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no
n-
vir
al 
(%)

EH
D  
(%)

BCL
C C 
(%)

CheckMa
te 459

01/20
16-
05/20
17

Nivolumab 1st 
line 
HCC

371 54 45 60 82 16.4 3.8 15 55 20

Sorafenib 372 54 45 56 78 14.7 3.9 7 58

KEYNOT
E-240

05/20
16-
11/20
17

Pembrolizu
mab plus 
BSC

2nd 
line 
HCC

278 41.
4

58.
6

70.
1

79.9 13.9* 3.0** 18.3*
***

62.

2*
21

Placebo 
plus BSC

135 37.
1

63 68.
9

78.5 10.6 2.8 4.4 53.
3

KEYNOT
E-394

05/20
17-
12/20
19

Pembrolizu
mab + BSC

2nd 
line 
HCC

300 80.
4

19.
6

77.
3

92.3 14.6* 2.6** 12.7**
**

51 45

Placebo 
plus BSC

153 81.
7

18.
3

78.
4

95.4 13.0 2.3 1.3 47.
1

RATIONA
LE-301

12/20
17-
10/20
19

Tislelizuma
b

1st 
line 
HCC

342 76.
1

24 64 79.5 15.9* 2.1 2.1 44.
2

17
3

Sorafenib 332 75.
8

24.
1

59.
6

75.9 14.1 3.4 3.4 50.
3

Table 1. Selected phase III ICI Monotherapy Trials in advanced or unresectable HCC (Hepatocellular 

Carcinoma). BCLC, Barcelona Clinic Liver Cancer criteria; BSC, best supportive care; DCR, disease-

control rate; EHD, extraheptic disease; ICI, Immune Checkpoint Inhibitor; ORR, objective response 

rate; OS, overall survival; PFS, progression-free survival, STRIDE, single tremelimumab regular 

interval durvalumab; TKI, tyrosine kinase inhibitor. Statistics: one-sided *< 0.05, ** p < 0.01, *** p < 

0.01, **** p < 0.0001, two-sided † p < 0.05, †† p < 0.01  ††† < 0.001 †††† p < 0.0001, NR = not 

reached
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ICI plus ICI

HIMALAY
A
(NCT0329
8451)

10/20
17-
06/20
19

STRIDE 
(Durvalumab 
plus 
Tremelimumab
)

1st 
line 
HCC

393 59 41 53.
2

80.4 16.43†

† 

(sorafenib)

3.78 20.1 60.
1

18
5

Durvalumab 389 58.
1

41.
9

54.
5

79.4 16.56 3.65 17.0 54.
8

Sorafenib 389 57.
3

42.
7

52.
2

83.0 13.77 4.07 5.1 60.
7

ICI plus MKI (or anti-VEGF antibodies)

IMBrave15
0 
(NCT0343
4379)

03/20
18-
01/20
19

Atezolizumab  
plus 
Bevacizumab

1st 
line 
HCC

336 70 30 63 82 NR††† 6.8††† 27.3†

††

73.
6

19
9

Sorafenib 165 68 32 56 81 13.2 4.3 11.9 55.
3

COSMIC-
312 
(NCT0375
5791)

12/20
18-
08/20
20

Atezolizumab 
plus 
Cabozantinib

1st 
line 
HCC

432 60 39 54 68 15.4 6.8†† 11 78 20
3

Sorafenib 217 60 40 56 67 15.5 4.2 4 65

Cabozantinib 188 73 37 54 65 n.a. n.a. 6 84

ORIENT-
32 
(NCT0379
4440)

02/20
19-
01/20
20

Sintilimab + 
IBI305 
(Bevacizumab 
biosimiliar)

1st 
line 
HCC

380 96 4 73 85 NR†††† 4.6†††† 21%†

†††

72 20
1

Sorafenib 191 98 2 75 86 10.4 2.8 4% 64

LEAP-002
(NCT0371
3593)

01/20
19-
04/20
20

Pembrolizuma
b plus 
Lenvatinib

1st 
line 
HCC

395 63 37 63 78 21.2* 8.2 26.1 81.
3

20
4

Placebo plus 
Lenvatinib

399 61 39 61 76 19..0 8.1 17.5 78.
4

CARES-
310
(NCT0376
4293)

06/20
19-
03/20
21

Camrelizumab 
plus 
Rivoceranib

1st 
line 
HCC

272 84 15 64 86 22.1**
**

5.6**** 25***
*

78 20

5

Sorafenib 271 84 17 66 85 15.2 3.7 6 54

ICI plus chemotherapy

TOPAZ-1 
(NCT0387
5325)

02/20
19-
12/20
20

Durvalumab 
plus 
Gemcitabine & 
Cisplatin

1st 
line 
CCA

341 n.a. 55.
7 
(iCC
A)

88.9 
(metasta
ses)

12.8† 7.2††† 26.7 85.
3

22
1

Placebo plus 
Gemcitabine/Ci
splatin

344 56.
1 
(iCC
A)

83.1 
(metasta
ses)

11.5 5.7 18.7 82.
6

KEYNOTE
-966 
(NCT0400
3636)

10/20
19-
06/20
21

Pembrolizuma
b plus 
Gemcitabine/Ci
splatin

1st 
line 
CCA

533 60
(iCC
A)

89 
(metasta
ses)

12.7** 6.5* 29 75 22
3

Placebo plus 
Gemcitabine/Ci
splatin

536 n.a. 58
(iCC
A)

88 
(metasta
ses)

10.9 5.6 29 76
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Table 2. Selected phase III ICI combination therapy trials in advanced or unresectable HCC 

(hepatocellular carcinoma) and CCA (cholangiocellular carcinoma). BCLC, Barcelona Clinic Liver 

Cancer criteria; EHD, extrahepatic disease; DCR, disease-control rate; ICI, Immune Checkpoint 

Inhibitor; n.a., not applicable; ORR, objective response rate; OS, overall survival; PFS, progression-

free survival, STRIDE, single Tremelimumab regular interval Durvalumab; MKI, multikinase inhibitor. 
Statistics: one-sided *< 0.05, ** p < 0.01, *** p < 0.01, **** p < 0.0001, two-sided † p < 0.05, †† p < 
0.01  ††† < 0.001 †††† p < 0.0001, NR = not reached
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Abbreviations

APC, antigen presenting cells;  B2M, beta-2-microglobulin;  CAF, cancer associated fibroblasts;

CCA, intrahepatic cholangiocarcinoma; CCL2, C-C chemokine ligand 2; CCL5, CC-chemokine

ligand  5;  CTL,  cytotoxic  T  cells;  CTLA-4,  cytotoxic  T  lymphocyte  antigen  4;  CXCL16,  CXC-

chemokine  ligand  16;  CXCR2,  C-X-C-chemokine  receptor  2;  DAMP,  danger-associated

molecular  patterns;  DC,  dendritic  cells;  EMA,  European  Medicines  Agency;  FAP,  fibroblast

activation protein; FDA, Food and Drug Administration; FGFR2, fibroblast growth factor receptor

2;  Flt3L,  FMS-like  tyrosine  kinase  3  ligand;  Gem/Cis,  Gemcitabine  plus  Cisplatin;  HCC,

hepatocellular carcinoma; HSC, hepatic stellate cells; ICD, immunogenic cell death; ICI, immune

checkpoint  inhibitor;  IDH1, isocitrate dehydrogenase 1; IFN, interferon;  IL, interleukin;  JAK1/2,

Janus kinase 1 and 2; KRAS, Kirsten rat sarcoma virus; LAG-3, lymphocyte activation gene-3;

MASH,  metabolic  dysfunction-associated  steatohepatitis;  MASLD,  metabolic  dysfunction-

associated  steatotic  liver  disease;  MDSC,  myeloid-derived  suppressor  cells;  MHC,  major

histocompatibility  complex;  MKI,  multikinase inhibitors;  mOS,  median  overall  survival;  mTOR,

mammalian target  of rapamycin;  NK, natural  killer;  NSCLC, non-small-cell  lung cancer; ORR,

objective response rate;  OV, Oncolytic viruses; PD-1, programmed death 1; PD-L1,  PD-1/PD

ligand  1;  PFS,  progression-free  survival;  PSC,  primary  sclerosing  cholangitis;  PTEN,

phosphatase  and  tensin  homolog;  SBRT,  stereotactic  body  radiation;  SIRT,  SPP,  secreted

phosphoprotein  1;  selective  internal  radiotherapy;  STAT3,  signal  transducer  and  activator  of

transcription 3; TAA, tumor-associated antigens; TACE, transarterial chemoembolization; TAM,

tumor-associated  macrophages;  TARE,  transarterial  radioembolization;  TERT,  telomerase

reverse transcriptase; TGF-β, transforming growth factor β; TREM, Triggering receptor expressed
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on myeloid cells; TIM-3, T cell immunoglobulin and mucin domain-containing molecule 3; TLR,

Toll-like receptor; TMB, tumor mutational burden; TME, tumor microenvironment; Treg, regulatory

T cells; US, United States; VEGF, vascular endothelial growth factor 

ABSTRACT

Primary liver  cancer,  represented mainly  by hepatocellular  carcinoma (HCC) and intrahepatic

cholangiocellular carcinoma (CCA), is one of the most common and deadliest tumors worldwide.

