Accepted Manuscript

Journal of Reconstructive Microsurgery

Validation of novel microsurgical vessel anastomosis techniques: A systematic review

Yasmin Sadigh, Imen Mechri, Anamika Jain, Amata Thongphetsavong Gautam, Hadil Seh, Victor Volovici.

Affiliations below.

DOI: 10.1055/a-2302-7126

Please cite this article as: Sadigh Y, Mechri I, Jain A et al. Validation of novel microsurgical vessel anastomosis techniques: A systematic review. Journal of Reconstructive Microsurgery 2024. doi: 10.1055/a-2302-7126

Conflict of Interest: The authors declare that they have no conflict of interest.

Abstract:

Introduction: Thorough validation of novel microsurgical techniques is deemed essential before their integration into clinical practice. To achieve proper validation, the design of randomized controlled trials (RCTs) should be undertaken, accompanied by the execution of comprehensive statistical analyses, including confounder adjustment and power analysis. This systematic review aims to provide an encompassing overview of the validation methodologies employed in microsurgical studies, with a specific focus on innovative vessel anastomosis techniques.

Methods: A literature search was conducted in PubMed for articles describing the validation of novel microsurgical vessel anastomosis techniques in animal or human subjects.

Results: The literature search yielded 6,658 articles. 6,564 articles were excluded based on title and abstract. Ninety-four articles were assessed for full-text eligibility. Forty-eight articles were included in this systematic review. Out of 30 comparative studies, nine studies validated novel modified interrupted suture techniques, six studies modified continuous techniques, six studies modified sleeve anastomosis techniques, one study a modified vesselotomy technique, seven studies sutureless techniques, and one study a modified lymphaticovenular anastomosis technique. Twenty-eight studies contained animals (n=1,998). Fifteen animal studies were RCTs. Two studies contained human/cadaveric subjects (n=29). Statistical power-analysis and confounder adjustment were performed in one animal study. Out of eighteen non-comparative studies, five studies validated novel modified interrupted suture techniques, one study a modified continuous technique, two studies modified sleeve anastomosis techniques, four studies modified vesselotomy techniques, four studies sutureless techniques, and two studies modified lymphaticovenular anastomosis techniques. Ten studies contained animal subjects (n=320), with two RCTs. Eight studies contained human subjects (n=173). Statistical power-analysis and confounder adjustment were performed in none of the animal or human studies.

Conclusion: The current methods of microsurgical technique validation should be reconsidered due to poor study design. Statistical analysis including confounder adjustment and power-analysis should be performed as a standard method of novel technique validation.

Corresponding Author:

Dr. Victor Volovici, Erasmus Medical Center, Neurosurgery, Stroke Center, Rotterdam, Netherlands, v.volovici@erasmusmc.nl

Affiliations:

Yasmin Sadigh, Erasmus Medical Center, Neurosurgery, Stroke Center, Rotterdam, Netherlands Imen Mechri, Erasmus Medical Center, Neurosurgery, Stroke Center, Rotterdam, Netherlands Imen Mechri, Grigore T Popa University of Medicine and Pharmacy Iasi Faculty of Medicine, Iasi, Romania [...]

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Victor Volovici, Erasmus Medical Center, Centre for Medical Decision Science, Department of Public Health, Rotterdam, Netherlands

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Technique type	Study design (No. studies)	Type of subje cts (No. studi es)	Type of modificati on (No. studies)	Anastom osis type (No. studies)	Main outcome (No. studies)	Control group (No. studies)	Techni que is clinical ly used (No. studies)	analysi s perfor med	Confoun der adjustm ent perform ed (No. studies)
Modified interrupted technique (9 studies) 3.10.11,14.15.18.21.31.32	Comparat ive (3) RCT (5) RO (1)	Anim al (7) Huma n (2)	wall first	ETE (6) ETS (7)	tive PR (4)	Conventional interrupted suture technique (9)	Yes (2) No (2) N/A (5)	Yes (1) No (8)	Yes (1) No (8)
Modified continuous technique (6 studies) 9,13,19,25,29,30	Experime ntal (2) RCT (4)		Posterior wall first (1) Absorable sutures (1) Horizontal mattress sutures (1) Knotless (2) Inside-to- outside suture (1)	ETE (4) ETS (2)	tive PR (2)	Conventional continuous suture technique (4) Conventional interrupted suture technique (3)	Yes (1) N/A (6)	No (6)	No (6)

					stenosis (1) Graft and subject survival (1)				
Modified sleeve anastomosis technique (6 studies) ⁴⁻ 6,20,23,27	Comparat ive (1) Experime ntal (3) RCT (2)	Anim al (6)	Assymetri cal sleeve (1) Symmetri cal sleeve (1) Extra cut placement (2) Suture placement (3) Glue (1)	ETE (6)	tive PR (5) Elongatio n, tensile strength, and elasticity	Conventional interrupted suture technique (5) Conventional interrupted suture technique (1) Arteries with adventitia (1)	No (1) N/A (5)	No (6)	No (6)
Modified vesselotomy technique (1 study) ⁷	RCT (1)	Anim al (1)	Elliptic vesseloto my (1)	ETS (1)	Postopera tive PR (1)	Slit anastomosis in arteries and veins (1)	Yes (1)	No (1)	No (1)
Sutureless technique (7 studies) 8,16,17,22,23,26,28	Comparat ive (2) Experime ntal (3) RCT (2)	Anim al (7)	Photoche mical bonding (1) Absorbabl e cuff (1) Unabsorba ble cuff (1) Glue + absorbable stent (1) Glue + venous cuff (1) Biodegrad able laser (1) Glue (1)	ETE (7)	tive PR (4) Postopera tive FR (1) Cuff absorptio n rate (1) Surgical succes rate (1) Anastom otic time (2)	Conventional interrupted suture technique (6) Unabsorbabl e cuff technique (1)	No (1) N/A (5)	No (7)	No (7)
Modified lymphaticove nular anastomosis technique (1 study) ¹²	RCT (1)	Anim al (1)	Intima-to- intima coaptation (1)	ETE (1)	Postopera tive PR (1)	Conventional lymphaticove nular implantation technique (1)	No (1)	No (1)	No (1)

Table 2. Studies	Table 2. Studies validating novel microsurgical techniques: Non-comparative studies (16 studies)												
Technique type	Study design (No. studies)	Type of subjec ts (No.	Type of modificati on (No. studies)	Anastomo sis type (No. studies)	Main outcome (No. studies)	Techniq ue is clinically used (No.	Power analysis perform ed (No.	Confound er adjustme nt performe					

