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Abstract:

This  review  examines  the  latest  epidemiological  and  molecular  pathogenic
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findings of metabolic-associated hepatocellular carcinoma (HCC). Its increasing

prevalence is a significant concern and reflects the growing burden of obesity

and  metabolic  diseases,  including  metabolic  dysfunction-associated  steatotic

liver  disease  (MASLD),  formerly  known  as  nonalcoholic  fatty  liver  disease

(NAFLD), and type 2 diabetes. Metabolic-associated HCC has unique molecular

abnormality and distinctive gene expression patterns implicating aberrations in

bile  acid,  fatty  acid  metabolism,  oxidative  stress,  and  proinflammatory

pathways.  Furthermore,  a  notable  frequency  of  single  nucleotide

polymorphisms (SNPs) in genes such as patatin-like phospholipase domain-

containing 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2),

glucokinase  regulator  (GCKR),  and  membrane  bound  O-acyltransferase

domain-containing  7  (MBOAT7)  has  been  observed.  The  tumour  immune

microenvironment  of  metabolic-associated  HCC  is  characterized  by  unique

phenotypes of macrophages, neutrophils, and T lymphocytes. Additionally, the

pathogenesis  of  metabolic-associated  HCC  is  influenced  by  abnormal  lipid

metabolism, insulin  resistance,  and dysbiosis.  In  conclusion,  deciphering the

intricate  interactions  among  metabolic  processes,  genetic  predispositions,

inflammatory  responses,  immune  regulation,  and  microbial  ecology  is
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imperative for the development of novel therapeutic and preventative measures

against metabolic-associated HCC.

KEYWORDS: MASLD, NAFLD, Dysbiosis, Lipid metabolism, Insulin signalling

Lay summary

This paper provides a review of the latest knowledge about the epidemiology

and molecular pathogenesis of metabolic-associated hepatocellular carcinoma

(HCC).  Its  increasing  prevalence  is  a  significant  concern  and  reflects  the

growing  burden  of  obesity  and  metabolic  diseases,  including  metabolic

dysfunction-associated  steatotic  liver  disease  (MASLD),  formerly  known  as

nonalcoholic fatty liver disease (NAFLD), and type 2 diabetes. We investigated

the molecular pathogenesis of this cancer and revealed that it involves certain

genetic  changes,  including  single  nucleotide  polymorphisms  (SNPs),  and

inflammatory  processes.  Altered lipid  metabolism,  insulin  resistance,  and an

imbalance  in  gut  bacteria,  as  well  as  unique  phenotypes  of  macrophages,

neutrophils, and T cells, can also influence the development and progression of

metabolic-associated HCC.

1. Introduction
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Hepatocellular carcinoma (HCC) is the most common primary liver cancer and

is a significant global health concern. Approximately one million patients are

diagnosed annually with primary liver cancer, and its incidence has increased

~2-fold  since 1990.  HCC is  often  associated  with  chronic  liver  disease and

typically  develops  over  several  years.  It  is  the  sixth  most  common  cancer

globally and is responsible for a substantial number of cancer-related deaths[1].

HCC exhibits significant geographic variation, with the highest incidence rates

occurring in parts of Asia and sub-Saharan Africa[2,3].  Risk factors for HCC

include chronic viral hepatitis (primarily hepatitis B and C), alcohol consumption,

exposure  to  aflatoxins,  a  type  of  toxin  produced  by  moulds,  and  metabolic

conditions such as obesity, type 2 diabetes and nonalcoholic fatty liver disease

(NAFLD). NAFLD has been recently renamed metabolic dysfunction-associated

steatotic  liver  disease  (MASLD)  due  to  the  inherent  drawback  of  the

nomenclature  and  definition  being  exclusive  and  stigmatizing  [2,4,5].  The

increasing prevalence of  metabolic-associated HCC is  a  substantial  concern

and multifaceted issue driven by lifestyle and environmental factors, as well as

the growing burden of obesity and metabolic diseases[4]. Thus, the importance

of public health efforts to address these risk factors and the need for improved
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understanding and management of HCC in individuals with metabolic conditions

are important. Metabolic-associated HCC is characterized by complex interplay

between  signalling  pathways  and  genetic  alterations.  Understanding  these

mechanisms  is  crucial  for  developing  targeted  therapies  and  improving  the

clinical management of metabolic-associated HCC. Here, we comprehensively

reviewed the epidemiological findings, risk factors, and molecular abnormalities

associated with metabolic-associated HCC.