While surgical resection or liver transplantation are the best option in early disease stages, these

tumors often present in advanced stages and systemic treatment is required to improve survival

time. The emergence of immune checkpoint inhibitor therapy has had a positive impact especially

on the treatment of advanced cancers, thereby establishing immunotherapy as part of first-line

treatment  in  HCC and CCA.  Nevertheless,  low response rates  reflect  on the usually  cold  or

immunosuppressed tumor microenvironment of primary liver cancer. In this review, we aim to

summarize mechanisms of resistance leading to tumor immune escape with a special focus on

the composition  of  tumor  microenvironment  in  both HCC and CCA, also reflecting  on recent

important developments in ICI combination therapy. Furthermore, we discuss how combination of

immune checkpoint inhibitors with established primary liver cancer treatments (e.g. multikinase

inhibitors  and  chemotherapy)  as  well  as  more  complex  combinations  with  state-of-the-art

therapeutic  concepts  may  re-shape  the  tumor  microenvironment,  leading  to  higher  response

rates and long-lasting anti-tumor immunity for primary liver cancer patients.

Lay summary

Primary liver cancer is one of the most common and deadliest tumors worldwide. Most patients

are diagnosed in advanced stages, which limits available treatment options. Immunotherapies

that can activate the immune system to eradicate cancer cells have had tremendous success in

the  past  decade,  but  response  rates  in  liver  cancer  are  still  low.  Here,  we  summarize  the

mechanisms that render liver tumors resistant to immunotherapies and how these obstacles can

be overcome by  combining  different  therapy regimens,  ultimately  leading  to  higher  response

rates and long-lasting antitumor immunity.

Introduction

Primary  liver  cancer,  most  frequently  represented  by  hepatocellular  carcinoma  (HCC)  and

intrahepatic cholangiocarcinoma (CCA), is the sixth most diagnosed cancer worldwide.1 While it is

very common in China and other East Asian countries,2 frequency has increased in countries with

formerly  low  incidences  such as  the  United  States  (US)  and  some European  countries.3 Its
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prognosis is often fatal, which is reflected in the almost equal ratio between newly diagnosed liver

cancer patients and liver cancer-related deaths per year (1.09 in 20202). This deadliness can be

attributed to the fact that most patients are diagnosed in advanced disease stages when curability

(through resection,  local therapy or liver transplantation)  is no longer an option.4,5 In addition,

systemic therapies - mainly multikinase inhibitors (MKI) for HCC and the chemotherapy regimen

Gemcitabine plus Cisplatin (Gem/Cis) for CCA6,7  – only became available in the late 2000s and

are characterized by low response rates and only moderate survival benefits.8-13 Since then, new

chemotherapeutic options have not been able to considerably extend the survival of liver cancer

patients for a long time.

Since Ipilimumab, an antibody against cytotoxic T lymphocyte antigen 4 (CTLA-4), became the

first  immunotherapy  approved  by  the  Food  and  Drug  Administration  (FDA)14 and  European

Medicines Agency (EMA)15 for late-stage melanoma in 2011, immune checkpoint inhibitor (ICI)

therapy  has  revolutionized  cancer  therapy.  Followed  by  approval  of  antibodies  against

programmed death 1 (PD-1), namely Pembrolizumab and Nivolumab, in 2014, ICI therapy began

its victory march, prolonging survival times for a plethora of hematologic and solid cancers.16,17

The first  phase I/II  trials  for  Nivolumab18 and Pembrolizumab19 in  patients  with  HCC showed

promising effects, as well. However, only 15-20% of patients showed objective responses, and

follow-up phase III trials for first- and second line therapy with single ICI agents did not display

survival  benefits  in  comparison to  Sorafenib.20,21 Therefore,  as ICI  therapy  is  able  to  provide

durable and long-term anti-tumor effects if patients respond, increasing response rates is a main

objective for future ICI therapy of liver cancer.

In this review, we will summarize the evolution of ICI therapy in advanced liver cancer therapy –

starting  with  the  first  monotherapy  trials  and  tumor  microenvironment  (TME)-associated

mechanisms of resistance. We will demonstrate why combination therapy is an effective way to

bypass ICI resistance as well as describe current and future ICI combination therapy options to

increase response rates and survival in patients with liver cancer.

Immune checkpoint inhibitors in primary liver cancer 

The concept of disturbed immune surveillance in the cancer immune cycle

Paul Ehrlich suggested a potential tumor-controlling role of the immune system, which has been

formally introduced as  cancer immune surveillance  in the 1950s.22 At the time, this hypothesis

was abandoned by the scientific community due to lack of evidence but revived in a hallmark

review  from  2002,  which  evolved  this  theory  and  described  the  development  of  neoplasms

despite a functioning host immune system as cancer immunoediting.23 During elimination phase

or immune surveillance,  the immune system is able to eradicate degenerated cells by careful

orchestration  of  innate  and  adaptive  immune  responses,  mainly  mediated  by  CD8+  T

lymphocytes or cytotoxic T cells (CTL) (Figure 1).23 Briefly,  the (immunogenic) death of tumor

cells  releases  tumor-associated  antigens  (TAA)  and  danger-associated  molecular  patterns

(DAMP).  Following  antigen  uptake  and  processing,  activated  antigen  presenting  cells  (APC)
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migrate to the draining lymph nodes (or to tertiary lymphoid structures), where they cross-present

the antigens and prime CTL. Activated CTL then travel back to the tumor and kill tumor cells by

antigen-mediated cytotoxicity. Other lymphocyte subsets, such as natural killer (NK) cells24 and

CD4+ T cells25 can exert or support anti-tumor cytotoxicity as well. Each of these individual steps

can be influenced and  modified  by  precancerous  alterations,  making  them  rate-limiting  for  a

successful  anti-tumor  response.26 Due  to  selection  pressure,  less  immunogenic  cancer  cells

evolve  and  escape  the  immune  system,  further  expanding  with  the  help  of  additional

immunosuppressive adaptations.23 

Commonly applied immune checkpoint inhibitors in cancer immunotherapy

Inhibitory  immune  checkpoints  are  important  regulators  of  the  immune  system,  hindering

excessive immune responses by putting a break on T cell-mediated adaptive immune functions

and facilitating self-tolerance.27 However,  T cell-mediated cytotoxicity against cancer cells can

also be prevented by the same mechanisms.28 

The best studied immune checkpoints to date are CTLA-4 and the PD-1/PD ligand 1 (PD-L1)

axis.29,30 Activated T cells express CTLA-4 on their surface, where it competes with CD28 for B7

ligands  CD80/86  on  APC.30,31 While  binding  of  CD28  has  a  co-stimulatory  effect,  ensuring

activation and differentiation of T cells, CTLA-4 functions as an inhibitor with far higher affinity for

CD80/CD86 than CD28.32,33  CTLA-4 has two modes of action in the cancer immunity cycle, which

ultimately lead to immunosuppression: during T cell priming in the draining lymph node, antigen

recognition of  naïve T cells is hindered by undermining the costimulatory signal  mediated by

CD80/CD86  and  regulatory  T  cells  (Treg),  which  constitutively  express  CTLA-4,  inhibit

costimulatory signals on dendritic cells (DC) leading to anergy during antigen presentation and

reduced T cell priming (Figure 1). Additionally, CTLA-4-expressing T reg hamper antigen-mediated

T cell  killing in the TME (Figure 1).  Blocking CTLA-4 with  monoclonal  antibodies  revives the

costimulatory signal necessary for T cell activation and induces elimination of Treg by antibody-

dependent cellular cytotoxicity.30,34 Ipilimumab was the first FDA-approved CTLA 4-inhibitor for

solid cancers (i.e. melanoma).14 

The PD-1 receptor  is  expressed on activated  T and  B cells,  NK cells,  and  monocytes,  and

produces a negative signal cascade when binding to its ligands PD-L1/L2 on APC and tumor

cells,  inhibiting  T  and  B  cell  receptor  signaling,  cytokine  production  and  production  of  pro-

apoptotic proteins.30,35 Especially chronic antigen stimulation by uninterrupted carcinogenesis can

cause upregulation of PD-1 and other checkpoints, consequently leading to loss of T cell effector

functions  (called T cell  exhaustion)  and further  assisting cancer immune escape (Figure 1).36

Treatment  with  antibodies  against  PD-1  (e.g.  Nivolumab,  Pembrolizumab)  or  PD-L1  (e.g.