		studies)				studies)	studies)	d (No. studies)
Modified interrupted technique (5 studies) 36,39,45,47,49	Experimen tal (1) RCT (1) RO (1) CS (1) PO (1)	Anima l (2) Human (3)	Posterior wall first (1) No turn- over (1) Fewer sutures (1) Single loop (1) Temporary assisting suspension suture (1)	ETE (2) ETS (3)	Initial success rate (1) Postoperati ve PR (2) Postoperati ve FR (1) Complicati on rate (1) Operative time (1) Postoperati ve venous thrombosis (1)	Yes (1) N/A (4)	No (5)	No (5)
Modified continuous technique (1 study) ³⁷	Experimen tal (1)	Anima l (1)	Anterior and posterior wall sutures placed separately (1)	ETE (1)	Ischemic time (1)	N/A (1)	No (1)	No (1)
Modified sleeve anastomosis technique (2 studies) ^{34,38}	Experimen tal (2)	Anima l (2)	Heat- induced tissue- welding (1) Suture placement (1)	ETE (2)	Postoperati ve PR (1) Postoperati ve FR (1)	N/A (2)	No (2)	No (2)
Modified vesselotomy technique (4 studies) ^{33,43,44,48}	Experimen tal (1) RO (2) CS (1)	Anima l (1) Human (3)	Longitudin al vesselotom y (1) V-shaped flap (1) Oblique transection (1) Diamond- shaped vesselotom y (1)	ETE (3) ETS (1)	Postoperati ve FR (1) Operative time (1) Vessel discrepanc y ratio (1) Flap survival rate (1) Postoperati ve complicati on rate (1)	Yes (2) N/A (2)	No (4)	No (4)
Sutureless technique (4 studies) ^{35,40-42}	Experimen tal (3) RCT (1)	Anima l (4)	Heat- induced tissue- welding (2) Unabsorba ble cuff (2)	ETE (4)	Operative time (2) Postoperati ve PR (1) Postoperati ve FR (1) Postoperati ve subject survival (1)	No (2) N/A (2)	No (4)	No (4)
Modified lymphaticovenu	PO (2)	Human (2)	Double barrel (1)	ETE (2)	Relief of lymphede	No (2)	No (2)	No (2)

lar anastomosis technique (2 studies) ^{46,50}	Multiple barrel (1)	ma symptoms (2)		
--	------------------------	-----------------------	--	--

Validation of novel microsurgical vessel anastomosis techniques: A systematic review

Yasmin Sadigh, BSc¹*, Imen Mechri, MD^{1,2}*, Anamika Jain, MD^{1,2}*, Amata Thongphetsavong Gautam, MD^{1,3#}, Hadil Seh, MD^{1,4#}, Victor Volovici, MD, PhD^{1,5}

¹Department of Neurosurgery, Erasmus MC Stroke Center, Erasmus MC University Medical Centre, Rotterdam, The Netherlands

²University of Medicine and Pharmacy "Grigore T. Popa", Iasi, Romania.

³National Department of Neurosurgery, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg

⁴Soroka Medical Center. Beer Sheva, Israel.

⁵Centre for Medical Decision Science, Department of Public Health, Erasmus MC University Medical Centre, Rotterdam, The Netherlands

*, # = these authors contributed equally to this work.

Corresponding author:

Victor Volovici, MD, PhD Departments of Neurosurgery, Erasmus MC Stroke Center and Public Health Erasmus MC University Medical Center Dr Molewaterplein 40 3015 GD Rotterdam, The Netherlands E-mail: v.volovici@erasmusmc.nl

Abstract

Introduction: Thorough validation of novel microsurgical techniques is deemed essential before their integration into clinical practice. To achieve proper validation, the design of randomized controlled trials (RCTs) should be undertaken, accompanied by the execution of comprehensive statistical analyses, including confounder adjustment and power analysis. This systematic review aims to provide an encompassing overview of the validation methodologies employed in microsurgical studies, with a specific focus on innovative vessel anastomosis techniques.

Methods: A literature search was conducted in PubMed for articles describing the validation of novel microsurgical vessel anastomosis techniques in animal or human subjects.

Results: The literature search yielded 6,658 articles. 6,564 articles were excluded based on title and abstract. Ninety-four articles were assessed for full-text eligibility. Forty-eight articles were included in this systematic review. Out of 30 comparative studies, nine studies validated novel modified interrupted suture techniques, six studies modified continuous techniques, six studies modified sleeve anastomosis techniques, one study a modified lymphaticovenular anastomosis technique. Twenty-eight studies contained animals (n=1,998). Fifteen animal studies were RCTs. Two studies contained human/cadaveric subjects (n=29). Statistical power-analysis and confounder adjustment were performed in one animal study. Out of eighteen non-comparative studies, five studies validated novel modified interrupted suture techniques, four studies modified vesselotomy techniques, one study a fitteen animal studies for studies five studies validated novel modified interrupted suture techniques, four studies modified vesselotomy techniques, four

studies sutureless techniques, and two studies modified lymphaticovenular anastomosis techniques. Ten studies contained animal subjects (n=320), with two RCTs. Eight studies contained human subjects (n=173). Statistical power-analysis and confounder adjustment were performed in none of the animal or human studies.

Conclusion: The current methods of microsurgical technique validation should be reconsidered due to poor study design. Statistical analysis including confounder adjustment and power-analysis should be performed as a standard method of novel technique validation.

Keywords

Microsurgery - Surgical technique - Vessel anastomosis - Validation

Introduction

Microsurgery is a complex and precise field of surgery, which requires a high level of technical skills (1). Microsurgical techniques are used in a wide variety of surgical subspecialties for e.g., vessel and nerve anastomosis, which allows for repair of human tissue and regain of function after trauma, tumor resection, anatomical reconstructions, congenital abnormalities, and impending ischemia (Figure 1a & Figure 1b) (1). To construct patent microsurgical vessel anastomoses in patients needing complex vascular reconstructions using new and improved techniques, these techniques need to be validated. Proving the validity of a new microsurgical technique could predict their safe and effective use in the clinical practice. Designing randomized controlled trials (RCT), statistical analysis and confounder adjustment involving outcome measures such as anastomosis time and patency rate are necessary to be able to grant validation to new microsurgical techniques. In the past decades, over two thousand articles on microsurgical anastomosis techniques have been published (2). This systematic review aims to provide an overview of validation methods used by microsurgical studies, proposing new vessel anastomosis techniques.

Methods

A literature search was conducted in PubMed from database inception to January 6th, 2024. Combinations of search terms regarding "Microsurgical techniques". To be included, articles had to meet the following criteria: (1) microsurgical techniques had to be applied to blood vessel anastomosis (2) studies had to include human or animal subjects (3) articles had to contain more than 5 subjects, (4) articles were written in English. Reasons for exclusion of articles were (1) non-original articles, (2) articles reporting data on other types of anastomoses than blood vessels, (3) reviews, (4) training models.

The title and abstract of the articles were screened for eligibility by five of the authors (YS, IM, AJ, ATG, HS). If their abstracts met the inclusion criteria, full-text articles were obtained. Each full-text article was then assessed for final inclusion in this systematic review. All articles were rescreened and reassessed by one author (YS). Disagreements were resolved through discussion with the senior author (VV).

Relevant data from included articles were extracted by independent authors (YS, IM, AJ, ATG, HS) into an extraction template. Study information extracted included: study design (comparative, non-comparative, RCT, experimental, retrospective observational cohort, case series), country, number of study subjects and type of subjects (animal, human), type of novel modification, type of anastomosis (end-to-end, end-to-side, side-to-side), description of technique, the study's main outcome(s), control group, if technique is clinically used, whether power analysis was performed, and whether confounder adjustment was performed. All data was reextracted by one author (YS). The novel microsurgical techniques were divided into six groups: modified interrupted suture techniques, modified continuous techniques, modified sleeve anastomosis techniques, modified vesselotomy techniques, sutureless techniques, and modified lymphaticovenular anastomosis techniques.

Quality assessment of the included articles was performed by the senior author (VV) using Cochrane RCT-2 for RCTs and A Cochrane Risk Of Bias Assessment Tool: for Non-Randomized Studies of Interventions (ACROBAT-NRSI) for non-randomized studies.

Results

The search strategy yielded 6,658 articles, which were put through initial screening. 6,564 articles were excluded based on title and abstract. Ninety-four articles remained to be assessed for eligibility based on full-text sifting. Ultimately, 48 articles were included in this systematic review based on full-text eligibility (Figure 2). Quality assessment revealed a low risk of bias for RCTs (n=17), and for the non-randomized studies (n=31) a critical risk of bias.

