PE patients and balances the pro-
duction of pro-inflammatory and anti-inflammatory cytokines [98,
99]. This idea has also been supported by in vitro experiments in
which nicotine significantly reduced activation of NFκB and in-
creased the survival of endothelial cells, which may reduce the
likelihood of developing PE in smokers [100]. However, smoking is
not regarded as a therapy option for PE due to the negative effects
of nicotine on health.

NFκB Signaling Influences PE Development

Poor placental implantation and remodelling of the maternal spiral
arteries are associated with PE. The inability of the placental spiral
artery to remodel properly and the inappropriate infiltration of
trophoblast cells into the maternal decidua are considered to be
the early stages of PE formation. Impaired trophoblast activity
hinders the remodelling of the uterine spiral artery, which may
lead to placental oxidative stress and the release of inflammatory
factors into the maternal circulation, causing systemic vascular en-
dothelial damage and further PE-related pregnancy complications
[22]. Therefore, many of the molecules that regulate trophoblast
and endothelial function may influence the development of PE.

Trophoblast cell function
In PE, overexpression of Fas, ANKRD37 and triggering receptor ex-
pressed on myeloid cells-1 (TREM-1) contributes to the develop-
ment of PE by preventing trophoblast cell invasion and migration,
through the NFκB pathway [101, 102, 103]. These substances
cause NFκB to be activated and interact with lnc-SLC4A1–1, result-
ing in an increase in CXCL8 mRNA expression. CXCL8 can promote
TNF-α and IL1 β. The release of cytokines activates inflammation-
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related pathways, ultimately leading to increased cell apoptosis
and reduced proliferation of trophoblasts, inhibiting their migra-
tion and vitality [104]. In addition, the activation of the NFκB path-
way can also inhibit the invasion of trophoblast cells by increasing
the production of PTEN [105]. By controlling NFκB pathway in PE,
reducing the expression of PTGS2 and FPR2 can inhibit the pro-in-
vasive and pro-inflammatory effects of LPS on trophoblast invasion
[106, 107].

Matrix metalloproteinase
The activation of the PI3 K/AKT and ERK1/2 pathways in human
trophoblast cells promotes NFκB translocation to the nucleus, acti-
vates MMP-9 promoter transcription after binding to DNA, and in-
creases MMP-9 levels in trophoblast cells. Meanwhile, NFκB indi-
rectly enhances MMP-2 activity by controlling enzymes associated
with post-translational processing, such as increasing the expres-
sion of MT-MMP (model metalloproteinase) [17, 108]. Many
studies have shown that MMP-2, MMP-9 are associated with uter-
ine artery remodelling by promoting trophoblast cell proliferation,
migration and invasion [109, 110]. There are significant differ-
ences in the levels of serum MMP-2 and MMP-9 at different stages
of pregnancy. MMP-2 is most highly expressed in the first trime-
ster and is involved in early placental formation. MMP-9 expression
is lowest in the first trimester and highest in the second and third
trimesters, which may be related to the promotion of placental
and fetal development by MMP-9 [111]. After PE, serum MMP-2
levels are significantly increased and MMP-9 levels are significantly
decreased [112]. Ongoing research shows that the expression of
MMPs can be regulated by a variety of substances, such as JSH-23
and MIR503 HG, which can reduce MMP levels by inhibiting the
NFκB signaling pathway [11, 66, 80]. Nuclear receptor coactivator
6, a transcriptional coactivator, can activate NFκB to induce
MMP-9 transcription [113].

The levels of MMP-2 and MMP-9 are also associated with au-
tophagy. Autophagy regulates trophoblast invasion by targeting
NFκB activity [114]. NFκB signaling is generally thought to occur
prior to autophagy activation [115], but studies have also shown
that autophagy itself has the ability to degrade NFκB signaling
components through various signaling pathways [116, 117, 118].