2. Epidemiology and risk factors in metabolic-associated HCC

MASLD,  obesity,  and  type  2  diabetes  are  closely  and  directly  linked  to  the

development  of  metabolic-associated  HCC  (Figure  1)[6].  MASLD,  formerly

known  as  NAFLD,  is  characterized  by  the  accumulation  of  fat  in  the  liver,

metabolic  abnormalities  and  a  lack  of  alcohol  consumption.  The  diagnostic

criteria  for  MASLD  include  fatty  liver  disease  with  at  least  one  of  five

cardiometabolic risk factors,  which includes an increase in body mass index

(BMI)  or  waist  circumference,  impaired  glucose  metabolism,  high  blood

pressure, high triglyceride (TG) levels, and low high-density lipoprotein (HDL-C)

levels (Figure 1)[5,7]. The latest reports showed that more than 99% of NAFLD
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patients met the MASLD criteria,  and a minimal  difference was observed in

prevalence  between  NAFLD  (25.7%)  and  MASLD  (26.7%)  in  a  randomly

chosen  1000  patients  examined  with  proton  magnetic  resonance

spectroscopy[8,9].  Thus,  the  previous  cohort  data  focusing  on  NAFLD may

apply to MASLD, and to avoid confusion in this review, the new nomenclatures

MASLD  and  MASH  were  applied  when  introducing  the  previous  reports  of

NAFLD  and  NASH,  respectively.  The  global  prevalence  of  MASLD  is

approximately 20-25%, but it is projected to increase to 55% in 2040 [3,10,11].

Approximately  20-30%  of  MASLD  patients  progress  to  MASH,  which  is

characterized by liver inflammation and injury. Over time, MASH can lead to

fibrosis and cirrhosis, significantly increasing the risk of HCC. The incidence of

HCC is approximately 0.44 per 1000 person-years among MASLD patients but

increases up to 2% per year among MASH-cirrhosis patients [4,12]. A Japanese

group also reported that the 5-year incidence of HCC was 11.3% among MASH-

cirrhosis patients [13]. Due to the rapid increase in the prevalence of MASLD,

MASLD is now the first growing cause of HCC in liver transplant recipients in

the U.S. [14]. Similarly, the proportion of patients with HCC attributed to MASLD

is  continuously  increasing  worldwide  [15-17].  Importantly,  a  substantial
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proportion  of  MASLD-related  HCC  patients  develop  a  noncirrhotic  liver

background. Epidemiological data have shown that 80-90% of HCC patients,

including those with all various aetiologies, have cirrhosis, but this percentage

decreases  to  50-60%  among  MASLD-HCC  patients  [18].  Moreover,  among

noncirrhotic  patients,  MASLD increases the  risk of  HCC development  5-fold

compared to that of HCV[19].

Approximately 0.7 billion adults were obese worldwide in 2020, and this number

is projected to increase to more than 1 billion by 2030 according to the World

Obesity Federation[20]. In the U.S., one-third of the population was obese in

2012, but approximately half of the total population is projected to be obese by

2030[21]. Obesity is characterized by excess adipose tissue, which can lead to

a  state  of  chronic  low-grade  inflammation[6].  This  inflammation  triggers  the

release of tumour-promoting cytokines, such as interleukin-6 (IL-6) and tumour

necrosis factor (TNF), which can damage liver tissue and stimulate hepatocyte

proliferation over time[6,22]. In obese individuals, adipose tissue can produce

hormones and adipokines, such as leptin and adiponectin, which can impact

cell  proliferation and survival,  increasing the risk of  HCC[6].  Epidemiological

studies have consistently shown a strong association between obesity and an
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increased risk of HCC. A meta-analysis of 28 prospective cohort studies with

approximately  8  million  subjects  reported  that  an  increase  in  BMI  was

associated  with  a  69%  increased  risk  of  primary  liver  cancer  and  a  61%

increased  risk  of  liver  cancer-related  mortality[23].  The  risk  is  particularly

elevated in individuals with central or visceral obesity, which is characterized by

excess fat around the abdominal organs[24]. Obesity also increases the risk of

HCC  development  2.6-fold  in  the  presence  of  diabetes,  hypertension,  or

hyperlipidaemia  [3,25].  In  the  presence  of  MASLD,  obesity  (BMI>30)  was

associated with a 1.18-fold increase in the risk of HCC development, but this

difference was not statistically significant (p=0.06)[26]. A retrospective study of

98,090 patients with MASLD and severe obesity, including 33,435 individuals

who underwent bariatric surgery, showed that HCC risk was reduced by up to

52% via surgical weight loss [27].

Individuals with type 2 diabetes often exhibit insulin resistance, in which cells do

not  respond  effectively  to  insulin,  leading  to  hyperinsulinaemia.  Insulin

resistance can promote liver fat accumulation and stimulate the growth of liver

cells (details are described in chapter 7).  The global  prevalence of diabetes

mellitus (DM) is approximately 9%, and it is projected to affect 300-400 million
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people  by  2030[28].  Individuals  with  type  2  diabetes  are  at  a  significantly

greater  risk  of  developing  HCC.  A meta-analysis  showed  that  people  with

diabetes had a 2.5-fold greater risk of HCC than did those without diabetes [28].

Among MASH-cirrhosis patients, the presence of diabetes was associated with

a 4.2-fold increase in HCC risk  [29]. Even among the MASLD cohort, which

mostly consisted of nonfibrotic patients, diabetes was the strongest independent

risk factor  for  HCC development,  with a 3.03-fold  increase  [26,30].  The risk

increases with the duration of diabetes and is more pronounced in individuals

with poorly controlled blood glucose levels.