Comparative studies

Thirty of the included studies were comparative studies (Table 1). In total, 28 studies contained animal subjects (n=1,998 animal subjects) and two studies contained human subjects (n=29) (Supplementary Appendix: Table 1).

Nine studies proposed a novel modified interrupted anastomosis technique, with modifications such as double stitch everting in two studies (Table 1). Seven studies were performed on animal subjects and two on human subjects (Table 1). Five studies were RCTs (Table 1). Conventional interrupted suture technique was used in the control group in all nine studies (Table 1). The immediate postoperative patency rate (n=4) and the postoperative flow rate (n=3) were the most investigated main outcomes (Table 1). Two techniques were clinically used, and for five techniques details on their clinical use was unavailable (Table 1). Statistical power-analysis and confounder adjustment were performed in one animal study by Dindelegan et al. (21) (Table 1).

Six studies proposed a novel modified continuous anastomosis technique, with modifications such as knotless continuous anastomosis in two studies (Table 1). All studies were performed on animal subjects (Table 1). Four studies were RCTs (Table 1). Conventional interrupted suture technique was used in the control group in three studies and conventional continuous suture technique in four studies (Table 1). The immediate postoperative patency rate (n=2) and the postoperative flow rate (n=2) were the most investigated main outcomes (Table 1). Two techniques were clinically used, and for five techniques details on their clinical use was

unavailable (Table 1). Statistical power-analysis and confounder adjustment were performed in none of the studies (Table 1).

Six studies proposed a novel modified sleeve anastomosis technique, with modifications such as suture placement in three studies, and extra cut placement in two studies (Table 1). All studies were performed on animal subjects (Table 1). Two studies were RCTs (Table 1). Conventional interrupted suture technique was used in the control group in five studies and conventional continuous suture technique in one study (Table 1). The immediate postoperative patency rate (n=5) was the most investigated main outcomes (Table 1). For five techniques details on their clinical use was unavailable (Table 1). Statistical power-analysis and confounder adjustment were performed in none of the studies (Table 1).

Seven studies proposed a novel sutureless anastomosis technique, with modifications such as use of absorbable (n=1) and non-absorbable cuffs (n=1) in two studies. All studies were performed on animal subjects (Table 1). Two studies were RCTs (Table 1). Conventional interrupted suture technique was used in the control group in six studies and unabsorbable cuff technique in one study (Table 1). The immediate postoperative patency rate (n=4) and anastomotic time (n=2) were the most investigated main outcomes (Table 1). For five techniques details on their clinical use was unavailable and one technique was clinically used (Table 1). Statistical power-analysis and confounder adjustment were performed in none of the studies (Table 1).

One RCT proposed a novel elliptic vesselotomy technique (7) on animals, which was clinically used (Table 1). Statistical power-analysis and confounder adjustment were not performed (Table 1). One RCT proposed a modified lymphaticovenular anastomosis technique (12) on animals, with no statistical power-analysis and confounder adjustment (Table 1).

Non-comparative studies

Eighteen of the included studies were non-comparative studies (Table 2). In total, ten studies contained animal subjects (n=320) and eight studies contained human subjects (n=173) (Supplementary Appendix: Table 2).

Five studies proposed a novel modified interrupted anastomosis technique, with modifications such as fewer sutures and single loop sutures (Table 2). Two studies were performed on animal subjects and three on human subjects (Table 2). One RCT, one prospective observational cohort study, and one retrospective observational cohort study were conducted (Table 2). The immediate postoperative patency rate (n=2) was the most investigated main outcomes (Table 2). One technique was clinically used, and for four techniques details on their clinical use was unavailable (Table 2). Statistical power-analysis and confounder adjustment were performed in none of the studies (Table 2).

One experimental study proposed a novel modified continuous anastomosis technique (37) on animals (Table 2). Statistical power-analysis and confounder adjustment were not performed (Table 1). Two experimental studies proposed modified sleeve anastomosis techniques on animals, with modifications such as heat-induced tissue-welding (Table 2). Statistical power-analysis and confounder adjustment were not performed in both studies (Table 2). Two prospective observational studies proposed multiple barrel modified lymphaticovenular

power-analysis and confounder adjustment were performed in none of the studies (Table 1).

and for two techniques details on their clinical use was unavailable (Table 2). Statistical power-analysis and confounder adjustment were performed in none of the studies (Table 2). Four studies proposed a novel sutureless anastomosis technique, with modifications such as heat-induced tissue-welding (n=2) and non-absorbable cuffs (n=2) (Table 2). All studies were performed on animal subjects (Table 2). One study was an RCT (Table 2). Operative time (n=2) was the most investigated main outcomes (Table 2). For five techniques details on their

lymphedema symptoms were measured (Table 2). Statistical power-analysis and confounder adjustment were not performed in both studies (Table 2). Four studies proposed a novel modified vesselotomy technique, with modifications such as longitudinal vesselotomy (Table 2). One study was performed on animal subjects and three

studies were performed on human subjects (Table 2). Two techniques were clinically used,

anastomosis techniques on human subjects (Table 2). As the main outcome, relief of

clinical use was unavailable and one technique was clinically used (Table 1). Statistical

Discussion

Summary of findings

This systematic review summarized evidence from 48 articles, including data on both animal (n=2,318) and human (n=202) subjects. Thirty of the included studies were comparative studies, with fourteen RCTs containing animal subjects and one RCT containing human subjects. Nine comparative studies validated novel modified interrupted suture techniques, six studies modified continuous techniques, six studies modified sleeve anastomosis techniques, one study a modified vesselotomy technique, seven studies sutureless techniques, and one study a modified lymphaticovenular anastomosis technique. Statistical poweranalysis and confounder adjustment were performed in one comparative animal study. Eighteen of the included studies were non-comparative studies, with two RCTs containing animal subjects. Five non-comparative studies validated novel modified interrupted suture techniques, one study a modified continuous technique, two studies modified sleeve anastomosis techniques, four studies modified vesselotomy techniques, four studies sutureless techniques, and two studies modified lymphaticovenular anastomosis techniques. Statistical power-analysis and confounder adjustment were performed in none of the noncomparative animal or human studies.

Current methods of technique validation

Many types of validity are used in scientific literature (51). Face validity, construct validity, and predictive validity are important aspects on which validity of microsurgical techniques should be based. Firstly, face validity indicates if the new technique is as effective as the standard technique or not. Secondly, construct validity compares and correlates the current anastomosis outcomes with other outcomes, to reveal possible associations. At last, when these associations have been revealed, predictive validity can determine how the studied techniques will perform in clinical practice based on the used method of measurement. It remains abundantly clear from the studies assessed that while a plethora (hundreds) of reports is available detailing either a new trick, technique, or anastomosis modification, researchers and clinicians are completely unaware of the possibilities and responsibilities regarding proper validation. Even when techniques are validated, the exact facet of validity is not specifically mentioned, despite some articles being of high methodological rigor. Reviewers and editors should be wary of these practices and demand exact validation methodologies for the different facets of validity. Non-comparative studies should not be accepted as proper proof of validation. Best of all, predictive validity should be encouraged, i.e. that a new trick of technique actually leads to better overall results in the clinical setting.