Endothelial cell function
eNOS can catalyze the synthesis of NO by vascular endothelial cells
and maintain vasodilation by activating PKG [119, 120]. NFκB is a
key factor in impairing vascular function and remodelling in
human chronic inflammatory diseases by affecting endothelial
progenitor cells (EPCs) and endothelial cell function [121]. Placen-
tal dysplasia can lead to placental dysfunction, resulting in the
release of STBEV into the maternal bloodstream, which causes en-
dothelial failure by activating NFκB, causing oxidative and nitrative
stress and reducing eNOS expression and NO bioavailability [122].
Through interactions with IKK, GSTP1 can suppress NFκB signal-
ing. This reduces iNOS expression and stimulates apoptosis, which
controls NO-mediated ROS production [123]. By blocking the p38
MAPK/ NFκB pathway, cathepsin C downregulation improves
HUVEC function. Endothelial cell dysfunction is protected by

cathepsin C knockdown, which also offers a novel and promising
strategy for the treatment of PE [9].

NFκB Pathway: Targets for Drug Therapy in PE

Common drugs act on NFκB
Many drugs can target NFκB pathway to improve PE-like symp-
toms. Aspirin is the drug most commonly used clinically to prevent
PE. Aspirin inhibits activation of the NFκB pathway by preventing
NFκB nuclear translocation and binding to DNA motif elements or
by binding to the IKKα protein as a competitive inhibitor of ATP
[44, 124, 125]. Aspirin prevents redox-sensitive NFκB/miR-155/
eNOS axis thereby reversing TNF-α-mediated downregulation of
eNOS and endothelial failure [126].

Magnesium sulphate is one of the most commonly used drugs
in obstetrics and is often used to lower blood pressure, prevent
eclampsia and protect fetal nerves. Magnesium sulphate also has
an inhibitory effect on the NFκB pathway [124, 127]. In animal
studies, MgSO4 was found to protect cranial nerves in PE rats by
inhibiting the NFκB/ICAM-1 signaling cascade [128]. In addition,
magnesium salts can also reduce the placental hyperinflammatory
response in an NFĸB-dependent manner [129].

Other anti-inflammatory, antineoplastic and vitamin supple-
mentation therapies have also been tried to treat PE by targeting
NFκB. Such as sulfasalazine and vitamin D supplementation, both
have been shown to inhibit the NFκB pathway and reduce PE-like
symptoms in animal models [130, 131]. Through the PPARγ–NFκB
axis, rosiglitazone can reduce trophoblast-associated inflammation
[95]. Metformin (MET) has been shown to improve LPS-induced PE
symptoms and placental damage. This process may inhibit TLR4/
NFκB/PFKFB3 signaling in the trophoblast to treat PE by reversing
glucose metabolic reprogramming and NLRP3 inflammasome-
induced pyroptosis [132, 133]. Therefore, metformin and other
NFκB signaling inhibitors may be potential treatments for PE.

Potential treatment options
In addition, targeting substances upstream of NFκB to block its
mechanism of action has been shown in a large number of cell
and animal studies to prevent or treat PE or improve the poor
prognosis of PE. Such as USP14, Mammalian ste20-like kinase 1
(MST1) and proteinase-activated receptors-1 (PAR-1). USP14
expression levels are significantly upregulated in placental tissues
of PE patients, which can activate NFκB. Through the development
of drugs targeting USP14 may be helpful in the prevention of PE
[134]. MST1, part of the tumor necrosis factor (TNF-α) receptor 1
signaling complex, reduces the effect of TNF-α on NFκB signaling.
Leonurine (LNR) is one of the active components of motherwort
[135], which can exert anti-inflammatory and anti-apoptotic
effects by upregulating MST1 and inhibiting NFκB signaling [136,
137]. MMP-1 can encourage the release of IL-8 from vascular
smooth muscle, and it is markedly enhanced in the PE circulation.
Recruitment of neutrophils might be aided by IL-8 [138]. Neutro-
phil expression of PAR-1 is specific for pregnancy. PAR-1 activates
ROCK and then activates NFκB, causing vascular endothelial in-
flammatory injury [139]. PE may be prevented by blocking the
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PAR-1 pathway or by reducing MMP-1 levels in the maternal circu-
lation.