Importantly obesity, type 2 diabetes, and MASLD frequently occur together and

therefore may synergistically increase the risk of HCC.

3.  Genomic  abnormalities  and  molecular  pathways  in  metabolic-

associated HCC (Figure 2)

With  the  advancement  of  next-generation  sequencing  technology,  global

collaborative  projects  involving  cancer  genome  sequences  have  been

conducted, and genetic abnormalities in more than 1000 HCC genomes across

aetiologies have been reported[31].  The most  frequently occurring mutations
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associated  with  HCC  patients  are  TERT promoter  mutations,  followed  by

mutations in  TP53 and  CTNNB1,  and such mutations are considered the  3

major drivers of HCC[31]. Telomerase activation occurs in ~80% of HCC cases

via  TERT promoter mutations, viral insertions, chromosomal translocations or

gene  amplifications,  allowing  hepatocytes  to  overcome  senescence  and

become immortal[2,32,33]. In MASH-HCC, the telomere maintenance pathway

was reported to be dysregulated in 56% of patients[34].  The WNT/β-catenin

signalling  pathway is  activated in  30-50% of  HCC cases by gain-of-function

mutations in CTNNB1 or loss-of-function mutations in AXIN1 or APC[2]. In the

absence of these mutations, cellular β-catenin forms a complex with APC and

AXIN1 and undergoes proteosomal degradation[35]. In the presence of these

mutations,  β-catenin  avoids  degradation  and  translocates  into  the  nucleus.

There,  it  activates  transcription  factors  such  as  T-cell  factor  (TCF)  and  the

lymphoid enhancer-binding protein family (LEF), which in turn transcribe genes

that positively regulate cellular survival and proliferation[35]. In MASH-HCC, the

WNT/β-catenin pathway was reported to be dysregulated in 42% of patients[34].

The tumour suppressive role of p53 has been ubiquitously described, but it is

dysregulated in 18% of MASH-HCC patients[34]. In addition, genes involved in
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the cell cycle (RB1, CCNA2, CCNE1, CCND1, CDKN2A, RPS6KA3), oxidative

stress (NFE2L2, KEAP1),  chromatin  remodelling (ARID1A, ARID2, ARID1B),

TGFβ  signalling  (ACVR2A,  ACVR1B,  TGFBR2),  mitogen-activated  protein

kinase (MAPK) and phosphatidylinositol 3-kinase/protein kinase B/mammalian

target of rapamycin (PI3K/AKT/mTOR) pathways (MET, FGFR1, FGF19, HGF,

PTEN, PIK3CA) are known to be dysregulated by mutations or copy number

alterations  at  a  relatively  lower  frequency  in  HCC[31,36,37].  Importantly,

hundreds  or  thousands  of  other  genes  were  also  mutated  at  a  very  low

frequency,  creating  tremendous  intratumor  and  intertumoral  genomic

heterogeneity in HCC. In general, the pattern of mutated genes does not vary

significantly for each background liver disease[37]. However, a unique higher

incidence of ACVR2A mutations (10% vs. 3%, p = 0.02) was reported in MASH-

HCC than  in  viral/alcohol-related  HCC[34].  We also  analysed  the  molecular

abnormalities of 113 nonviral HCC patients and detected a high frequency of

mutations in  ACVR2A (29.5%) together with  KMT2C (42.8%) in MASH-HCC

patients[38]. The gene expression of  ACVR2A was downregulated in MASH-

HCC patients harbouring the ACVR2A mutation, and its knockdown increased

cellular proliferation, indicating the role of ACVR2A as a tumour suppressor [34].
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However,  the  specific  role  of  ACVR2A in  HCC in  the  context  of  the  MASH

background has not yet been determined. Biological signature analysis revealed

a marked increase in activity related to bile acid  and fatty  acid metabolism,

oxidative  stress,  and  inflammation  in  MASH-HCC  patients[34].  A mutational

signature analysis also revealed a unique signature characterized by a greater

frequency of  C>T and C>A transitions in  MASH-HCC patients,  especially  in

female patients[34]. 

3. Germline genetic associations for metabolic-associated HCC (Figure 2)

Genome-wide association studies (GWAS) have identified a variety of genetic

variants  associated  with  MASH  and  MASH-HCC.  Single  nucleotide

polymorphisms (SNPs) in patatin-like phospholipase domain-containing protein

3 (PNPLA3) are the most well-known SNPs driving MASH. The presence of the

PNPLA3 variant rs738409 impairs triglyceride lipolysis and promotes hepatic

steatosis[39,40].  Individuals with this  variant  have a 2.05-fold  greater  risk of

MASH  than  healthy  control  individuals[41] and  a  2.26-fold  greater  risk  of

metabolic-associated  HCC  than  does  patients  with  MASLD  without  this

variant[42].The  presence  of  the  transmembrane  6  superfamily  member  2
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(TM6SF2) variant rs58542926 is known to increase cholesterol and fatty acid

biosynthesis,  leading  to  the  increase  in  hepatic  triglyceride  levels[43].