The non-comparative studies (n=16) included in this systematic review failed to properly validate their newly proposed techniques by including no control group, which makes their outcomes less reliable. No studies evaluated construct validity, except for Dindelegan et al. (21), which performed confounder adjustment. Besides, predictive validity has not been proven in any of the studies included, except for Dindelegan et al. (21), which is the most important and relevant type of validity in case of microsurgical techniques. Out of over 6,000 published studies about microsurgical techniques, only forty-seven proposed new techniques, of which only one study succeeded to properly validate their technique. The optimal situation of technique validation is when a technique is first validated in an RCT comparison in animals, and then for predictive validity in an RCT in a clinical setting. No study in our systematic review succeeded in reaching this standard. Therefore, the second-best strategy is to validate a technique in a prospective study/RCT clinically using a control group, worst case scenario historical matched controls, which is also not met by the included studies. At last, a fair method of validation is performing RCT comparison with conventional suture techniques in animals, which has been conducted in fourteen studies included in this systematic review (5-7, 9-12, 17-19, 21, 22, 29, 30). However, only one study amongst these RCTs succeeded in proper predictive validation, which has been mentioned earlier (21). The validated techniques in these studies are merely modifications to existing anastomosis techniques or efforts to minimize steps in suturing anastomosis, aiming to reach a faster and more efficient anastomosis time, with the same or improved patency rate as conventional methods. Additional adhesive tools such as fibrin glue and cyanoacrylate were added to the anastomosis suturing steps to speed up the process of suturing and tricks, such as open guide suturing, were introduced to provide a better exposure during suturing and improve eversion of the vessel wall.

Recommendations

Our results indicate that only very few studies, and even fewer RCTs have been conducted to validate new microsurgical techniques, the least of which in the patient population of interest. Although, these techniques are being routinely used in surgeries without proper evidence of their effectiveness or proof that they achieve their goal when used clinically. The current scientific methods employed in the validation of new microsurgical techniques is rudimentary and scientifically barren and needs to be refined. Confounder adjustment with predefined confounders should be part of any data analysis plan, as well as adequate power analysis before commencing any study.

Strengths and limitations

To our knowledge, this article is the first systematic review discussing the current methods of validation of microsurgical techniques. Some limitations should be noted such as the fact that

three studies did not define their main outcomes, which they simply address as e.g., 'success rate'. Besides, the main outcomes measured in the studies appeared to be quite heterogenous, which prevented us from pooling results or performing statistical inferences on the data collected. Lastly, thirty-one (67%) of the articles failed to mention whether their novel technique is being used in clinical practice. Articles should at least mention if their technique has been clinically used in their own institute, and if not, this information should also be reported.

Conclusion

The current scientific methods employed in the validation of microsurgical techniques are rudimentary and should be reconsidered. Statistical analysis plans, including confounder adjustment and power analysis should be employed routinely in each predefined statistical analysis plan.

Disclosures: The authors have no conflicts of interest to disclose. No funding was received for this work.

Financial conflict of interest: No financial conflicts of interest to report.

References

1. Milling R, Carolan D, Pafitanis G, Quinlan C, Potter S. Microtools: A systematic review of validated assessment tools in microsurgery. Journal of Plastic, Reconstructive & Aesthetic Surgery. 2022;75(11):4013-22.

2. Alghoul MS, Gordon CR, Yetman R, Buncke GM, Siemionow M, Afifi AM, et al. From simple interrupted to complex spiral: a systematic review of various suture techniques for microvascular anastomoses. Microsurgery. 2011;31(1):72-80.

3. Hou SM, Seaber AV, Urbaniak JR. An alternative technique of microvascular anastomosis. Microsurgery. 1987;8(1):22-4.

4. Siemionow M. Evaluation of different microsurgical techniques for arterial anastomosis of vessels of diameter less than one millimeter. J Reconstr Microsurg. 1987;3(4):333-40.

5. Zhang L, Tuchler RE, Shaw WW, Siebert JW. A new technique for microvascular sleeve anastomosis. Microsurgery. 1991;12(5):321-5.

6. Saitoh S, Nakatsuchi Y. Introduction of loop sutures in microsurgical telescoping anastomosis. Br J Plast Surg. 1993;46(2):105-9.

7. Adams WP, Jr., Ansari MS, Hay MT, Tan J, Robinson JB, Jr., Friedman RM, et al. Patency of different arterial and venous end-to-side microanastomosis techniques in a rat model. Plast Reconstr Surg. 2000;105(1):156-61.

8. O'Neill AC, Winograd JM, Zeballos JL, Johnson TS, Randolph MA, Bujold KE, et al. Microvascular anastomosis using a photochemical tissue bonding technique. Lasers Surg Med. 2007;39(9):716-22.

9. Cigna E, Curinga G, Bistoni G, Spalvieri C, Tortorelli G, Scuderi N. Microsurgical anastomosis with the 'PCA' technique. J Plast Reconstr Aesthet Surg. 2008;61(7):762-6.

10. Zhang G, Zhao H, Sun ZY. A modified technique of renal artery anastomosis in rat kidney transplantation. Eur Surg Res. 2010;44(1):37-42.

11. Huang H, Deng M, Jin H, Liu A, Dirsch O, Dahmen U. A novel end-to-side anastomosis technique for hepatic rearterialization in rat orthotopic liver transplantation to accommodate size mismatches between vessels. Eur Surg Res. 2011;47(2):53-62.

12. Ishiura R, Yamamoto T, Saito T, Mito D, Iida T. Comparison of Lymphovenous Shunt Methods in a Rat Model: Supermicrosurgical Lymphaticovenular Anastomosis versus Microsurgical Lymphaticovenous Implantation. Plast Reconstr Surg. 2017;139(6):1407-13.

13. Firsching R, Terhaag PD, Müller W, Frowein RA. Continuous- and interrupted-suture technique in microsurgical end-to-end anastomosis. Microsurgery. 1984;5(2):80-4.

14. Miyamoto S, Okazaki M, Ohura N, Shiraishi T, Takushima A, Harii K. Comparative study of different combinations of microvascular anastomoses in a rat model: end-to-end, end-to-side, and flow-through anastomosis. Plast Reconstr Surg. 2008;122(2):449-55.

15. Miyamoto S, Takushima A, Okazaki M, Ohura N, Minabe T, Harii K. Relationship between microvascular arterial anastomotic type and area of free flap survival: comparison of end-to-end, end-to-side, and retrograde arterial anastomosis. Plast Reconstr Surg. 2008;121(6):1901-8.

16. Euler E, Lechleuthner A, Stephan F, Kenn RW. Nonsuture microsurgical vessel anastomosis using an absorbable cuff. J Reconstr Microsurg. 1989;5(4):323-6.

17. Zhou Y, Gu X, Xiang J, Qian S, Chen Z. A comparative study on suture versus cuff anastomosis in mouse cervical cardiac transplant. Exp Clin Transplant. 2010;8(3):245-9.

18. Miyamoto S, Sakuraba M, Asano T, Tsuchiya S, Hamamoto Y, Onoda S, et al. Optimal technique for microvascular anastomosis of very small vessels: Comparative study of three techniques in a rat superficial inferior epigastric arterial flap model. J Plast Reconstr Aesthet Surg. 2010;63(7):1196-201.

19. Başar H, Erol B, Tetik C. Use of continuous horizontal mattress suture technique in end-to-side microsurgical anastomosis. Hand Surg. 2012;17(3):419-27.

20. Szabo B, Fazekas L, Ghanem S, Godo ZA, Madar J, Apro A, et al. Biomechanical comparison of microvascular anastomoses prepared by various suturing techniques. Injury. 2020;51(12):2866-73.