Atezolizumab,  Durvalumab)  prevents  binding  of  the  natural  ligands,  inhibiting  the

immunosuppressive function of PD-1 and ensuring proper T cell function.30,37 

Additionally,  alternative  checkpoints  like  lymphocyte  activation  gene-3  (LAG-3)  and  T  cell

immunoglobulin  and  mucin  domain-containing  molecule  3  (TIM-3)  have  become  increasingly
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interesting  in  the  treatment  of  solid  tumors.38 LAG-3 and TIM-3 are  transmembrane proteins

expressed by activated T cells and have a similar function to PD-1 and CTLA-4. While LAG-3

exerts the inhibitory function either as a ligand for MHC class II or fibrinogen-like protein 1, 39 TIM-

3 is also expressed by other immune cell types such as DC, Treg and NK cells, and activates

inhibitory  signaling  through  interactions  with  HLA-B-associated  transcript  3  and  galectin  9.40

Clinical trials investigating the combination of both checkpoints are ongoing.38,41

Monotherapy-Trials for Primary Liver Cancer

The first  ICI-monotherapy phase I/II  trial  conducted in primary  liver  cancer (CheckMate 040),

starting in 2012, tested dose escalation and expansion of the PD-1 inhibitor Nivolumab involving

262 patients with advanced HCC after 1st line treatment with Sorafenib.18  Nivolumab managed to

achieve an objective response rate (ORR) of 20% in the final dose expansion phase as well as a

median overall survival (mOS) of 13.2 months with a manageable safety profile. Because of these

positive  results,  a  randomized,  placebo-controlled  phase  III  trial  (CheckMate  459,  Table  1)

compared  the  effect  of  Nivolumab  monotherapy  to  Sorafenib  as  1st line  treatment.20 The

Nivolumab treatment arm did not reach its primary endpoint, demonstrating no significant survival

benefit compared to Sorafenib. Still, Nivolumab was discussed by the authors as an option for

patients with contraindication(s) to Sorafenib,20 and the favorable safety profile already displayed

in  CheckMate  040  led  to  FDA approval  of  Nivolumab  as  2nd line  option  following  Sorafenib

treatment.42

Another PD-1 Inhibitor, Pembrolizumab, was investigated in the phase II KEYNOTE-224 trial.19 In

line  with  CheckMate  040,  the  patients  were  previously  treated  with  Sorafenib,  and  either

developed an intolerance or  showed disease progression.  The ORR was 17% (1% complete

response,  16% partial  responses),  the  mOS was  12.9  months  and  progression-free  survival

(PFS) was 4.9 months. A follow-up analysis in 2022 even updated the ORR to 18.3% and the

mOS to  13.2  months.43 Following these encouraging  results,  the  randomized,  double-blinded

phase III trial KEYNOTE 240 (Table 1) tested Pembrolizumab as 2nd line treatment and included

413 patients with advanced HCC who were previously treated with Sorafenib in comparison to

placebo.21 Although the trial did not reach statistical significance in 2019, the follow-up in 2020

showed an ORR of 18.3%, a mOS of 13.9 months, and a PFS of 3 months for Pembrolizumab

(placebo:  ORR 4.4%,  mOS 10.6 months,  PFS 2.8 months).44 Similar  results  were shown by

KEYNOTE-394 (Table 1), which focused on a primarily Asian cohort.45 The results were in line

with KEYNOTE-240, showing comparable clinical activity and risk profile to other Pembrolizumab

studies.19,21,43,44

There  have been no large  phase III  trials  investigating  ICI  monotherapy  specifically  in  CCA.

However,  the  uncontrolled  phase  II  trial  KEYNOTE-158  reported  a  clinical  benefit  for

Pembrolizumab  monotherapy  in  pretreated  solid  tumors  with  high  levels  of  microsatellite

instability.46,47
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In  conclusion,  ICI  monotherapy  trials  showed  an  ORR between  12.7%  and  18.3%  in  HCC

patients,  which  is  better  than  standard  systemic  therapies  like  Sorafenib6 in  1st line  and

Regorafenib9 in  2nd line.  However,  at  this  point,  the ORR and overall  survival  benefit  remain

moderate and comparable to the standard therapies. 

Mechanisms of primary resistance 

One of  the main reasons for  the moderate efficacy of  ICI monotherapy in liver  cancer is the

relatively  high  rate  of  primary  therapy  resistance –  meaning  the  tumor  does  not  respond  to

therapy right  from the beginning.48 Primary resistance to immunotherapy strongly  depends on

cancer type-specific and patient-individual  factors, with the composition of  the TME playing a

major  role  in  shaping  therapy  response.49-52 In  brief,  an  inflamed  (or  hot)  TME  shows  high

infiltration of CTL inside the tumor and the surrounding stroma, alongside high tumor mutational

burden (TMB), heightened PD-L1 and interferon (IFN)γ expression, and has been associated with

favorable ICI therapy response.53 In contrast, a cold TME is deserted of any T cell infiltration or

PD-L1 expression, and excluded TME display CTL and other effector cells gathering on the tumor

margin without being able to infiltrate due to stromal barriers and deviant vascular structure.54

Finally,  immunosuppressed  TME show  moderate  T  cell  infiltration  and  counteracting

immunosuppressive adaptation of the TME such as high expression of interleukin (IL)-10 and

transforming growth factor beta (TGF-β) as well as excessive amounts of T reg, tumor-associated

macrophages (TAM) and myeloid-derived suppressor cells (MDSC). (Figure 1)

In  general,  primary  resistance  mechanisms  are  categorized  into  intrinsic  and  extrinsic

mechanisms55,56 – we will describe these in the following sections,  mainly focusing on the TME,

as  primary  resistance  in  HCC  has  recently  been  discussed  in  detail  in  Seminars  in  Liver

Disease.57

Tumor intrinsic mechanisms 

Since  successful  immune  responses  to  liver  cancer  depend  heavily  on  correct  priming  and

activation  of  T  cells  by  APC,  tumor  intrinsic  reasons  for  primary  resistance  mainly  involve

dysfunctional antigen expression or recognition, often caused by a lack of neoantigens, impaired

antigen  presentation,  and  mutations  of  resistance-associated  genes  and  signaling  pathways.

(Figure 2)

Neoantigens are TAA that are expressed due to cancer-related mutations and play an important

role in T cell activation.58 A low TMB results in a lower quantity of neoantigens in the TME and

therefore a lack of tumor immunogenicity59, suggesting that TMB might be a suitable biomarker

for predictions of ICI therapy efficacy.60,61 As such, the TMB showed promise as a predictive

biomarker  for  patients  with  lung,  bladder,  and  head  and neck  cancers,62 but  its  significance

heavily depends on the type of solid tumor, the intratumoral CTL levels and the abundance of

neoantigens, resulting in failure to predict an ICI response in cancers like glioma, prostate cancer

and breast cancer.63 While the TMB can vary depending on the stage, progression and subtype of
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primary cancer, it is known to be relatively low in both HCC and CCA64,65 and a small case series

of  HCC patients  found  no  correlation  between  TMB  and  ICI  response.66 Interestingly,  CCA

patients  with microsatellite-instability  high showed a higher  TMB and longer  survival  after  ICI

treatment, suggesting that while the TMB should not be used as a sole predictive biomarker its

impact  should  be  considered  for  treatment.67 In  addition,  CCA tumors  are  known to  have a

predominantly  cold  phenotype  and  show  downregulation  of  genes  responsible  for  antigen

presentation,68 which greatly impairs the priming function of APC.69 Excess lipid accumulation and

a  subsequent  overload  of  DC  in  HCC  are  additional  reasons  for  dysfunctional  antigen

presentation in liver cancer.70,71 

Mutations  of  genes  in  important  signal  transduction  pathways  –  such as   the  Wnt/β-catenin

pathway,  which is altered by mutations in many human cancers72 and especially  prevalent  in

HCC73 – can also  impact  the TME and increase the probability of immune evasion of the tumor

contributing to primary resistance.74 Upregulated β-catenin increases PD-L1 expression with a

subsequent  reduction  of  cytotoxicity  of  CTL,  inhibition  of  DC  and  T  cell  recruitment,  and

enhanced  immunosuppression  by  Treg.
75 In  HCC, β-catenin  drives  transcription  of  telomerase

reverse transcriptase (TERT), which encodes the catalytic subunit  of telomerase and is partly

responsible  for  increased  tumorigenesis  and  resistance.76 Additionally,  the  canonical  Wnt/β-

catenin pathway can be stimulated by TGF-β,77 a mediator that enhances fibrogenesis in the liver

and  is  abundant  in  an  immunosuppressive  TME,78 further  promoting  tumor  proliferation  and

causing a TME deprived of APC and CTL.79 In mouse models, β-catenin activation has been

shown to promote immune evasion and resistance to anti-PD-1 monotherapy of HCC,80 which

could be overcome by combination therapy (anti-PD-L1 and anti-VEGF).81 However, data from

human trials is conflicting. While several studies found no correlation between these mutations

and therapy efficacy, both for Atezolizumab and Bevacizumab combination therapy82 and anti-

PD-1 monotherapy,83 the Imbrave150 trial reported a greater survival benefit for patients without

mutations  of  the  Wnt/β-catenin  pathway  treated  with  Atezolizumab/Bevacizumab.81 Further

research is needed to explore the dual nature of Wnt/β-catenin mutations, which appear not to be

indicative of a universally negative prognosis but rather dependent on the type of applied ICI

therapy. 

Another driving factor may be mutations of the TP53 gene encoding the p53 transcription factor,

a  sensor  for  cellular  stress  also  known  as  “guardian  of  the  genome”,  which  are  common

occurrences in cancer patients. In HCC, TP53 mutations correlate with a non-inflamed TME and

reduced survival of patients.84 It  has been shown that certain TP53 mutations can induce the

Wnt/β-catenin pathway,85 although the exact interplay of these pathways is still  being studied.