Traditional Chinese medicine treatment
In animals, cells and even clinical trials, some Chinese herbal prep-
arations and their active ingredients have shown effective thera-
peutic benefits. Apocynin, Astragaloside IV (AsIV) and Fisetin
could reduce PE-like symptoms such as hypertension and protein-
uria, possibly by reducing inflammation through the TLR4/NF-B
pathway [140, 141, 142]. In placental tissue from pre-eclamptic
rats, astragalus injection can successfully inhibit the expression of
sFlt-1, NFAT-5 and NFκB and increase the expression of PlGF and
MMP-9 [110]. By controlling NLRP1 and NLRP3 inflammosomes in
monocytes and activating the TLR4/NFκB pathway, silybin (SB)
may be able to treat PE. However, its safety is questionable [143,
144].

Physiologic substances for PE
In addition to medication, the development of PE may also be
regulated by physiological substances. One study found decreased
vagus nerve activity in women complicated by PE [145]. ACh
greatly reduced p38 MAPK and NFκB phosphorylation, as well as
hypoxia-induced ROS production and subsequent apoptosis.
According to Wang Zheng et al., ACh therapy can increase the
activity of the vagus nerve and may be beneficial in the treatment
of PE [146, 147]. The increase in estrogen and progesterone (PG)
during pregnancy allows the uterus and placenta to improve vas-
cularisation. PG regulates the expression of inflammation-related
genes and proteins by inhibiting NFκB activation in macrophages,
exerts an immunomodulatory effect on monocytes in pre-eclamp-
tic women. Immunomodulation may be an alternative treatment
for PE [148, 149]. Endogenous melatonin production is inhibited
by hypoxia/reoxygenation (H/R), which reduces syncytiotropho-
blast vitality. To prevent H/R-induced damage, exogenous mela-
tonin therapy may be an option. This would increase placental cell
survival and benefit fetal outcomes [150].

Drug carriers
Early pregnancy is the period of placental formation and also the
susceptibility period for fetal teratogenesis. Poor placental forma-
tion is an irreversible process. Therefore, the treatment of PE is
mainly focused on improving symptoms. Many NFκB inhibitors
cannot be used directly to prevent and cure PE because many
small-molecule drugs may have unknown effects on the fetus
across the placental barrier in early pregnancy. To stabilise the
maternal circulation and avoid placental metastasis, Adrian C.
Eddy and colleagues have developed a drug delivery method
based on the bioengineered protein ELP (elastin-like polypeptide).
The usefulness of this system for small molecule, peptide and
protein therapies used during pregnancy is enhanced by the
adaptability of ELP to fuse with various therapeutic agents [151].

Conclusion

NFκB affects the ability of trophoblasts to proliferate, invade and
migrate by affecting the expression of MMPs, which may lead to
inadequate remodelling of the spiral arteries and changes in pla-
cental villous morphology and function in early pregnancy. Note
that the NFκB activation pathway in the placenta of women with
PE in the third trimester differs from that in other cells and tissues.
This difference may be related to the development of the P53/
RSK1 complex [124] and may be due to the prolonged inflamma-
tory state of the maternal placenta. However, the period of activa-
tion and transformation of the NFκB pathway is still unknown. It is
interesting to note that cellular metabolic reprogramming is
closely linked to TLR4/NFκB signaling. When the NFκB signaling
pathway is activated, the energy metabolism within cells shifts
from aerobic metabolism to glycolysis, which may also be related
to the occurrence of PE [133].

Drugs targeting NFκB have shown therapeutic effects on PE in
a large number of experiments, but considering their impact on
the fetus, their use in the human body is still very cautious. In the
future, it may be possible to reduce the impact of drugs on the
fetus by constructing drug carriers, or to make drugs only act on
the mother by affecting placental immunity and drug metabolism.
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