Intraprocedural hologram support with mixed-reality technique in endoscopic ultrasound-guided biliary drainage

Endoscopic ultrasound-guided biliary drainage (EUS-BD) is being used increasingly frequently in patients with benign biliary diseases [1, 2]. However, puncturing and exploring the intrahepatic bile duct, which runs in a complicated tortuous fashion, can be challenging using two-dimensional (2D) images of EUS and fluoroscopy. Successful EUS-BD is necessary to understand the biliary anatomy, identify the appropriate puncture point, and advance the guidewire smoothly. Thus, it would be ideal to have a device that could confirm the bile duct route with a three-dimensional (3D) device during the procedure. Holograms, which are computer-generated graphics models, have recently been used with mixed reality techniques as a surgical navigation tool [3, 4]. Herein we report the first case of EUS-BD using a 3D hologram of the bile duct.

A 26-year-old woman with a history of pancreateoduodenectomy for a solid pseudopapillary neoplasm of the pancreas presented with cholangitis due to a biliujeunal anastomotic stricture. We decided to perform an EUS-guided hepaticojejunostomy. 3D images of the biliary tract were created from magnetic resonance cholangiopancreatography (Fig. 1) using SYNAPSE VINCENT (Fuji Film Medical Co., Ltd., Tokyo, Japan). Data were converted into 3D polygon data (Fig. 2) using the Holoeys XR system (Holoeys Inc., Tokyo, Japan) installed on a HoloLens head-mounted display (Microsoft Co., Redmond, Washington, USA) (Fig. 3). Although the bile duct was thin and complicated, the operator wearing the head-mounted display was able to identify the appropriate puncture point from the 3D cholangiogram projected in space (Fig. 4) and successfully complete the procedure (Video 1).

Fig. 1 Magnetic resonance cholangiopancreatography (MRCP) image of the biliary tract.

Fig. 2 3D cholangiographic image created from MRCP projected on a HoloLens head-mounted display.

Fig. 3 The HoloLens head-mounted display.

Fig. 4 The image shows the operator wearing a head-mounted display, identifying the appropriate puncture point using the 3D cholangiogram projected in space.

Video 1 Endoscopic ultrasound-guided biliary drainage using a 3D cholangiographic image projected in space as a reference.
To our knowledge, this is the first report of EUS-BD using a 3D hologram. A 3D cholangiogram may make it easier for some to understand the biliary anatomy than a 2D image. This is an innovative technology that allows EUS-BD to be safely performed.

Endoscopy_UCTN_Code_TTT_1AS_2AD

Conflict of Interest

T. Itoi and T. Tsuchiya are consultants for Gadelus Medical Corporation. M. Sugimoto is an employee of Holoeys, Inc. The other authors declare no financial relationships relevant to this study.

The authors

Kazumasa Nagai1, Maki Sugimoto2, Takasyoshi Tsuchiya1, Ryosuke Tonozuka1, Shuntaro Mukai1, Kenjiro Yamamoto1, Takao Itoi1
1 Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
2 Okinaga Research Institute, Teikyo University, Tokyo, Japan

Corresponding author

Takao Itoi, MD
Department of Gastroenterology and Hematology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
itoi@tokyo-med.ac.jp
itoi_takao@gmail.com

References


Bibliography

Endoscopy 2024; 56: E550–E551
DOI 10.1055/a-2335-6642
ISSN 0013-726X
© 2024. The Author(s).
This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited.
(https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

ENDOSCOPY E-VIDEOS
https://eref.thieme.de/e-videos

E-Videos is an open access online section of the journal Endoscopy, reporting on interesting cases and new techniques in gastroenterological endoscopy. All papers include a high-quality video and are published with a Creative Commons CC-BY license. Endoscopy E-Videos qualify for HINARI discounts and waivers and eligibility is automatically checked during the submission process. We grant 100% waivers to articles whose corresponding authors are based in Group A countries and 50% waivers to those who are based in Group B countries as classified by Research4Life (see: https://www.research4life.org/access/eligibility/).

This section has its own submission website at https://mc.manuscriptcentral.com/e-videos