Additionally, infiltration of T cells in multiple tumors and therefore ICI efficacy can be negatively

impacted by loss of phosphatase and tensin homolog (PTEN) and a subsequent activation of the

PI3K/AKT pathway.86 This  pathway is  dysregulated  both  in CCA and HCC.87,88 Other  notable

mutations in HCC and CCA are of the MYC oncogene and Kirsten rat sarcoma virus (KRAS)

gene,  which  in  turn  induces  overexpression  of  the  MYC  oncogene,  leading  to  increased
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oncogenesis, suppressed immunity and antigen presentation, and activated TGF-β signaling.89-93

Likewise, isocitrate dehydrogenase 1 (IDH1) mutations are common in CCA94 and have been

linked to immune evasion in mouse models.95 Finally, signaling pathways like mammalian target

of rapamycin (mTOR),96 TGF-β78 and IFN-γ/JAK/STAT97,98 are frequently affected by mutations in

primary liver cancer, promoting tumor proliferation and potentially adding to ICI resistance.

Tumor extrinsic mechanisms 

Contrary to tumor intrinsic mechanisms, extrinsic mechanisms promote resistance to ICI therapy

through cells, cytokines, and metabolites not originating from the tumor.  This includes T cell-

related  events  like  alternative  checkpoint  inhibition,  T  cell  exhaustion,  recruitment  of

immunosuppressive cells like Treg, TAM, MDSC or cancer associated fibroblasts (CAF), and the

effect of immunosuppressive cytokines and chemokines released from tumor cells and immune

cells. (Figure 2)

Treg physiologically maintain self-tolerance and immune homeostasis, which is crucial in the liver

but creates an avenue for tumors to evade host immunity. Multiple mechanisms exist for T reg to

suppress   immune  responses,99 for  example  through  disruption  of  DC function  or  release of

immunosuppressive cytokines like IL-10,  IL-35,  or  TGF-β,  which downregulate  effector  T  cell

functions48. TME-resident Treg, as well as TAM, CAF, and MDSC, can prevent tumor infiltration by

CTL and NK cells in HCC and CCA100,101 and high Treg to effector cell ratios are associated with

worse  clinical  outcomes  in  ICI  treated  HCC.81 Studies  have  also  shown  that  high  TGF-β

expression predicts  poor prognosis  in HCC and CCA,102-104 thus potentially  promoting primary

resistance to ICI therapy. 

MDSC are immunosuppressive cells that stem from immature myeloid cells whose differentiation

into granulocytes, macrophages,  or  DC is prevented by the TME. MDSC are only  present  in

patients with pathological conditions like cancer, and they promote angiogenesis and metastasis

of tumors while showing immunosuppressive effects upon activation.105 They can interrupt the cell

cycle of T cells and trigger cell  death via apoptosis.106 MDSC can also influence the antigen

presentation of DC and increase the proliferation of Treg, promoting tumor growth in HCC107 and

CCA.108 In CCA, CAF recruit MDSC to the TME via C-C chemokine ligand 2 (CCL2), contributing

to tumor  growth  and cancer  stemness,  which impacts  the resistance of  the tumor  to  cancer

therapy.109,110 In this context, treatment-induced immunosuppression can be further aggravated

through the IL-1β dependent recruitment of suppressive myeloid populations and the disruption of

CD8 T  cell  responses.111 In  both  HCC and  CCA,  host  genetic  variations  in  TME-modulating

mediators like IL-1β and the IL-8 pathway have been associated with both oncological and overall

prognosis.112-114

TAM are comprised of different subtypes that are either pro-inflammatory or anti-inflammatory

with tissue-restorative functions.115 They display a high plasticity and can be re-polarized by the

surrounding  environment  to  serve  the  needs  of  the  immune  system.  Tumors  often  take

advantage of the pro-regenerative properties of TAMs, which can be induced by cytokines like IL-
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10,  IL-4,  and  IL-13,116 to  promote  angiogenesis,  tumor  proliferation,  and  metastasis.117,118

Polarization  of  TAM is  also influenced by tumor-secreted molecules  like the sonic  hedgehog

protein  or  succinate  and by immune cells  like Treg or  MDSC through the release of  IFNγ or

downregulation of the signal transducer and activator of transcription 3 (STAT3) pathway. 119 In

HCC,  strong  expression  of  PD-L1  on  TAM  and  a  consequential  suppression  of  the  T  cell

response  has  been  shown  to  result  in  poor  prognosis  for  patients.107,120 This  may  promote

resistance  of  tumors  to  ICI  therapy.  Infiltration  of  TAM  has  been  associated  with  disease

progression  in  CCA  patients  as  well  due  to  activation  of  STAT3,  and  subsequent  tumor

proliferation.121 Activation of STAT3 also causes the production of immunosuppressive cytokines

like  TGF-β,  IL-17,  and  vascular  endothelial  growth  factor  (VEGF),  contributing  to  ICI

resistance.122,123 The  immunosuppressive  properties  of  TAM  and  their  role  in  resistance  to

checkpoint therapy make them a possible target to overcome ICI resistance.124

CAF are abundant in the tumor stroma and are involved in remodeling of the extracellular matrix

in the TME thus playing an essential  role in primary liver cancer as HCC often arises from a

fibrotic,  premalignant  microenvironment  while  in  highly  desmoplastic  CCA,  the  fibrous  tissue

develops  in  parallel  with  the  tumor.125 Mainly  originating  from activated  hepatic  stellate  cells

(HSC),126 they promote tumor cell proliferation and orchestrate an immunosuppressive TME.127,128

Myofibroblastic HSC and CAF promote disease progression and tumorigenesis in both CCA and

HCC.129,130 Interestingly,  subpopulation  analysis  also  revealed  HSC  with  tumor-suppressing

characteristics during hepatocarcinogenesis.130

In addition to immunosuppressive cells and cytokines produced in the TME, alternative inhibitory

immune checkpoints like TIM-3 and LAG-3 can promote resistance to ICI therapy.131 TIM-3 was

found to be upregulated on TAM in the TME due to TGF-β exposure,132 suggesting an alternative

route of checkpoint inhibition used by cancer cells that would not be covered by PD-1/PD-L1 or

CTLA-4 ICI therapy. Co-expression of LAG-3 and PD-1 on tumor-infiltrating lymphocytes results

in a cooperative immunosuppressive effect133 that could be upheld to some degree even after ICI

monotherapy targeting PD-1/PD-L1 resulting in resistance. As LAG-3 and TIM-3 are upregulated

and related to poor prognosis in HCC patients, it is relevant to consider this cause of resistance to

ICI therapies.134,135

Liver-specific mechanisms

The unique symbiosis of the liver with the gut and its microbiome, also referred to as the gut-liver

axis, requires an intricate balance of immune surveillance and self-tolerance in the liver. 136 It is

constantly  exposed to  diverse  microorganisms,  antigens,  and microbial  products  through  the

portal vein, which demands complex regulation of the immune system to eliminate pathogens

while  avoiding  autoimmune  responses.137 Consequently,  macrophages  in  the  (healthy)  liver,

particularly liver-resident Kupffer cells, are equipped to support immunosuppression.138 Similarly,

DC located in the liver have a lower expression of co-stimulatory molecules and thus a lower
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capacity to activate T cells.137,139 Liver tumors can use this to evade the immune system and limit

the effect of potential immunotherapy treatments, ultimately causing resistance to ICI. 

Most cases of primary liver cancer evolve due to an underlying liver disease – HCC most often on

the background of fibrosis and cirrhosis caused by viral hepatitis, alcohol abuse or metabolic liver

disease,140,141 and CCA due to inflammatory processes like primary sclerosing cholangitis (PSC)

or  parasites.142 Notably,  metabolic  dysfunction-associated  steatotic  liver  disease  (MASLD)

becomes more and more important,  as it  affects up to 38% of the global  adult  population.143

MASLD  can  range  from  simple  steatosis  to  MASH  (metabolic  dysfunction-associated

steatohepatitis)  with its  characteristic  hepatic  inflammation,  which may progress to fibrosis  or

cirrhosis and is tightly linked with obesity, type 2 diabetes, hypertension and other cardiovascular

diseases.144,145 Especially  severe  fibrosis  embodies  a  high-risk  factor  for  the  development  of

primary liver tumors,  at least  in part  due to the activation of fibroblasts  with tumor-promoting

function  in  both  HCC  and  CCA.125 The  distinct  adaptations  of  the  hepatic  immune

microenvironment  in  viral  versus  non-viral  etiologies146 may  also  affect  the  response  to  ICI

therapy and emerging evidence suggests that non-viral HCC may be accompanied by reduced

ICI therapy efficacy.147-149 Mechanistically, we and other groups have demonstrated fundamental

changes  in  the  hepatic  immune  microenvironment  of  both  lymphoid150-153 and  myeloid

compartments154-156 in MASLD mouse models and patients.130,157,158 As commonly available ICIs

focus  on  amplifying  CTL function,159 lymphocytes  are  a  central  spotlight  in  this  context.  The

accumulation of tissue-resident memory T cells as well as auto-aggressive exhausted CTL have

been shown to drive inflammation and fibrosis in the livers of preclinical MASH models as well as