Accepted Manuscript

21. Dindelegan GC, Dammers R, Oradan AV, Vinasi RC, Dindelegan M, Volovici V. The Double Stitch Everting Technique in the End-to-Side Microvascular Anastomosis: Validation of the Technique Using a Randomized N-of-1 Trial. J Reconstr Microsurg. 2021;37(5):421-6.

22. Orădan AV, Dindelegan GC, Vinași RC, Muntean MV, Dindelegan MG, Chiriac L, et al. Reduction of Anastomotic Time Through the Use of Cyanoacrylate in Microvascular Procedures. Plast Surg (Oakv). 2022;30(4):335-42.

23. Lemaire D, Mongeau J, Dorion D. Microvascular anastomosis using histoacryl glue and an intravascular soluble stent. J Otolaryngol. 2000;29(4):199-205.

24. Le Hanneur M, Chaves C, Lauthe O, Salabi V, Bouché PA, Fitoussi F. Conventional versus fibrin-glue-augmented arterial microanastomosis: An experimental study. Hand Surg Rehabil. 2022;41(5):569-575.

25. Mao M, Liu X, Tian J, Yan S, Lu X, Gueler F, Haller H, Rong S. A novel and knotless technique for heterotopic cardiac transplantation in mice. J Heart Lung Transplant. 2009;28(10):1102-6. doi: 10.1016/j.healun.2009.05.025.

26. Maitz PK, Trickett RI, Dekker P, Tos P, Dawes JM, Piper JA, Lanzetta M, Owen ER. Sutureless microvascular anastomoses by a biodegradable laser-activated solid protein solder. Plast Reconstr Surg. 1999;104(6):1726-31.

27. Riggio E, Parafioriti A, Tomic O, Podrecca S, Nava M, Colombetti A. Experimental study of a sleeve microanastomotic technique. Ann Plast Surg. 1999;43(6):625-31.

28. Sacak B, Tosun U, Egemen O, Sakiz D, Ugurlu K. Microvascular anastomosis using fibrin glue and venous cuff in rat carotid artery. J Plast Surg Hand Surg. 2015;49(2):72-6.

29. Marni A, Ferrero ME, Forti D. End-to-side anastomosis in heterotopic rat organ transplantation. Microsurgery. 1996;17(1):21-4.

30. Ariyakhagorn V, Schmitz V, Olschewski P, Polenz D, Boas-Knoop S, Neumann U, Puhl G. Improvement of microsurgical techniques in orthotopic rat liver transplantation. J Surg Res. 2009;153(2):332-9.

31. Odobescu A, Moubayed SP, Harris PG, Bou-Merhi J, Daniels E, Danino MA. A new microsurgical research model using Thiel-embalmed arteries and comparison of two suture techniques. J Plast Reconstr Aesthet Surg. 2014;67(3):389-95.

32. Miyagi S, Enomoto Y, Sekiguchi S, Kawagishi N, Sato A, Fujimori K, et al. Microsurgical back wall support suture technique with double needle sutures on hepatic artery reconstruction in living donor liver transplantation. Transplant Proc. 2008;40(8):2521-2.

33. Orbay T, Imhof HG. A new technique for anastomosing veins to small-caliber arteries. Microsurgery. 1985;6(3):147-50.

34. Duarte A, Valauri FA, Buncke HJ. Microvascular thermic sleeve anastomosis: a sutureless technique. J Reconstr Microsurg. 1987;4(1):53-60.

35. Schubert HM, Hohlrieder M, Jeske HC, Obrist P, Moser PL, Mayr W, et al. Bipolar anastomosis technique with removable instruments: an easy, fast, and reliable technique for vascular anastomosis. Plast Reconstr Surg. 2004;113(3):961-6.

36. Ulusal AE, Ulusal BG, Hung LM, Wei FC. Temporary assisting suspension suture technique for successful microvascular anastomosis of extremely small and thin walled vessels for mice transplantation surgery. Plast Reconstr Surg. 2005;116(5):1438-41.

37. Hudson DA, Engelbrecht GH, Seymour B, Cruse JP, Hickman R. A modified method of continuous venous anastomosis in microsurgery. Ann Plast Surg. 1998;40(5):549-53.

38. Lauritzen C. A new and easier way to anastomose microvessels. An experimental study in rats. Scand J Plast Reconstr Surg. 1978;12(3):291-4.

39. Holmin T, Buchholtz B, Flati G, Ivancev K, Teuscher J. A simplified method for total arterialization of the liver in rats. Microsurgery. 1983;4(1):57-60.

40. Savas CP, Nolan MS, Lindsey NJ, Boyle PF, Slater DN, Fox M. Renal transplantation in the rat--a new simple, non-suture technique. Urol Res. 1985;13(2):91-3.

41. Fensterer TF, Miller CJ, Perez-Abadia G, Maldonado C. Novel cuff design to facilitate anastomosis of small vessels during cervical heterotopic heart transplantation in rats. Comp Med. 2014;64(4):293-9.

42. Schubert HM, Hohlrieder M, Falkensammer P, Jeske HC, Moser PL, Kolbitsch C, et al. Bipolar anastomosis technique (BAT) enables "fast-to-do", high-quality venous end-to-end anastomosis in a new vascular model. J Craniofac Surg. 2006;17(4):772-8.

43. Bakhach J, Dibo S, Zgheib ER, Papazian N. The V-Plasty: A Novel Microsurgical Technique for Anastomosis of Vessels with Marked Size Discrepancy. J Reconstr Microsurg. 2016;32(2):128-36.

44. Inbal A, Collier ZJ, Ho CL, Gottlieb LJ. Modified Kunlin's Technique for Microsurgical End-to-End Anastomoses: A Series of 100 Flaps. J Reconstr Microsurg. 2019;35(6):430-7.

45. Yamamoto Y, Sugihara T, Sasaki S, Furukawa H, Furukawa H, Okushiba S, et al. Microsurgical reconstruction of the hepatic and superior mesenteric arteries using a back wall technique. J Reconstr Microsurg. 1999;15(5):321-5.

46. Masoodi Z, Steinbacher J, Tinhofer IE, Czedik-Eysenberg M, Mohos B, Roka-Palkovits J, Huettinger N, Meng S, Tzou CJ. "Double Barrel" Lymphaticovenous Anastomosis: A Useful Addition to a Supermicrosurgeon's Repertoire. Plast Reconstr Surg Glob Open. 2022;19;10(4):e4267. 47. Nakagawa M, Inoue K, Iida T, Asano T. A modified technique of end-to-side microvascular anastomosis for the posterior wall. J Reconstr Microsurg. 2008;24(7):475-8.

48. Sen C, Agir H, Iscen D. Simple and reliable procedure for end-to-side microvascular anastomosis: the diamond technique. Microsurgery. 2006;26(3):160-4.

49. Matsuo S, Amano T, Nakamizo A. Single loop interrupted suture technique for cerebrovascular anastomosis: Technical note. J Clin Neurosci. 2020;72:434-437.

50. Chen WF, Yamamoto T, Fisher M, Liao J, Carr J. The "Octopus" Lymphaticovenular Anastomosis: Evolving Beyond the Standard Supermicrosurgical Technique. J Reconstr Microsurg. 2015;31(6):450-7.

51. Gillen G. Chapter 2 - General Considerations: Evaluations and Interventions for Those Living with Functional Limitations Secondary to Cognitive and Perceptual Impairments. In: Gillen G, editor. Cognitive and Perceptual Rehabilitation. Saint Louis: Mosby; 2009. p. 32-44.