Individuals with this variant have a 1.61-fold greater risk of MASH than healthy

control individuals[41] and a 1.92-fold greater risk of metabolic-associated HCC

than does patients with MASLD without this variant[44]. The presence of the

glucokinase regulator (GCKR) variant rs1260326 induces glycolysis, de novo

lipogenesis,  and  insulin  resistance[45].  This  variant  increases  the  disease

severity of MASH only under diabetic conditions but protects against fibrosis

under nondiabetic conditions[46]. Individuals with this variant have a 1.55-fold

greater risk of MASH than healthy control individuals[47] and a 1.84-fold greater

risk of  metabolic-associated HCC than does the general  population[48].  The

presence  of  the  membrane-bound  o-acyltransferase  domain  containing  7

(MBOAT7) variant rs641738 increases hepatic triglyceride levels and promotes

steatosis[49].  Individuals  with  this  variant  have  a  2.1-fold  greater  risk  of

metabolic-associated HCC than does those with MASLD without  this variant

[50].

It should be noted here that racial disparity exists in the frequency and the effect

of these SNPs, which may in part explain the racial difference in the prevalence
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of MASLD. The race with the highest frequency of the  PNPLA3 rs738409[G]

variant is Peruvian(72%), followed by Mexican ancestry in Los Angeles (55%),

Japanese (42%), and Colombian (41%), while the lowest is African ancestry

such as Luhya in Kenya (9%), followed by Gambians (11%), Mende in Sierra

Leone  (11%)  and  Yoruba  in  Nigeria  (12%)[51].  The  MBOAT7 rs641738[T]

variant  was  associated  with  MASLD  severity  in  Europeans  but  inversely

associated in obese Hispanic children in the U.S [52]. 

Very recently, GWAS on HCC was conducted in large numbers of individuals

from European-descent populations [53]. Significant association with the risk of

non-viral HCC was found in MOBP variant rs9842969 (OR:0.51), TERT variant

rs2242652 (OR: 0.70),  TM6SF2 variant rs58542926 (OR:1.49),  MAU2 variant

rs58489806  (OR:  1.53),  and  PNPLA3 variant  rs738409  (OR:1.66).  A

combination of homozygous mutations in PNPLA3 and TERT showed a 6.5-fold

higher risk of non-viral HCC compared to individuals without these genotypes.   

4. Inflammation and immune dysregulation in metabolic-associated HCC

(Figure 2)

Compared  with  HCC  patients  with  other  aetiologies,  MASLD-related  HCC
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patients exhibit high levels of inflammatory markers, such as C-reactive protein

and  serum amyloid  A[54].  According  to  previous  meta-analyses,  the  risk  of

developing HCC is more than 10-fold greater in MASH patients than in patients

with simple steatosis according to the MASLD criteria[55]. These data indicate

that  inflammation  may  promote  metabolic-associated  HCC.  Indeed,  MASH

pathogenesis includes metabolic dysfunctions, lipotoxicity, oxidative stress, and

gut  dysbiosis,  all  of  which  weaken  an  inherent  immunotolerant  hepatic

environment,  inducing  chronic  inflammation[10].  While  chronic  liver  injury

fosters  cell  proliferation,  inflammation  increases  the  production  of  reactive

oxygen species (ROS). ROS induce DNA damage and mutations, promoting

hepatocarcinogenesis[56]. The major molecular signalling pathways involved in

inflammation  include  the  NF-kB,  JAK-STAT,  and  c-Jun-JNK  pathways[56].

Obesity-induced  inflammation  triggers  NF-kB,  leading  to  insulin  resistance

through a mechanism involving phosphotyrosine signalling[57]. NF-kB also has

protumourigenic effects, promoting HCC cell growth, survival, and invasion[58].

The JAK-STAT pathway is activated by cytokines and growth factors, affecting

genes  involved  in  cell  growth  and  the  immune  response[58].  STAT3  is

frequently activated in HCC tumours by IL-6 and linked to aggressive cancer.
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The oxidative hepatic environment in obesity also inactivates the STAT-1 and

STAT-3  phosphatase  T  cell  protein  tyrosine  phosphatase  (TCPTP)  and

increases STAT3 signalling [59]. High c-Jun-JNK activity in the livers of obese

patients is linked to hepatic insulin resistance and steatosis.  JNK signalling,

which is increased by hepatic fat accumulation, increases the expression of the

BCL-2  family  member  BIM,  influencing  cell  death[60].  Additionally,  JNK

signalling in HCC promotes tumour initiation and inflammation[61].

MASLD is associated with the abnormal growth of harmful bacterial strains that

increase the permeability of the mucosal barrier. This disease is known as leaky

gut syndrome and promotes the transfer of bacterial products to the liver[62].