MASH patients.150,151 Indeed, therapeutic anti-PD1 treatment led to expansion of these exhausted

CTL in  the tumors  of  MASH-HCC-bearing mice but  failed to ensure tumor  control.  Strikingly,

prophylactic  treatment  increased  HCC  incidence,  highlighting  the  important  protective

mechanisms of inhibitory checkpoints.160 Even in PD-1 responsive liver cancer mouse models,

efficacy was abrogated by diet-induced MASLD/MASH, which was caused by diet-associated

impaired CTL metabolism and motility. Remarkably, this effect could be rescued by additional

metformin treatment.161 CD4+ T cells also play a role in ICI efficacy162 as evidenced by the MASH-

inducing methionine-deficient diet, which leads to loss of hepatic CD4+ T cells aggravating HCC

development.153 Fittingly,  subgroup-specific  meta-analyses  of  multiple  randomized-controlled

trials demonstrated a higher survival benefit  for patients with viral HCC compared to non-viral

etiology.149,160 However, the matter is more complicated, as patients of non-viral etiology actually

seem to benefit from double ICI therapy (anti-PD-L1 plus anti-CTLA-4).163 Furthermore, it is not

clear  how many  patients  with  non-viral  HCC actually  suffer  from MASLD.  Nevertheless,  the

impact of the underlying liver disease on the response to ICI therapy is still plausible, and further

research is necessary to illuminate on this matter.164,165

MASLD is tightly connected to obesity and changes in the microbiome, which might also influence

response to ICI. Obesity has already been linked to limited tumor control due to leptin-dependent

T cell exhaustion in a genetic obesity mouse model166 and tumor cells of mice fed with a high-fat
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diet increased lipid uptake, which was followed by metabolic reprogramming and impaired CTL

function.167 Furthermore,  metabolic  activation  of  B  cells  also  leads  to  tumor-promoting

dysfunctional T cell responses in this context.152 Interestingly, leptin-dependent T cell exhaustion

increased response to anti-PD-1 therapy166 and this effect can also be seen in patients with non-

small-cell lung cancer (NSCLC) and melanoma (reviewed in  168). Microbial dysbiosis has also

been reported in patients not responding to ICI for many types of cancers including HCC and

CCA,  169,170 which  leads  to  immunosuppressive  rather  than  anti-tumor  immune  responses.  In

addition,  microbial  diversity  declined  in  non-responders  over  the  course  of  treatment169 and

antibiotic treatment was associated with shorter survival times.171

‘Ready-to-use’ combination therapy to overcome primary resistance

As  described  above,  single-agent  PD-(L)1  inhibitor  therapies  generate  lasting  anti-tumor

response in subgroups of patients with advanced HCC18,19,172 but do not demonstrate a significant

survival benefit for the overall treatment population compared with tyrosine kinase inhibitors.20,173

Combining ICI with other, already existing anti-tumor agents for primary liver cancer represents

an accessible choice to overcome primary resistance to ICI therapy (Table 2).

Combination of immune checkpoint inhibitors

To further accelerate antigen-mediated CTL cytotoxicity, blocking additional inhibitory checkpoint

molecules  or  stimulating  activating  ones174 are  standard  strategies  regarding  combination

therapy. The most commonly combined immune checkpoint antibodies in liver cancer are anti-

PD-L1 and anti-CTLA-4. The rationale behind this combination is that blockage of the PD-1/PD-

L1 pathway does not necessarily lead to antitumor immunity, if PD-1+ CTL are not present in the

tumor.34 Furthermore,  in  case  they  are  present,  their  actions  might  be  counteracted  by

immunosuppressive T cells  such as Treg.  For instance,  single anti-PD-1 treatment  resulted  in

expansion of exhausted CTL (PD-1+, LAG-3+, TIGIT+) but failed to induce tumor control in a

HCC mouse model.175 Furthermore, CTLA-4 blockade increases activation of CTL in the lymph

node and therefore the probability of cancer antigen-specific CTL infiltrating the TME. 34 (Figure 1)

The synergistic effects of anti-CTLA – direct enhancement of effector T cell  function as well as

inhibition of immunosuppressive Treg and indirect higher probability of DC maturation during the

priming  phase34,174,176 –  in  conjunction  with  anti-PD-1/PD-L1  blockade  in  the  immune  effector

phase  have  been  verified  as  a  therapeutic  option  in  various  advanced  cancers  including

melanoma, colon and lung cancer.177-180

First results on anti-PD-1/CTLA-4 combination therapy originated from the randomized phase I/II

trial  CheckMate  040,  testing  safety  and efficacy  of  three  distinct  Nivolumab  plus  Ipilimumab

sequences in a HCC patient cohort previously treated with Sorafenib.18 All study arms showed

promising ORR of approximately 30%, with the highest complete response rates and mOS (22.8

months) observed for patients receiving 4 doses of 1 mg/kg Nivolumab plus 3 mg/kg Ipilimumab

for every 3 weeks followed by 240 mg Nivolumab every 2 weeks (study arm A).181  At this time,
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approved 2nd line MKI therapy only demonstrated a maximum of 10.6 months mOS,9-11 resulting in

accelerated approval of Nivolumab combined with Ipilimumab for 2nd line advanced HCC therapy

in the United States.182 The improvement of ORR and OS may directly correlate to increasing

dosages of Ipilimumab, which coincides with higher rates of adverse effects.  Nevertheless, the

benefit-risk-profile  still  favors  the  combination  therapy  with  higher  anti-CTLA-4  dosage.183 In

another  phase  I/II  trial,  the  STRIDE  (single-dose  Tremelimumab  [anti-CTLA-4]  with  regular

interval  Durvalumab  [anti-PD-L1])  regime  demonstrated  highest  ORR  (24%),  mOS  of  18.7

months  and most prominent  increase of  proliferating peripheral  CTL two weeks after  starting

therapy  in  advanced  HCC  patients.184 The  following  randomized,  controlled  phase  III  trial

(HIMALAYA),  which  tested  STRIDE and  Durvalumab  monotherapy  against  standard  of  care

Sorafenib  in  treatment-naïve  advanced  HCC,  demonstrated  superior  OS of  STRIDE against

Sorafenib (16.43 months vs. 13.77 months) and non-inferiority of Durvalumab monotherapy to

Sorafenib.185 Following this trial, STRIDE received FDA approval and was included as a 1st line

option for advanced HCC in clinical practice guidelines.186-188

In non-controlled phase I/II studies on pretreated CCA, the combination of Nivolumab/Ipilimumab

surprisingly  did  not  cause superior  ORR and mOS (23% and  5.7  months,  respectively)189 to

Nivolumab monotherapy (22% and 14.2 months).190 This may have resulted from differences in

study  ORR  assessment  and  patient  exclusion  criteria189 as  well  as  relatively  low  doses  of

Ipilimumab (1 mg/kg vs. 3 mg/kg in pretreated HCC181). In another phase II study including Asian

patients  with  advanced  and  pretreated  CCA,  combination  therapy  of  Durvalumab  and

Tremelimumab in comparison to Durvalumab monotherapy managed to obtain moderately higher

ORR (10.8% vs. 4.8%) and a comparable safety profile.191 Further studies are required to access

the leverage of combined ICI therapy in CCA. 

Combining ICI and Targeted Therapy (TKI or antiangiogenic drugs)

Tumor angiogenesis is one of the essential hallmarks of cancer.192 Hypoxia during tumor growth

triggers expression of proangiogenic factors such as VEGF by upregulation of hypoxia-inducible

factor  proteins  and  causing  neoangiogenesis.193 Additionally,  VEGF  facilitates  essential

immunosuppressive  functions  by  undermining  leukocytes-endothelial  cell  adhesion  and  DC

maturation, impairing CTL proliferation and function by promoting their exhaustion and increases

Treg infiltration.194 Normalizing this VEGF-suppressed TME by using inhibitors of VEGF (antibodies

e.g. bevacizumab or VEGFR-targeting multikinase inhibitors e.g. Sorafenib or Lenvatinib) might

synergize with anti-PD-1/PD-L1 therapy to more effectively unleash CTL-mediated cancer cell

killing.195 Another  advantage  of  this  combination  therapy  might  be  that  ICI  counteracts

intratumoral PD-L1 upregulation caused by anti-angiogenic therapy.196 Anti-VEGF therapy itself

might therefore create an even more immunosuppressive TME, which could be unleashed by ICI

therapy.  Combinations  of  antiangiogenic  and  ICI  therapy  have  already  been  successfully

introduced in other solid cancers such as renal cell carcinoma.197,198
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Combination of the PD-L1 inhibitor Atezolizumab with Bevacizumab demonstrated longer PFS

then Atezolizumab alone in a phase Ib study with previously untreated advanced HCC patients.172

Its successor, the randomized phase III trial IMbrave150 demonstrated significantly reduced risk

to die in the patient groups treated with combination therapy, with significantly longer PFS, higher

ORR and 20% more disease control  until  the time of first  analysis.199 The significant  survival

benefit of anti-PD-L1 plus anti-VEGF therapy was confirmed in the updated data analysis from

2022200 and with the China-based ORIENT-32 phase III  trial,  which also reported significantly

prolonged  OS  and  PFS  when  treated  with  anti-PD-L1  Sintilimab  and  IBI305  (Bevacizumab

biosimilar).201 In addition, the randomized phase III IMbrave050 trial demonstrated that adjuvant

treatment with the Atezolizumab/Bevacizumab combination after resection or ablation improved

recurrence-free survival versus active surveillance,202 further highlighting the growing impact of

ICI in curative treatment settings.