	Supplementary Appendix: Table 1. Studies validating novel microsurgical techniques: Comparative studies (30 studies) Study Study Control Tech Powe Control											
Study (First author, year)	Study design	Count ry	Nu mbe r of subj ects	Name of technique validated	Typ e of tech niqu e	Descri ption of techniq ue	Main outco me(s)	Control group	Tech niqu e is clinic ally used	Powe r anal ysis perfo rmed	Confo under adjus tment perfo rmed	
Animal s	subjects	•				•			•	•		
Hou, 1987 ⁽³⁾	Comp arative	USA	40 rats	Alternati ve interrupte d technique	ETE	The first stitch is placed on the posteri or wall of the vessel	Postop erative PR	Conventi onal interrupte d suture technique	N/A	N	Ν	
Siemio now, 1987 ⁽⁴⁾	Comp arative	USA	160 rabb its	Asymmet rical vs. symmetri cal adventitia sleeve technique	ETE	Asym metric al sleevin g of advent itia vs. Symm etrical trimmi ng of the advent itia with collage n cuff wrappi ng vs. Symm etrical trimmi ng of symm etrical trimmi ng of advent ita vs. Symm etrical trimmi ng s s Symm etrical trimmi ng of the advent itia with collage n cuff wrappi ng vs. Symm etrical trimmi ng of the advent itia with collage n cuff wrappi ng vs. Symm etrical trimmi ng of s s Symm etrical trimmi ng of the advent itia with collage n cuff trimmi ng of s Symm etrical trimmi ng vs. Symm etrical trimmi ng of s s s s s s s s s s s s s s s s s s	Postop erative PR	Arteries with adventitia and vessel preparati on prior to anastomo sis	N/A	N	N	
Zhang, 1991 ⁽⁵⁾	RCT	China	40 rats	Sleeve anastomo sis	ETE	One sidecut and the placem ent of two sutures in	Postop erative PR	Conventi onal interrupte d suture technique	N/A	N	N	

	DOT					separat e vertica l planes					
Saitoh, 1993 ⁽⁶⁾	RCT	Japan	29 rats	Loop sutures in sleeve anastomo sis	ETE	Two loop sutures placed on the proxim al stump of the	Postop erative PR	Conventi onal interrupte d suture technique	N/A	Ν	Ν
						vessel are passed throug h the wall of the distal vessel					
Adams Jr, 2000 ⁽⁷⁾	RCT	USA	104 rats	Elliptic hole, slit anastomo sis	ETS	Ellipti c vessel otomy with anasto mosis in arterie s and	Postop erative PR	Slit anastomo sis in arteries and veins	Y	N	Ν
O'Neill , 2007 ⁽⁸⁾	Comp arative	USA	60 rats	Photoche mical tissue bonding technique (PTB)	ETE	veins PTB uses a combi nation of visible light and a photor eactive dye to create	Postop erative PR	Conventi onal interrupte d suture technique	N	N	N
						immed iate bonds and a tight seal betwee n tissue surface s					
Cigna, 2008 ⁽⁹⁾	RCT	Italy	40 rats	Posterior wall first -	ETE	The first stitch	Postop erative PR	Continuo us- Interrupte	N/A	Ν	Ν

	Continuo us interrupte d - Airborne (PCA) technique	is placed on the posteri or wall of the vessel, The second and third sutures are placed very close to the first stitch, one above and one below it. The anasto mosis is compl eted by using the Contin uous- Interru	d technique
		pted techni	
<u> </u>	40 rats Modified interrupte d suture technique	queThePostopmodifierativeedPRtechni-que-entaile-d using-fewer-sutures-(5-6-sutures-) and-fibrin-	Conventi onal interrupte d suture technique Y N N
	18 Modified ETS rats interrupte d suture technique	glueThePostopmodifierativeedPRtechniqueallowed forthe	Conventi onal interrupte d suture techniqueN/ANN

,2017 ⁽¹²)	RCT	Japan	12 rats	Supermic rosurgica l lymphati covenular anastomo sis	ETE	Compe nsation of size misma tches betwee n donor and recipie nt vessels by placin g a small incisio n from the edge of the recipie of the recipie nt vessel d largest selecte d lymph atic vessel y vessel nt vessel nt vessel nt vessel nt recipie nt vessel nt nt nt nt nt nt nt nt nt nt nt nt nt	Postop erative PR	Lymphati covenular implantat ion technique	N	N	N
	Experi mental	Germ any	20 rats	Continuo us-suture technique	ETE	Contin uous- suture techni que with resorb able suture materi a	Postop erative FR	Conventi onal interrupte d suture technique	Y	Ν	Ν
Miyam oto, 2008 ⁽¹⁴	Comp arative	Japan	120 rats	Flow- through arterial anastomo	ETE , ETS	ETE anasto moses were	Postop erative FR	Conventi onal interrupte d suture	N	N	N

				sis		perfor med betwee n the proxim al and distal stumps of the axillar y artery and the stumps of the comm on carotid artery		technique			
Miyam oto, 2008 ⁽¹⁵)	Comp arative	Japan	60 rats	Retrogra de arterial anastomo sis	ETE , ETS	The anasto mosis js perfor med in an antegr ade fashio n	Postop erative FR, flap surviv al	Conventi onal interrupte d suture technique	Ν	Ν	Ν
Euler, 1989 ⁽¹⁶)	Experi mental	Germ any	11 rats	Cuff technique	ETE	Nonsut ure micros urgical vessel anasto mosis using an absorb able cuff	Absor ption rate	Unabsorb able cuff technique	N/A	N	N
Zhou, 2010 ⁽¹⁷)	RCT	Multi - count ry	80 mic e	Cuff technique	ETE	Nonsut ure micros urgical vessel anasto mosis using a cuff	Surgic al succes s rate	Conventi onal interrupte d suture technique	N/A	N	N
Miyam oto, 2010 ⁽¹⁸)	RCT	Japan	45 rats	Intravasc ular stenting technique vs. open guide suture technique	ETE	Intrava scular stentin g techni que: The first stay	Ische mia time, Postop erative PR	Conventi onal interrupte d suture technique	N/A	Ν	Ν

								1			
						suture					
						was					
						placed					
						on the					
						side					
						opposi					
						te the					
						surgeo					
						n and					
						tied.					
						The					
						stent					
						was					
						then					
						inserte					
						d into					
						both					
						stumps					
						r					
						, thereaf					
						ter,					
						anasto					
						mosis					
						was					
						compl					
						eted as					
						with					
						the					
						conven					
						tional					
						techni					
						que					
						Öpen					
						guide					
						suture					
						techni					
						que:					
						Two					
						interru					
						pted					
						sutures					
						were					
						placed					
						on the					
						anterio					
						r wall					
						with					
						untied					
						metho					
						d and					
						tied in					
							_				
-	DCT	Turk	20	Continue	ETC	order.	A	Company	NT/A	N	N
Başar, 2012 ⁽¹⁹	RCT	Turke	36	Continuo	ETS	Betwe	Anast	Conventi	N/A	Ν	Ν
2012(19		у	rats	us		en the	omoti	onal			
)				horizonta		two	С	interrupte			
				l mattress		knots,	leakag	d suture			
				suture		on the	e,	technique			
1				technique		front	aneury	,			
				-		side	sm	Conventi			
				1		side first		Conventi onal			