The  persistence  of  cellular  injury  and  the  influx  of  pathogen-associated

molecular  patterns  (PAMPs)  contribute  to  chronic  inflammation  in  the  liver,

leading  to  fibrosis,  cirrhosis,  and  HCC.  PAMPs  and  damage-associated

molecular  patterns  (DAMPs)  are  sensed  via  pattern  recognition  receptors

(PRRs)  expressed  on  Kupffer  cells  (KCs)  in  the  liver.  This  triggers  their

activation and the production of proinflammatory cytokines/chemokines, such as

CCL1, TNF-α, and IL-1β, which further recruit  proinflammatory immune cells,

such  as  monocyte-derived  macrophages[63,64].  NASH-associated
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macrophages (NAMs) are characterized by the expression of triggering receptor

expressed  on  myeloid  cells  2  (TREM2),  the  glycoproteins  CD9  and  NMB

(GPNMB), and CD63. NAMs contribute to the liver inflammatory response and

promote  fibrosis  [65-67].  TREM2+ macrophages are abundant  in  the tumour

immune microenvironment (TIME) of human HCC and are associated with poor

prognosis.

Neutrophils are also recruited to the liver in response to CXCL1/2 and CXCL8

produced by KCs and contribute to hepatic inflammation via the production of

ROS,  cytokines/chemokines,  elastase  and  myeloperoxidase  (MPO)[68].

Neutrophils  also  produce  extracellular  traps  (NETs),  which  are  web-like

structures consisting of DNA, histones, and neutrophil proteases that sustain

inflammation  and  promote  hepatocarcinogenesis[69].  The  number  of

neutrophils  with  an  N2-like  phenotype  increased  in  the  MASH-HCC

microenvironment.  These  cells  produced  large  amounts  of  TGF-β1,  which

favours the escape of cancers from immune surveillance. Tumour-associated

neutrophils (TANs) isolated from MASH-HCC are specifically characterized by

high  expression  of  CXCR2  and  carcinoembryonic  antigen-associated  cell

adhesion  molecule  8  (CEACAM8)[70].  Interestingly,  TANs  associated  with
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MASH-HCC release NETs and reprogram naïve CD4+ T cells into CD4+/FOXp3+

Tregs via Toll-like receptor 4 (TLR4), creating an immunosuppressive TIME[71].

The intrahepatic recruitment of myeloid-derived suppressor cells (MDSCs) was

also  observed  in  the  MASH  liver  and  MASH-HCC  cohorts.  MDSCs  may

produce  immunosuppressive  factors,  such  as  arginase  1,  indoleamine  2,3-

dioxyneganase 1 (IDO1), inducible nitric oxide synthase (iNOS) and ROS[72].

In the obese background, high levels of cholesterol induce lipid peroxidation in

NKT cells and impair their tumour-suppressive effects, which is cancelled by

statin treatment in an experimental mouse model[73].

The contribution of T cells to the pathogenesis of MASH and MASH-HCC has

been intensively studied. CD4+ T cells are known to produce interferon-γ (IFN-γ)

in  MASH patients,  and  its  depletion  ameliorates  MASH in  an  experimental

model[74,75]. In addition, the MASH-specific subset of hepatic Th17 CD4+ T

cells, named ihTh17 cells, expresses CXCR3 and many inflammatory mediators

and thus exacerbate MASH[76]. These data suggested the role of CD4+ T cells

in the promotion of MASH. Regarding MASH-HCC, CD4+ T-cell depletion was

reported to  promote MASH-HCC in mice[77].  Meanwhile,  Foxp3+ Tregs and

Th17  T  cells  were  shown  to  contribute  to  MASH-associated  HCC  in
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experimental models[71,78], suggesting the complex roles of CD4+ T cells. A

detailed analysis of the role of these genes in each subcluster is necessary.

Many studies support the proinflammatory and profibrogenic roles of CD8+ T

cells in MASH[79]. A recent report showed that exposure to metabolic stimuli,

such  as  acetate  and  extracellular  ATP,  induce  MASH-specific

CXCR6+PD1+CD8+ T  cells  in  the  liver,  which  in  turn  kill  hepatocytes  in  an

antigen-independent autoaggressive manner[79].  Meanwhile,  the involvement

of CD8+ T cells in MASH resolution has also been recently reported[80]. Tissue-

resident memory CD8+ T cells attract activated hepatic stellate cells (HSCs) in a

CCR5-dependent manner and kill these cells via Fas ligands[80]. These data

suggest  the  multifaceted  role  of  CD8+  T  cells  in  MASH  pathogenesis.

Regarding HCC development,  further complexity was observed. Depletion of

CD8+ T cells limits HCC development according to many reports, but this is not

always the case[81,82]. This may be due to the conflicting roles of CD8+ T cells

in  the  MASH-liver,  such  as  the  abovementioned  proinflammatory  and  pro-

fibrogenic  roles  that  promote  hepatocarcinogenesis  and  the  immune-

surveillance  roles  that  prevent  hepatocarcinogenesis.  Recent  reports  have

shown that the number of PD-1+CD8+ T cells is increased in the liver of MASH-
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HCC  patients,  and  anti-PD-1  therapy  induces  hepatic  damage  rather  than

exerts  antitumour  effects[25,81].  To  support  this  finding,  a  meta-analysis  of

clinical trials showed less benefit of ICI therapy for nonviral HCC patients than

for  viral  HCC patients[4].  We  have  also  recently  found  that  steatotic  HCC,

characterized by lipid droplet formation inside tumour cells, is characterized by

intratumor CD8+ T-cell exhaustion, which is highly responsive to ICI and anti-

VEGF  therapy  in  nonviral  HCC patients[38].  Taken  together,  these  findings

suggest that a steatotic environment, regardless of whether it is intrahepatic or

intratumoural,  may  cause  T-cell  exhaustion  in  the  liver,  resulting  in  T-cell

activation upon ICI therapy[38,81].