Because  ICI  combination  with  anti-VEGF  antibodies  was  successful,  it  seemed  evident  to

combine ICI with TKI, as they already have a significant beneficial effect on their own and block

more  pathways  than  VEGFR1/2  alone.  Surprisingly,  Atezolizumab  in  combination  with

Cabozantinib  (COSMIC-312),  although  demonstrating  significantly  prolonged  PFS,  failed  to

improve OS and caused more treatment-associated adverse effects.203 Along the same lines, the

combination  of  Pembrolizumab  and  Lenvatinib  in  LEAP-002  failed  to  meet  the  pre-specified

boundaries for superiority in both OS and PFS.204 The first trial showing significant advantages for

combination of ICI and TKI over TKI alone for both OS and PFS was the randomized, open-label

phase III  CARES-310 trial,  comparing dual  therapy of  anti-PD-1 antibody Camrelizumab with

VEGFR2-targeting  TKI  Rivoceranib  (also  known  as  Apatinib)  with  Sorafenib  alone.205 Here,

combination therapy significantly prolonged mOS (22.1 vs. 15.2 months) and PFS (5.6 vs. 3.7

months). The ORR for the combination therapy was 25% and the disease control rate 78% (vs.

54%). Just recently, combination of Nivolumab and Regorafenib demonstrated an impressive 1-

year survival of 80.5% and ORR of 30.5% in a multicenter, single-arm phase II study including

treatment-naïve  patients  with  advanced  HCC,206 clearing  the  way  for  possible  future  1st line

treatments.

Though the efficacy of single-agent anti-angiogenic 207 or ICI therapy in CCA remains limited, their

combination created some encouraging results. For example, in a phase II trial, which included

32 patients with advanced CCA, treatment with Pembrolizumab and Lenvatinib in 2nd line resulted

in  an  ORR of  25% and mOS of  11  months,  which exceeded the  results  from monotherapy

trials.208 

Combination of ICI and Chemotherapy

Conventional  chemotherapy  is  generally  not  recommended  for  HCC  treatment,  as  HCC  is

resistant to the most common regimes and chemotherapy may aggravate underlying cirrhosis,

leading to inconclusive or even negative survival benefits.209 In comparison, Gem/Cis has been
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the standard 1st line chemotherapy for patients  with advanced CCA since the ABC-02 trial  in

2010.7 

While platinum-based chemotherapeutics mainly take effect by inducing apoptosis due to DNA

strand breaks,210 they have immunostimulatory properties as well.211,212 Cisplatin has been shown

to increase the expression of MHC class I antigens on cancer cells and tumor-associated DC,

recruit effector cells to the TME, increase cytolytic activity of CTL and reduce the infiltration of

immunosuppressive  cells.211 Additionally,  Gemcitabine  may  reduce  the  number  of  MDSC  in

tumor-bearing mice.213 Since the TME of CCA has been described as mainly immunosuppressive

with high infiltration of immunosuppressive cells or immune-exclusive with low T cell infiltration

and low major histocompatibility complex (MHC)-I/PD-L1 expression,214 combination of immune

checkpoint inhibition with Gem/Cis or other approved chemotherapeutics has been recognized as

a successful anti-tumor concept. Furthermore, the concept was already proven in other advanced

tumors such as NSCLC215 and triple-negative-breast cancer.216

Therefore, different combinations of ICI and chemotherapy have been evaluated in early-phase

clinical  trials  throughout  the  last  years.217-220 The  most  promising  one  tested  three  different

sequences of  Gem/Cis plus  Durvalumab alone or  with  Tremelimumab.  Notably,  patients  with

immediate combination of Gem/Cis with Durvalumab alone or Durvalumab plus Tremelimumab

displayed high objective responses of approximately 70%.220 While adding Tremelimumab to the

regimen achieved no additional  benefit  in ORR and OS, the combination of Durvalumab and

Gem/Cis has been further explored in the phase III TOPAZ-1 trial,221 which tested the anti-PD-L1

drug Durvalumab with chemotherapy (n=341) compared to placebo with chemotherapy (n=344)

in patients with advanced CCA. The OS over 24 months was 24.9% for the Durvalumab cohort

and 10.4% for the placebo cohort, with an ORR of 26.7% and 18.7% respectively. The median

PFS for Durvalumab was 7.2 months compared to 5.7 months in patients treated with placebo.

The  achieved  results  and  safety  profiles  were  comparable  with  above  mentioned  ICI

monotherapy trials in HCC. Because of these encouraging results, TOPAZ-1 became the new

standard therapy in advanced CCA.222 Results from KEYNOTE-966, a phase III trial testing the

combination  of  Pembrolizumab  and  Gem/Cis  in  1st line  setting  in  CCA,  were  similarly

encouraging.223 Consequently, combining ICIs with chemotherapy became standard of care for

advanced CCA.224

Mechanisms of acquired (secondary) resistance

Tumors  that  initially  respond  to  ICI  therapy  often  develop  acquired  or  secondary  resistance

through  adaptive  mechanisms.225 Considering  the  fact  that  due  to  availability  of  advanced

combinations more liver cancer patients are responding to ICI therapy, it can be expected that a

substantial  amount  of  patients  will  also  have  to  deal  with  acquired  resistance.48 As  ICI

combination  therapies  have  only  been  used  in  standard  settings  so  far,  rates  of  acquired

resistance have not  yet been widely  reported for  liver  cancer. In other tumor types, acquired

resistance has been shown to affect up to 65% of patients in up to 4 years of follow-up.225
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The  specific  mechanisms  driving  acquired  resistance  are  in  many  aspects  still  elusive  –

especially regarding primary liver cancer – but are to some degree overlapping with components

of  primary  resistance.226 Collected  clinical  reports  suggest  reduced TAA availability,  disrupted

antigen presentation, altered IFNγ signaling, promotion of an excluded/immunosuppressive TME

and upregulation of (alternative) checkpoints as possible mechanisms.225 In addition, emerging

data suggests that  a considerable proportion of  patients  develop anti-drug antibodies  against

certain ICI.227 For example, 28% of tested patients developed antibodies against Atezolizumab

during IMbrave150,146 while less than 5% of patients developed antibodies against Durvalumab or

Tremelimumab  during  the  HIMALAYA  trial.185 While  the  impact  of  these  drug-neutralizing

antibodies  on  primary  and  secondary  resistance  is  not  completely  understood,  they  might

interfere with the treatment  efficacy as patients  that  develop antibodies against  Atezolizumab

early during therapy are less likely to benefit.146,228

These mechanisms are often driven by escape mutations.  For example,  tumors can lose the

encoding sequences for key TAAs related to the initial ICI response by sub-clone elimination or

genomic alterations.229,230 In consequence, expanding adapted tumor clones are more protected

from antigen-associated CTL-killing. Furthermore, new mutations can favor a less immunogenic

TME.  Alterations  of  beta-2-microglobulin  (B2M)  lead  to  reduced  or  disturbed  MHC  class  I

expression on tumor cells, which hinders effective antigen-recognition by APC, and are common

findings in lung cancer and melanoma patients with acquired resistance.231-233.  In line with this,

mutations in Janus kinase 1 and 2 (JAK1/2)  disrupt the IFNγ (released from effector  T cells)

signaling pathway in tumor cells, reducing the expression of MHC class I and PD-L1 and thereby

hindering  tumor  cell  killing.234,235 Another  mechanism  for  acquired  resistance  is  the

immunosuppressive  reshaping  of  the  TME  by  immunosuppressive  cytokines.  Loss  of  tumor

suppressor  PTEN or  activity  of  the  Wnt/β-catenin  pathway,  which are also linked  to  primary

resistance (see above), can lead to immunosuppressive cytokine production and defective DC

priming.86,236 Upregulation of alternative immune checkpoints such as TIM-3 or LAG-3 contributes

to T cell exhaustion237,238 and their  expression on (potential)  APC can negatively influence the

antigen presentation mechanisms.239-241

Since data on acquired resistance is still sparse in liver cancer, the question remains, if (and how)

to treat patients after acquired therapy failure. For this, a distinct analysis and knowledge of the

therapy-altered TME is likely to be key. In clinical practice, re-challenge with a different regimen

of ICI after  failure of  first-line ICI therapy in HCC is oftentimes considered and demonstrated

(some)  efficacy.242 Alternatively,  novel  combination therapies with the possibility  to completely

eliminate the tumor might be able to prevent acquired resistance altogether.