						and	ion,	continuo			
						then	Postop	us suture			
						on the	erative	technique			
						back	FR	teeninque			
						side,					
						four					
						sutures					
						were					
						passed					
						as					
						horizo					
						ntal					
						mattre					
						ss,					
						then					
						two					
						sutures					
						were tied					
						with					
						each					
						other.					
Szabo,	Experi	Hung	60	Modified	ETE	Four	Elong	Conventi	N/A	N	N
2020 ⁽²⁰	mental	ary	chic	Lauritzen		sutures	ation,	onal			
)			ken	's sleeve-		,	tensile	interrupte			
			thig	technique		includi	strengt	d suture			
			hs			ng	h, and	technique			
			12			corner	elastic	,			
			rats			and	ity of	Conventi			
						pulling	vessel	onal			
						stitche	S	continuo			
						s, were		us suture			
						added to the		technique			
						conven					
						tional					
						sleeve					
						anasto					
						mosis					
Dindel	RCT	Roma	177	The	ETS	Leavin	Suture	Conventi	Y	Y	Y
egan,		nia,	chic	double		g the	symm	onal			
2021(21		The	ken	stitch		needle	etry	interrupte			
)		Nethe	thig	everting		inside	score,	d suture			
		rlands	hs	technique		the	Postop	technique			
			43			vessel	erative				
			rats			wall	PR				
						in-					
						betwee n					
						stitchi					
						ng					
Orădan	RCT	Roma	24	The use	ETE	Anasto	Total	Conventi	Y	N	N
,		nia	rats	of		mosis	operat	onal			
2022(22				cyanoacr		with	ive	interrupte			
)				ylate in		three	time,	d suture			
				anastomo		interru	anasto	technique			
				sis		pted	motic				
						sutures	time,				
						with	Postop				
						tissue	erative				

						adhesi ve being applie d betwee n the sutures to compl ete the anasto mosis	FR				
Lemair e, 2000 ⁽²³)	Expert imenta l	Cana da	33 rats	Anastom osis with histoacryl glue and an intravasc ular soluble stent	ETE	The artery was prepar ed with histoac ryl glue and an interva scular soluble stent was placed	Postop erative PR	Conventi onal interrupte d suture technique	N/A	N	N
Le Hanne ur, 2022 ⁽²⁴)	Experi mental	e Franc	7 rats	Fibrin- glue- augmente d sleeve anastomo sis	ETE	Fibrin- based glue sleeve was added to conven tional interru ptured suture d anasto mosis	Postop erative PR	Conventi onal interrupte d suture technique	N	N	N
Mao, 2009 ⁽²⁵)	Experi mental	China	400 mic e	Knotless technique	ETE	Knotle ss contin uous suture	Postop erative anasto mosis bleedi ng and stenos is	Conventi onal continuo us suture technique	N/A	N	N
Maitz, 1999 ⁽²⁶)	Comp arative	Austr ia	90 rats	Biodegra dable laser- activated solid protein solder	ETE	Suturel ess microv ascular anasto moses by a biodeg	Postop erative PR	Conventi onal interrupte d suture technique	N/A	N	N

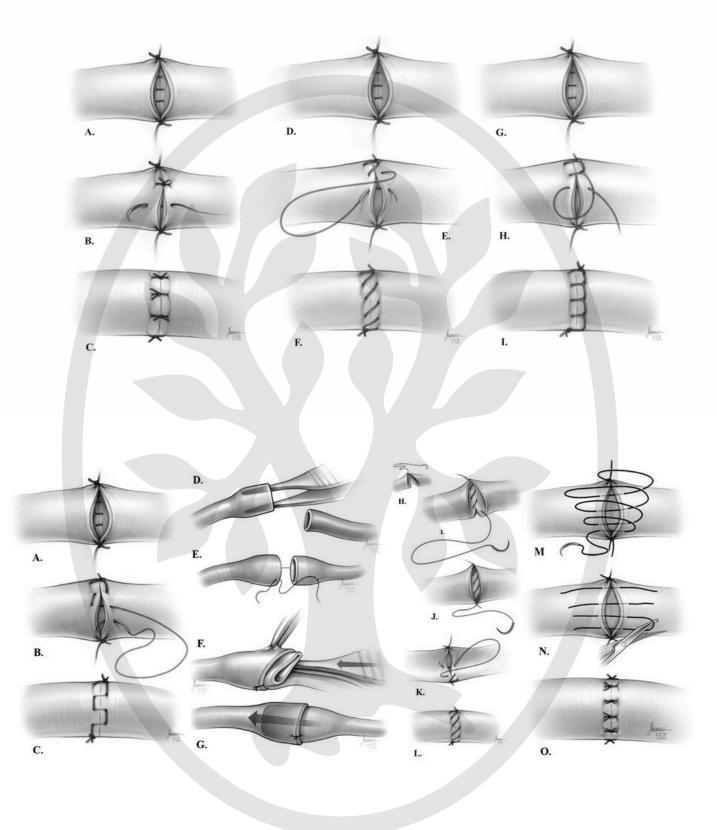
Riggio , 1999 ⁽²⁷)	Experi mental	Italy	81 rats	Modified sleeve technique	ETE	radabl e laser- activat ed solid protein solder A vertica l cut was placed in the sleeve (invagi	Postop erative PR	Conventi onal interrupte d suture technique	N/A	N	N
Sacak, 2013 ⁽²⁸)	Experi mental	Turke y	64 rats	Fibrin glue and venous cuff technique	ETE	nation) Anasto mosis was created with fibrin glue, a venous cuff was added to the anasto mosis site	Postop erative PR	Conventi onal interrupte d suture technique	N/A	N	N
Marni, 1996 ⁽²⁹)	RCT	Italy	20 rats	Modified continuo us technique	ETS	Last stitche s are placed from the inside to the outside	Postop erative PR	Conventi onal interrupte d suture technique	N/A	N	N
Ariyak hagorn , 2009 ⁽³⁰)	RCT	Germ any	72 rats	Knotless technique	ETE	The last stitch is made as close as possibl e to the startin g stitch. The two startin g and finishi ng	Anhep atic time, graft and subjec t surviv al	Conventi onal interrupte d suture technique	N/A	N	N

Human s	subjects					filame nts of the suture are divide d withou t makin g a knot.					
Odobe	RCT	Cana	20	Interrupte	ETE	The	Anast	Conventi	N/A	N	N
scu, 2014 ⁽³¹)		da	cad aver s	d horizonta l mattress sutures		anasto mosis started with a backha nd pass of the horizo ntal matter ess suture and returne d with the foreha nd pass approx imatel y 1 mm apart, such that the centre of the suture d with that the centre of the suture apart, such that the centre of the suture apart, such that the centre of the suture apart, such that the centre of the suture apart, such that the centre of the suture apart, such that the centre of the suture apart, such that the centre of the suture apart, such that the centre of the suture apart, such that the centre of the suture apart, such that the such that the such the such the such that the such that the such the such that the such that such the such that the such that the such the such that the such the such the such that the such such the such the such such the such the such the such such such the such the such the such such such such such such such such	omoti c leakag e and time	onal interrupte d suture technique			
						of the vessel					
Miyagi , 2008 ⁽³²)	RO	Japan	9 pati ents	Back wall support suture technique	ETE	Two sutures were placed at the deepes	Rate of hepati c artery throm	Conventi onal interrupte d suture technique	N/A	N	N