Gut dysbiosis and oxidative stress activate B cells via the myeloid differentiation

primary response 88 (MyD88) and B-cell receptor (BCR) signalling pathways,

which  in  turn  expand  INF-γ+CD4+ helper  T  cells  and  exacerbate

MASH[74,83,84]. B cells are also known to promote profibrogenic genes, such

as TGF-β1 and TIMP-2[85,86]. The presence of B cells was associated with

poor prognosis in HCC patients[87]. IgA+ plasma cells express PD-L1 and IL-10,

inhibiting CD8+ T-cell activation in MASH-HCC patients[82,88].

Th
is

 a
rt

ic
le

 is
 p

ro
te

ct
ed

 b
y 

co
py

rig
ht

. A
ll 

rig
ht

s 
re

se
rv

ed
.

Ac
ce

pt
ed

 M
an

us
cr

ip
t



5. Lipid metabolism and HCC (Figure 3)

Cancer  cells  reprogram  various  metabolic  pathways  to  construct  cellular

components, such as nucleic acids, proteins, and lipids; this process is known

as metabolic reprogramming[89]. The activation of lipid synthesis is extremely

crucial  for  rapidly  proliferating  cancer  cells.  This  is  because  lipids,  like

phospholipid bilayers, are fundamental membrane components that enable cell

proliferation[90].  Therefore,  various  tumours  activate  de  novo  lipogenesis

(DNL), which is a process by which cells produce their own fatty acids, and

external lipid uptake regardless of the level of circulating lipids[91]. In addition,

altered lipid metabolism is often observed in MASLD patients and is associated

with  changes in  lipid  biosynthesis  and metabolism pathways[92,93].  Hepatic

steatosis develops when the accumulation of fatty acids in the liver, through

absorption from the bloodstream and DNL, exceeds the capacity of the liver to

metabolize  these  fats  through  oxidation  and  to  export  them  as  VLDL

triglycerides. In particular, de novo FA synthesis is often upregulated in MASLD

patients[93,94].  This  increase  in  lipogenesis  may  provide  the  necessary

substrates for cell membrane formation and energy production in intrahepatic

tumour cells. However, altered lipid metabolism can lead to the generation of
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ROS and  lipid  peroxidation  products.  These  mutations  can  cause  oxidative

stress,  damage  DNA,  and  promote  genetic  instability,  leading  to  the

accumulation of genetic mutations that also drive HCC development.

The de novo fatty acid synthesis pathway starts from ATP-citrate lyase (ACLY).

ACLY  converts  citrate,  which  is  transported  from  the  mitochondria  to  the

cytoplasm, into acetyl-CoA and oxaloacetate[95]. Then, acetyl-CoA carboxylase

(ACC) converts acetyl-CoA into malonyl-CoA, which is a precursor for fatty acid

synthesis. Malonyl-CoA and acetyl-CoA are condensed by fatty acid synthase

(FASN),  leading  to  the  generation  of  palmitic  acid  and  other  FA synthesis

products[96]. In HCC, these major enzymes related to DNL, including FASN,

are  often  overexpressed,  contributing  to  increased  lipogenesis  and  lipid

accumulation in tumour cells[92,97]. In an experimental mouse model, FASN

deletion  ameliorated  HCC  through  either  AKT  activation  or  PTEN

deletion[98,99]. Liver-specific ACC inhibitor (ND-654) also suppressed hepatic

DNL and the development of HCC [100]. A variety of inhibitors targeting DNL

pathways  have  been  tested  in  clinical  trials  for  MASLD  and  HCC[92,101].

Stearoyl-CoA desaturase (SCD1) is the rate-limiting enzyme that converts FAs

to  monounsaturated  fatty  acids  (MUFAs),  and  its  activity  is  upregulated  in
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MASLD and HCC[91,102]. Lipogenesis is regulated mainly by sterol regulatory

element-binding protein 1 (SREBP-1), which is a transcription factor that is often

upregulated  in  MASLD  and  HCC[103,104],  and  by  carbohydrate  response

element  binding  protein  (ChREBP),  which  is  a  transcription  factor  that

upregulates lipogenic and glycolytic genes[105]. SREBPs form a complex with

SREBP cleavage-activating protein (SCAP), which is further associated with the

endoplasmic  reticulum  (ER)  membrane  proteins  insulin-induced  gene  1

(INSIG1) and INSIG2[106]. Normally, when cellular lipid levels decrease, SCAP

undergoes structural changes that disrupt its interaction with INSIG proteins.