The future of ICI therapy – how to heat up the TME

As discussed in the previous paragraphs, single ICI therapy most likely shows benefit for patients

when the tumor has a  hot  TME. As the majority of primary liver cancer displays an immune-

negative TME,214,243 which can be caused by various altered and dysregulated processes during
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the  cancer-immunity  cycle,244 altering  these  hallmark  steps  and  reshaping  the  TME  using

additional agents might open a window of opportunities for ICI to work its magic.52,245,246 Recently,

established double-combination therapies have already shown promising effects (see above), but

current research suggests to explore even more complex therapy regimes. Here, we focus on the

most prominent developments and provide an overview on preclinically and clinically explored

therapeutic options (Figure 1). However, as a note of caution, HCC – and to some extent also

CCA  –  develop  in  a  chronically  injured,  oftentimes  fibrotic  or  cirrhotic  liver;  any  attempt  to

reinforce inflammation (to “heat  up” the TME) needs to consider  the risk  of  aggravating liver

inflammation and fibrosis, i.e. aggravating the underlying liver disease.115

Inducing immunogenic cell death

Immunologically cold tumors are characterized by lack of TAA and APC-recruiting danger signals

and therefore show absence of overall immune cell infiltration, which in turn makes beneficial ICI

therapy  highly  unlikely.50 While  the  main  goal  of  established  primary  liver  cancer  treatment

options,  such as chemotherapeutics, targeted therapy and local  treatment,  is the reduction of

tumor  burden,  they also have been shown to  stimulate  tumor-specific  immune responses by

immunogenic cell death (ICD).247 ICD is a form of regulated cell death, which triggers adaptive

immune responses in the host and is characterized by simultaneous release of TAA as well as

immunostimulatory DAMP (such as heat shock proteins, high-mobility-group protein B1 [HMGB1]

and adenosine triphosphate [ATP]), which recruit DC and other APC to the tumor.248

The possibilities of radiation therapy include SBRT (stereotactic body radiation), SIRT (selective

internal radiotherapy) and transarterial radioembolization (TARE). While liver toxicity is a limiting

factor especially for patients with underlying liver disease, local application is a substantial option

for patients with primary liver cancer.4 Apart from the induced DNA damage to the tumor cells,

which is the primary effect, radiation has been shown to improve TAA and DAMP release as well

as  type  1  IFN  production,  followed  by  DC  infiltration  and  maturation  and  increased  CTL

infiltration.249 Furthermore, radiation can facilitate the upregulation of MHC class I expression.250

Some encouraging results have already been detected for combination of Nivolumab/SIRT and

Nivolumab/Ipilimumab/SBRT in HCC.251,252 Notably, radiation can also have immunosuppressive

effects on the TME, which we will discuss below. 

Conventional  chemotherapy,  especially  platin-based therapy regularly used in CCA treatment,

can be an effective inducer of ICD as well.253 In HCC, local chemotherapy application to the tumor

via transarterial chemoembolization (TACE) remains a standard treatment option for intermediate

stages  and  has  been  shown  to  upregulate  proinflammatory  pathways.254 In  this  regard,  the

EMERALD-1 phase III trial very recently demonstrated significantly prolonged PFS when TACE-

eligible  patients  with  unresectable  HCC  were  additionally  treated  with  Durvalumab  and

Bevacizumab,  possibly  laying  the  foundation  for  improved standard   treatments  of  advanced

HCC.255 Other locoregional therapies – such as radio frequency or thermal ablation – also induce
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immunogenic cell death characterized by the release of DAMPs like heat shock proteins256,257 and

combination therapy with ICI is being investigated in great depth in this regard.254 

Oncolytic viruses (OV) are another approach to induce ICD, engineered to exclusively infect and

lyse tumor cells.258 While there is up to this point  only preclinical  evidence for successful  OV

application in CCA, they have been used in clinical HCC trials.259 The most prominent, JX-594

(commercially: Pexa-Vac), an oncolytic pox virus vaccine additionally expressing GM-CSF and β-

galactosidase  for  APC  recruitment,  was  shown  to  induce  antibody-mediated  cancer  cell

cytotoxicity and TC activation in a rabbit VX2 tumor model as well as in humans with various solid

tumors.260 While it also demonstrated dose-dependent improved survival in a dose-finding trial,261

JX-594 did not improve survival as 2nd line therapy after HCC patients progressed on Sorafenib,

although  increased  TC  responses  were  observed  in  the  therapy  arm.262 Nevertheless,  a

combination  with  Nivolumab  to  amplify  ICI  treatment  efficacy  is  currently  under  investigation

(NCT03071094).

APC recruitment, activation and TC priming

Following the release of TAA and DAMP, the recruitment and activation of APCs are the next

essential  steps in the cancer immunity  cycle.  Cytokines,  such as FMS-like tyrosine kinase 3

ligand (Flt3L), are able to attract DC, which can subsequently be activated by adjuvants, like Toll-

like  receptor  (TLR)  agonists.263 PolyIC,  a  synthetic  TLR3  agonist,  induces  activation  and

maturation of conventional DC type 1264 and is currently tested in combination with anti-PD-1 in

HCC patients (NCT03732547). The TLR9 agonist CpG265 has not yet been explored in clinical

HCC, but intratumoral injection of CpG into orthotopic and ectopic HCC mouse models together

with anti-OX40 significantly slowed down tumor growth and inhibited Treg and MDSC infiltration to

the tumor  site  while  increasing CTL infiltration.266 The CD40 receptor,  which is expressed on

activated APC, drives activation of CTLs by engaging with its ligand CD40L, leading to optimized

priming with clonal T cell expansion and CTL infiltration when combined with chemotherapy.267

The combination of anti-PD1, CD40 agonist and Gemcitabine/Cisplatin chemotherapy has been

shown to significantly improve survival when compared with chemotherapy treatment alone in

preclinical  CCA  models.268 A  similar  combination  is  currently  explored  in  a  Phase  1/2  trial

(NCT05849480). 

Boost infiltration of immune cells

In an excluded TME, immune cells linger at the border of the tumor and do not enter the tumor

stroma, which is further exacerbated by reduced pH, hypoxia and nutrient availability.49 Treatment

against VEGF, with antibodies or MKI, and also TACE have shown to positively influence the

chaotic  angiogenesis  of  the  tumor  microenvironment,  which  helps  immune  cell  infiltration.269

Additionally to other immune effects, Yttrium-90 radioembolization has been shown to upregulate

the Chemokine (C-C motif) ligand 5 (CCL5) and Chemokine (C-X-C motif) ligand 16 (CXCL16)

pathway in the tumors of HCC patients, which led to boosted CTL and NK cell infiltration.270 
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The  formation  of  a  tumor  immune  barrier,  containing  CAF  and  secreted  phosphoprotein  1

(SPP1)+  macrophages, at the tumor border of HCC patients correlates with reduced response to

anti-PD-1  therapy271 and  therefore,  stroma-modifying  therapy  is  an  interesting  approach  for

combination therapy.  While the data on CAF therapy in liver cancer is still sparse, targeting CAF-

specific  proteins  like  fibroblast  activation  protein  (FAP),  repolarization  of  the  myofibroblastic

phenotype and targeting of CAF-derived signals seems promising.272 For example, combination of

a CXCR4 inhibitor (receptor for CAF-produced CXCL12) and anti-PD-L1 reduced tumor growth in

a mouse pancreatic cancer model  273 and combination of TGF-β blockade and PD-L1 antibody

therapy increased T cell  infiltration into the tumors of immune excluded mouse breast cancer

models.274

Counteracting immunosuppressive adaptations

MKI are well established as a 1st and 2nd line therapy option for patients with advanced HCC.209 In

a substantial proportion of selected patients with CCA, molecularly targeted therapy may be an

option, with several approved drugs either targeting oncogenic fibroblast growth factor receptor 2

(FGFR2) fusions or gain-of-function variants of IDH1.275 Their influence on the VEGFR pathway is

thought to increase influx of T cells to the TME and patients with HCC already greatly benefit from

the VEGF(R)-targeting therapy and ICI combination.(Table 2) Nevertheless, preclinical HCC data

suggests also immunosuppressive effects.  Sorafenib  promotes  immunosuppression  by PD-L1

upregulation and CXCR4- mediated infiltration of Treg  and M2-polarized macrophages.276 In this

case, treatment with anti-PD1 only showed additional effects when combined with Sorafenib and

anti-CXCR4 but not Sorafenib alone, making a case for targeting immunosuppressive pathways

and  cells  as  an  important  feature  of  combination  immunotherapy.276 Furthermore,  radiation

therapy can also shape the TME in an immunosuppressive way.263 For example, post-TACE TME

analysis of HCC patients showed reduced numbers of infiltrating CTL and increase triggering

receptor expressed on myeloid cells (TREM)2+ TAM compared to pre-TACE TME.277 Therefore, if

ICD is induced, immunosuppressive counter-regulation might be a consequence. For example,

the Flt3L-dependend infiltration of DC to the TME may be accompanied by Treg influx.278

Hence, the importance of counteracting immunosuppressive cells has been widely discussed and

future combination therapies have to address these issues. Combinations of anti-PD1 antibodies

with  anti-CTLA-434 or  VEGF-inhibitors195 have  been  shown to  counteract  Treg and  combining

doxorubicin (commonly used in TACE) with a mitophagy-inducing drug also reshaped the TME

towards more memory and effector T cells and less Treg in a mouse model of HCC.279

Blocking immunosuppressive myeloid cells has also been explored in the field.  An interesting

preclinical example has been recently published: in an HCC mouse model, ferroptosis induction

resulted in increased CTL infiltration which was counteracted by tumor cell PD-L1 upregulation.