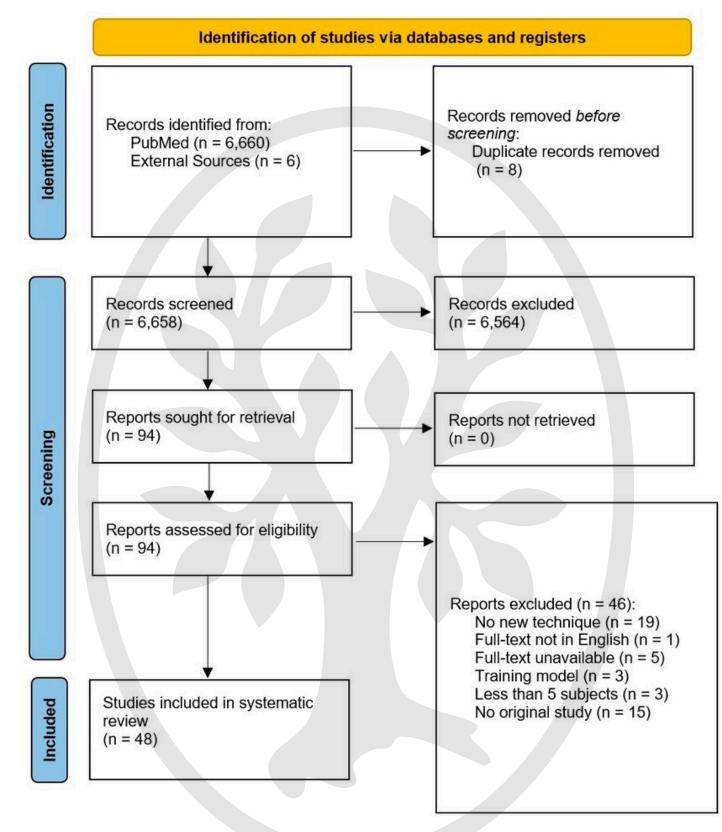
t, mos	t bosis	
	1 00515	
diffici	1	
lt		
points		
in the		
hepati		
nepau		
artery		
for		
backs	i I	
de		
suppo	r	
t. Eac	h	
stitch		
was		
placed	1	
from		
the		
inner		
side o	f	
the		
	1	
arteria		
wall t	0	
the		
outer		
side		
with		
doubl		
needle		
suture	S	
. The		
subse	1	
uent		
suture	s	
were		
placed		
forwa		
d on		
either		
side		
adjace		
nt to		
the		
previo)	
us suture		

RCT: Randomized Controlled Trial, RO: Retrospective Observational, Y: Yes, N: No, ETE: End-to-End, ETS: End-to-Side, Postoperative PR: Postoperative patency rate, Postoperative FR: Postoperative flow rate, N/A: Not Available.

	Supplementary Appendix: Table 2. Studies validating novel microsurgical techniques: Non-comparative studies (16 studies)											
Study (First author, year)	Study design	Country	Numb er of subjec ts	Name of technique validated	Type of techni que	Description technique	Main outcome(s)	Techni que is clinicall y used	Power analysi s perfor med	Confoun der adjustm ent perform ed		


Animal s	ubjects									
Orbay, 1985 ⁽³³⁾	Experime ntal	Switzerl and	10 rats	Elongated and slitlike anastomosis	ETE	The anastomosi s is facilitated by a longitudin ally cut vein	Postopera tive FR	N/A	N	N
Duarte, 1987 ⁽³⁴⁾	Experime ntal	USA	72 rats	Thermic sleeve anastomosis	ETE	Proximal and distal stump of the vessel have been intussusce pted and are welded on two spots	Postopera tive PR	N/A	N	Ν
Schuber t, 2004 ⁽³⁵⁾	RCT	Austria	42 rats	Bipolar anastomosis technique	ETE	Heat- induced tissue- welding is used to create the anastomosi s	Operative time, Postopera tive PR	N/A	N	N
Ulusal, 2005 ⁽³⁶⁾	RCT	Taiwan	20 mice	Temporary assisting suspension suture technique	ETE	Placement of suspension loose sutures	Initial success rate	N/A	N	N
Hudson, 1998 ⁽³⁷⁾	Experime ntal	South Africa	48 rats	Modified continuous anastomosis technique	ETE	The posterior wall and anterior wall continuous sutures are placed separately after two separate stay sutures. A closing suture is placed when flow through the anastomosi s is confirmed	Ischemic time	N/A	Ν	N
Lauritze n, 1978 ⁽³⁸⁾	Experime ntal	Sweden	20 rats	Sleeve anastomosis technique	ETE	Two starting sutures are placed and	Postopera tive FR, postopera tive PR	N/A	N	N

						the proximal vessel is placed inside the lumen of the distal vessel				
Holmin, 1983 ⁽³⁹⁾	Experime ntal	Sweden	20 rats	Portacaval shunt	ETS	A simplified method of ETS anastomosi s with three sutures	Postopera tive PR	N/A	N	Ν
Savas, 1985 ⁽⁴⁰⁾	Experime ntal	UK	40 rats	Sutureless cuff technique	ETE	A cuff was created from vessel lumps and connected together without sutures	Postopera tive PR, postopera tive subject survival	N/A	N	Ν
r, 2014 ⁽⁴¹⁾	Experime ntal		8 rats	Cuff placement technique	ETE	Facilitatin g vessel eversion by the creation of a wedge- shaped gap to generate an adjustable cuff diameter at one end of the cuff and the creation of a barb to facilitate the fixing of draped vessel edges to the cuff.	Operative		N	Ν
Schuber t, 2006 ⁽⁴²⁾	Experime ntal	Austria	40 chick ens	Bipolar anastomosis technique (BAT)	ETE	Anastomos is is created by heat- induced tissue- welding	Postopera tive PR and FR	N	N	N
Human s	ubjects									
Bakhac h,	CS	Lebanon	14 patien	V-Plasty technique	ETE	Creating a V-shaped	Vessel discrepan	Y	Ν	N


2015(43)			ts			flap in the vessel of larger diameter	cy ratio			
Inbal, 2019 ⁽⁴⁴⁾	RO	USA	100 patien ts	Modified Kunlin's technique	ETE	An oblique transection of the donor and recipient vessels is performed with greater angle of transection for the smaller vessel to approxima te circumfere		Y	N	N
Yamam oto, 1999 ⁽⁴⁵⁾	CS	Japan	17 patien ts	Back Wall Technique	ETE	nces The back wall is sutured first	Postopera tive FR and complicat ion rate	N/A	N	N
Masood i, 2022 ⁽⁴⁶⁾	PO	Austria	12 patien ts	Double Barrel Lymphaticove nous Technique	ETE	Two lymphatic vessels have been intussusce pted into the vein	Relief of lymphede ma symptom s	N	Ν	N
Nakaga wa, 2008 ⁽⁴⁷⁾	RO	Japan	9 patien ts	Modified technique for anastomosis of the posterior wall	ETS	Short pedicle without turn-over to the posterior wall	Postopera tive venous thrombos is	N/A	N	N
Sen, 2006 ⁽⁴⁸⁾	RO	Turkey	5 patien ts	Diamond arteriotomy technique	ETS	Diamond- shaped arteriotom y is performed	Operative time	N/A	N	N
Matsuo, 2020 ⁽⁴⁹⁾	PO	Japan	7 patien ts	Single loop interrupted suture technique	ETS	Knots were placed after loop stitch placement	Postopera tive PR, operative time	Y	N	N
Chen, 2015 ⁽⁵⁰⁾	PO	Japan	9 patien ts	Octopus Lymphaticove nular Technique	ETE	Multiple lymphatic vessels have been intussusce	Relief of lymphede ma symptom s	N	N	N

			pted into the vein		

RCT: Randomized Controlled Trial, RO: Retrospective Observational, CS: Case Series, PO: Prospective Observational N: No, ETE: End-to-End, ETS: End-to-Side, STS: Side-to-Side, Postoperative PR: Postoperative patency rate, Postoperative FR: Postoperative flow rate, N/A: Not Available.

ccepted Manuscript