This change leads to the separation of the SREBP/SCAP complex from INSIGs,

facilitating their movement from the ER to the Golgi apparatus. In the Golgi,

SREBP  undergoes  cleavage,  leading  to  its  activation[106].  Interestingly,

Kawamura  S  et  al.  recently  reported  the  unexpected  observation  that  the

suppression of SREBP through the removal of the SCAP in the MASH liver,

despite  attenuating  liver  steatosis,  worsened  liver  damage,  fibrosis,  and

promoted  the  HCC  development  [107].  Mechanistically,  SREBP  inhibition

suppresses LPCAT3 and increases membrane lipid  saturation,  which in turn

decreases membrane fluidity, leading to excess ER stress in the liver[107].
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Fatty acid uptake and transport are also altered in MASH and HCC patients.

This  process  is  mediated  by  fatty  acid  translocase  (CD36),  a  cell  surface

receptor  that  facilitates  the  uptake  of  fatty  acids,  and  fatty  acid  transport

proteins such as FATP2 and FATP5, all of which are known to be upregulated in

MASLD[108,109].  An  increase  in  CD36  was  also  related  to  EMT  in  HCC

patients[110].  After  being  absorbed,  hydrophobic  fatty  acids  cannot  move

unaided through the cytosol. Instead, they require transport by specialized fatty

acid binding proteins (FABPs), such as FABP1, FABP4 and FABP5. In the liver,

the primary form of  these proteins is  FABP1, which plays a key role in the

transportation, storage, and use of FAs. The levels of a variety of FABPs are

also increased in MASLD patients[111,112].

The roles of FA β-oxidation (FAO) remain controversial. Due to the inadequate

nutrient availability in the core of the tumour caused by insufficient blood vessel

development, FAO serves as a key catabolic route to produce ATP and maintain

NADPH levels in addition to glycolysis. This process is activated by C/EBPα

and  AMPK[113-115].  It  has  also  been  reported  that  HCC  cells  acquire

resistance to antiangiogenic agents by activating FA uptake and FAO under

hypoxic and nutrient-starved conditions[116]. In contrast, FAO can lead to the
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generation of ROS and lipid peroxidation products, which are harmful to cancer

cells. Indeed, hypoxia-induced HIF-1 expression facilitates HCC progression by

inhibiting FA oxidation and ROS formation via the downregulation of medium-

chain  acyl-CoA  dehydrogenase  (MCAD)  and  long-chain  acyl-CoA

dehydrogenase (LCAD), both of which are rate-limiting enzymes that catalyse

the first step of oxidation in mitochondria[117].

The lipolytic pathway is also sometimes used by HCC cells to generate free FAs

from stored lipids. The lipolytic enzyme monoglyceride lipase (MAGL) breaks

down monoacylglycerols into free FAs and glycerol, and it facilitates the release

of  FAs  from stored  lipids[118].  YAP activation  induced  MAGL expression  in

HCC.  In  addition,  lipoprotein  lipase  (LPL)  is  also  upregulated  in  HCC  and

promotes the uptake of extracellular lipoproteins into cells via the hydrolysis of

triglycerides[119].

6.  Insulin  signalling  and  advanced  glycation  end-products  (AGEs)  in

metabolic-associated HCC (Figure 3)

Insulin resistance (IR) is a condition in which insulin becomes less effective at

managing blood glucose, leading to increased insulin production and related
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health issues such as hyperinsulinaemia, type 2 diabetes, obesity, MAFLD, and

liver  fibrosis.  IR  and  hyperinsulinaemia  are  two  interrelated  factors  that

significantly contribute to the development and progression of HCC, especially

in the context  of  metabolic diseases. High insulin levels increase insulin-like

growth factor 1 (IGF-1) production and IRS-1 expression[120]. IR also increases

the expression of the growth hormone receptor (GHR), which, in combination

with  growth  hormone  (GH),  further  increases  the  activation  of  IGF-1.

Consequently, hyperinsulinaemia leads to the hepatic production and release of

substantial quantities of IGF-1, which promotes cell growth and prevents cell

death, thereby accelerating hepatocarcinogenesis[121]. IRS, bound to insulin or

IGF receptor, activates pathways such as the PI3K/AKT and MAPK pathways in

liver cells, which can lead to cell growth, fibrosis, and cancer. PTEN serves as a

counterbalance to this pathway by deactivating oncogenic PI3K/Akt signalling

through the dephosphorylation of phosphatidylinositol 3,4,5-triphosphate (PIP3),

which  is  produced  by  PI3K[120].  In  MASH  and  HCC  patients,  PTEN  is

inactivated  for  various  reasons,  resulting  in  the  activation  of  PI3K/Akt

signalling[120].  Mice  with  a  hepatocyte-specific  deletion  of  PTEN  develop

MASH,  which  is  characterized  by  increased  SREBP-1c  and  lipogenic  gene
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expression,  and eventually progress to HCC[122].  PTEN loss also promotes