While  combination  with  anti-PD-1  therapy  did  result  in  a  modest  survival  benefit,  only  the

combination  of  ferroptosis  induction,  anti-PD1  and  blockade  of  C-X-C-chemokine  receptor  2

(CXCR2)-mediated  MDSC  infiltration  led  to  a  long-lasting  anti-tumor  response.280 Also,  the
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combination of anti-CXCR2 and anti-PD-1 was shown to be very effective in a preclinical model of

steatosis-induced HCC.281 This  combination is currently  under  clinical  investigation in HCC.282

Colony stimulating factor 1 (CSF1) blockade also represents a new combination target currently

approached in liver cancer therapy (NCT05438420) – it has been shown to prevent migration and

activation  of  TAM and enhanced  anti-tumor  immunity  when  combined  with  anti-PD-L1  in  an

osteopontin-overexpressing HCC mouse model.283 Similarly, PD-L1 expressing TAM in concert

with MDSC facilitated tumor growth in a murine CCA model and only inhibition of TAM infiltration

(via CSF1R blockade) combined with MDSC depletion resulted in response to PD-1 blockade.284

TGF-β is one of the most prominent cytokines to promote tumor growth and immunosuppressive

functions in the TME285 and TGF-β inhibitors have been hypothesized to make the TME more

approachable for other immunotherapies. Bintrafusp alfa, a bifunctional fusion protein combining

anti-PD-L1 with a ‘TGF-β-trap’, has shown some favorable results in 2nd line setting286 for CCA.

Contradictory, a number of clinical trials with TGF-β inhibitor and ICI combination did fail to show

enhanced anti-tumor immunity - the combination with ICD inducers might be essential  for this

therapy to work.287

The  expression  of  alternative  checkpoints  such  as  TIM-3  and  LAG-3 also  contributes  to  an

immunosuppressive TME.225 Recently,  combination  of  Nivolumab and Relatlimab (anti-LAG-3)

demonstrated favorable PFS compared to Nivolumab monotherapy in  patients  with  advanced

treatment-naïve melanoma in a phase III trial.288 Compared to this, encouraging trial data on anti-

TIM-3 is limited. First results on TIM-3 antibody monotherapy in a phase I trial in advanced solid

cancers  showed  only  little  response.289 In  advanced  MSI-H/dMMR  tumors  (phase  Ib),

monotherapy as well as combination with anti-PD-(L)1 showed surprisingly high response rates

up to 45%.290 Of note, responses were always more favorable if patients initially responded to

anti-PD-(L)1  therapy,  highlighting  the  potential  use  of  alternative  ICI  therapy  in  acquired  ICI

resistance.225 In primary liver cancer, combination of anti-TIM3 with anti-PD1 is currently under

investigation (NCT03680508).

Outlook - decision making based on the TME and challenges to overcome

Looking back on the sheer amount of options for combination therapy, we want to emphasize on

the importance of hypothesis-driven and evidence-based decisions to choose adequate therapies

for individual primary liver cancer patients, which is in line with what other authors proposed. 246,291

Given the  fact  that  advanced combinations  of  three  substances or  more  are currently  under

investigation,  the  potential  increase in  treatment-related  toxicity,  immune-adverse events  and

therapy costs make it  even more important  to identify  groups of patients  that  are in need of

complex combinations to achieve successful anti-tumor immunity. We and others52,246 propose the

composition of the TME to be one of the most important indicators for rational therapy decisions.

While patients with a cold, immune-deserted TME might benefit from ICD induction, patients with

an immunosuppressive TME might benefit from MDSC blockade. Until we can use this kind of

decision making in clinical practice, the most pressing matter to explore are not only possible
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therapies but especially biomarkers to validate therapy decisions. For personalized TME-based

therapy decisions, in-depth analysis of the individual tumor with DNA mutation variances, RNA

and protein expression profiles as well as spatial distribution of tumor cells, CAFs and immune

cells would be necessary –not only once but repeatedly, to keep track of changes occurring in

response to therapy.246 Understandably, it is currently not possible to apply these techniques to

every liver cancer patient treated with ICI. Therefore, one of the most important challenges for the

future  of  ICI  combination  therapy  is  the  validation  of  predictive  TME-based  biomarkers.292,293

Fortunately, recently published studies already started to address these demands.206,294

In summary, ICI combination therapies are able to overcome low response rates and survival

benefits of ICI monotherapy and revolutionized the treatment options for patients with advanced

primary liver cancer. Personalized treatment decisions based on TME-related biomarkers might

further improve prediction of therapy efficacy and thereby increase therapy responses and reduce

unnecessary treatments (and their side effects).

Figure Legends

Figure  1  |  Re-shaping  the  tumor  microenvironment  (TME)  to  re-establish

immunosurveillance  in  primary  liver  cancer  .  During  the  cancer  immunity  cycle26,

immunogenic cell death (ICD) and cells of innate immunity recruit professional antigen-

presenting  cells  (APC)  to  the  tumor  (1).  APC  process  and  present  tumor-associated

antigens  (TAA)  during  their  maturation  (2)  and  relocate  to  the  tumor-draining  lymph

node (3), where they cross-present and prime naïve cytotoxic T lymphocytes (CTL) (4).

Following  clonal  expansion  (5),  TAA-experienced  activated  CTL  migrate  to  the  tumor

and  infiltrate  the  TME  (6),  where  they  recognize  and  kill  tumor  cells  (7).  Various

mechanisms  of  tumor  immune  escape  are  implemented  in  the  TME,  which  is

represented in four different schematic manifestations (based on 50). While the hot TME

(lower left)  shows high CTL infiltration, programmed death ligand 1 (PD-L1) expression

and IFNγ signaling,  cold TME (upper  left)  display  near  to  no CTL infiltration  or  PD-L1

expression. The excluded TME (upper right) is rich in cancer-associated fibroblasts and

T cells  in  the periphery  but  not  in  the tumor  center,  and the  immunosuppressive  TME

(lower right) shows heightened infiltration of immunosuppressive cells. TME frequencies

in  HCC and  CCA are  based  on  214,243.  Established  and  experimental  cancer  therapies

combined with immune checkpoint inhibitor therapy (blue boxes) may alter the TME and

facilitate reentry into the cancer-immunity cycle. Created with biorender.com 

CAF,  cancer-associated  fibroblasts;  CCA,  cholangiocellular  carcinoma;  CTLA-4,

Cytotoxic T-lymphocyte-associated protein 4; CXCR, C-X-C-chemokine receptor; DAMP,

danger-associated  molecular  patterns;  Flt3l,  FMS-like  tyrosine  kinase  3  ligand;  IL,

interleukin;  FGFR,  fibroblast  growth  factor  receptor;  HCC,  hepatocellular  carcinoma;

LAG-4,  lymphocyte-activation  gene  3;  MHC,  major  histocompatibility  complex;  MKI,

multikinase inhibitor; PD-(L)1, programmed death (ligand) 1; TGF-β, tumor growth factor
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beta; TIM-3, T cell immunoglobulin and mucin domain-containing molecule 3; TLR, toll-

like receptor; VEGF(R), vascular endothelial growth factor (receptor)

Figure  2  |  Intrinsic  and  extrinsic  mechanisms  of  primary  resistance  .  Tumor  intrinsic

mechanisms are caused by mutations of  genes driving resistance-associated signaling

pathways  (1)  that  impair  function  and  efficacy  of  the  immune  response  by  enhancing

immunosuppressive properties of regulatory T cells (T reg) (2) through stimulated release

of immunosuppressive cytokines (3).  Reduced availability of tumor-associated antigens

(TAA)  (4)  causes  disrupted  antigen  presentation  resulting  in  impaired  activation  of

cytotoxic T lymphocytes (CTL) (5). Tumor extrinsic mechanisms involve overexpression

of Programmed Cell Death Ligand 1 (PD-L1) and alternative checkpoints (6) that reduce

cytotoxicity  of  CTL  (7),  and  recruitment  of  immunosuppressive  cells  such  as  cancer-

associated  fibroblasts  (CAF),  myeloid-derived  suppressor  cells  (MDSC),  tumor-

associated  macrophages  (TAM) and T reg,  that  prevent  tumor  infiltration  by  T cells  and

NK cells  (8).  TAM can also promote tumor  proliferation  (9)  and angiogenesis.  Created

with biorender.com

CAF, cancer-associated fibroblasts; CCL, C -C-chemokine; DC, dendritic cell; IFN, Interferon; IL,

interleukin;  MDSC, myeloid-derived suppressor  cells;  NK, natural  killer;  PD-(L)1,  programmed

death (ligand) 1; PTEN, phosphatase and tensin homolog; TAM, tumor associated macrophage;

TGF-β, tumor  growth factor  beta;  TIM-3, T cell  immunoglobulin  and mucin domain-containing

molecule 3; Reg, regulatory T cell; VEGF, vascular endothelial growth factor
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