MASH-associated liver cancer in combination with SAV1 or TRAF3 deficiency

[123,124].   IR also contributes to hepatic steatosis via increased lipolysis in

visceral adipose tissue, activation of hepatic DNL, and impairment of hepatic fat

oxidation  and  breakdown[120].  In  MASLD,  ’there  is  a  notable  mismatch

between the ability of insulin to reduce hepatic gluconeogenesis and its ability to

enhance lipogenesis. This phenomenon, known as selective insulin resistance,

manifests  as  the  failure  of  insulin  to  decrease  gluconeogenesis  while  still

promoting lipogenesis. In conditions of insulin resistance, high levels of insulin

in  the  plasma  stimulate  lipogenesis  via  the  mTORC1/SREPB1c  axis[125].

Furthermore, increased plasma glucose levels, which are a result of excessive

hepatic  gluconeogenesis,  also promote lipogenesis  through the activation of

ChREBP[126].  Insulin  resistance  can  promote  the  expression  of  angiogenic

factors, such as vascular endothelial  growth factor (VEGF), and promote the

formation of new blood vessels in the liver[127]. Insulin signalling can interact

with the Ras pathway, particularly in the context of HCC[128].

Very  recently,  Fan  W et  al,  have  proposed  the  novel  hepatocarcinogenesis

mechanism in  the pre-cirrhotic  liver of  patients with type 2 DM  [129].  AGEs
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produced by the non-enzymatic protein glycation accumulated in the matrix and

increased ECM viscoelasticity but not stiffness in patients with type 2 DM. Such

enhanced viscoelasticity promoted HCC cell proliferation and invasion through

an integrin-β1–tensin-1–YAP mechanotransductive pathway.

7. Microbiota and HSCs in metabolic-associated HCC (fig. 3)

Alterations in microbiota have been reported in MASH and HCC patients[130].

Compared with  MASLD patients without HCC, MASLD-related HCC patients

exhibited an increase in the abundance of Bacteroides and Ruminococcaceae

that was associated with systemic inflammation and a decrease in Akkermansia

and  Bifidobacterium[130,131]. Serum lipopolysaccharide (LPS) levels are also

increased in HCC patients and are known to activate Toll-like receptor 4 (TLR4)

signalling in hepatocytes, Kupffer cells, and HSCs, which induce inflammation

and  hepatocarcinogenesis[131].  Secondary  bile  acids  produced  by  the  gut

microbiota contribute to MASH and HCC. In the liver,  primary bile acids are

converted  to  secondary  bile  acids,  such  as  deoxycholic  acid  (DCA)  and

lithocholic acid. Obesity increases the circulation of DCA and lipoteichoic acid

(LTA),  triggering  a  senescence-associated  secretory  phenotype  (SASP)  in
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HSCs  through  TLR2[132].  This  leads  to  the  secretion  of  inflammatory  and

cancer-promoting  factors.  Moreover,  these  HSCs  produce  prostaglandin  E2

(PGE2)  through  COX2  activation,  which  inhibits  the  anticancer  immune

response. Further mechanistic research revealed that LTA induced gasdermin

D-mediated  release  of  IL-33  from  senescent  HSCs  and  activated  Treg

cells[133].  Taken  together,  these  findings  suggest  that  obesity-induced

dysbiosis promotes HCC development and progression[132-134]. Interestingly,

the dual roles of HSCs in hepatocarcinogenesis have been recently clarified.

Cytokine-producing quiescent HSCs, especially rich in hepatocyte growth factor,

played  tumor  suppressive  roles,  while  activated  myelofibroblastic  HSCs

producing type I collagen promoted HCC formation via increased stiffness and

activation of TAZ and discoidin domain receptor 1 (DDR1). Further research is

necessary to clarify the involvement of each HSC subpopulation in metabolic-

associated HCC. 

TLR-9  in  Kupffer  cells  recruits  bacterial  and  viral  DNA  and  triggers  the

production of IL-1β, resulting in steatosis, inflammation, and fibrosis[135].

8. Conclusion
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Within this scholarly review, we provide a broad overview of the epidemiological

and pathogenic findings of  metabolic-associated HCC, including the roles of

genetics, signalling pathways, and inflammation and immune dysregulation. We

also explored the impact of altered lipid metabolism and insulin resistance as

well as the influence of the gut microbiota on metabolic-associated HCC. This

review emphasizes  the  urgent  need  to  address  the  increasing  incidence  of

metabolic-associated HCC due to the increasing incidences of obesity, MASLD,

and type 2 diabetes. Elucidating the genomic abnormalities, altered metabolic

pathways, inflammation and immune dysregulation, and dysbiosis involved in

metabolic-associated  HCC  is  crucial  for  developing  optimal  treatments  and

prevention.  Furthermore,  there is  an  urgent  need for  advanced investigative

endeavours  to  elucidate  the  complex  interactions  among  metabolic

homeostasis, genetic predispositions, and immune dynamics that orchestrate

the onset and evolution of metabolic-associated HCC.
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