Horm Metab Res 2008; 40(9): 583-587
DOI: 10.1055/s-0028-1082084
Editorial

© Georg Thieme Verlag KG Stuttgart · New York

Insulin Resistance: The Cardiovascular Aspect

H. Dominguez 1 , A. Flyvbjerg 2
  • 1Cardiology Department P, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
  • 2Medical Research Laboratories, Clinical Institute & Medical Department M (Diabetes & Endocrinology), Aarhus University Hospital, Denmark
Further Information

Publication History

received 03.03.2008

accepted 07.04.2008

Publication Date:
15 September 2008 (online)

Introduction

This Special Issue contains a series of reviews and original articles covering broadly, although not exhaustively, the mechanisms that link insulin resistance (IR) to cardiovascular diseases.

The association between diabetes and cardiovascular disease (CVD) has been recognized for decades [1] [2] [3] [4]. Furthermore, once coronary artery disease is established, outcomes are poor in patients with diabetes undergoing percutaneous revascularization [5] [6] making coronary by-pass a preferred option for these patients [7].

Although the cardiovascular risk in diabetes has been well established for a long time, it was disappointing to find that earlier intervention trials aiming at correction of hyperglycemia did not bring any substantial improvements in terms of spared cardiovascular events as expected [8] [9]. While intensive poly-pharmacological intervention has been shown to reduce the development of vascular complications [10] and mortality [11], it is not possible to attribute these benefits to correction of hyperglycemia per se. Accordingly, the results of the ACCORD study [12], aiming at establishing the cardiovascular profit of full normalization of glycemia control, was awaited with interest. Surprisingly, the intensive blood glucose control sub-study in the ACCORD-trial was stopped prematurely in February 2008, due to safety concerns (www.diabetes.org/for-media/pr-ada-statement-related-to-accord-trail-announcement-020608.jsp). The exact reasons for the increased mortality in the intensive treatment arm are not yet identified. Nevertheless, it has become clear that IR rather than the overt diabetes influences the cardiovascular outcome [13] [14] [15] [16] [17]. Conversely, the presence of hyperglycemia at the moment of a cardiac event confers a mortality risk that exceeds by far that of having overt diabetes, even though this does not imply that the patient will develop diabetes [18]. Altogether, it seems evident that hyperglycemia exerts different roles in different situations, ranging from being just a marker of IR, or a marker of lack of insulin, or both [19] to being a major trigger of cardiovascular injury [20] [21].

This issue deals with some key mechanisms leading to CVD taking IR as reference, rather than diabetes or the metabolic syndrome, although still taking into consideration that these conditions share overlapping features [19] [22] [23] [24] [25].

References

  • 1 Rytter L, Troelsen S, Beck-Nielsen H. Prevalence and mortality of acute myocardial infarction in patients with diabetes.  Diabetes Care. 1985;  8 230-234
  • 2 Cooper RS, Pacold IV, Ford ES. Age-related differences in case-fatality rates among diabetic patients with myocardial infarction. Findings from National Hospital Discharge Survey, 1979–1987.  Diabetes Care. 1991;  14 903-908
  • 3 Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction.  N Engl J Med. 1998;  339 229-234
  • 4 Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management.  JAMA. 2002;  287 2570-2581
  • 5 Javaid A, Steinberg DH, Buch AN, Corso PJ, Boyce SW, Pinto Slottow TL, Roy PK, Hill P, Okabe T, Torguson R, Smith KA, Xue Z, Gevorkian N, Suddath WO, Kent KM, Satler LF, Pichard AD, Waksman R. Outcomes of coronary artery bypass grafting versus percutaneous coronary intervention with drug-eluting stents for patients with multivessel coronary artery disease.  Circulation. 2007;  116 I200-I206
  • 6 Flaherty JD, Davidson CJ. Diabetes and coronary revascularization.  JAMA. 2005;  293 1501-1508
  • 7 King 3rd SB, Smith Jr SC, Hirshfeld Jr JW, Jacobs AK, Morrison DA, Williams DO, Feldman TE, Kern MJ, O’Neill WW, Schaff HV, Whitlow PL, Adams CD, Anderson JL, Buller CE, Creager MA, Ettinger SM, Halperin JL, Hunt SA, Krumholz HM, Kushner FG, Lytle BW, Nishimura R, Page RL, Riegel B, Tarkington LG, Yancy CW. 2007 Focused Update of the ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: 2007 Writing Group to Review New Evidence and Update the ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention, Writing on Behalf of the 2005 Writing Committee.  Circulation. 2008;  117 261-295
  • 8 UK Prospective Diabetes Study (UKPDS) Group . Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).  Lancet. 1998;  352 837-853
  • 9  . Effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. VIII. Evaluation of insulin therapy: final report.  Diabetes. 1982;  31 ((Suppl 5)) 1-81
  • 10 Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes.  N Engl J Med. 2003;  348 383-393
  • 11 Goede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes.  N Engl J Med. 2008;  358 580-591
  • 12 Buse JB, Bigger JT, Byington RP, Cooper LS, Cushman WC, Friedewald WT, Genuth S, Gerstein HC, Ginsberg HN, Goff Jr DC, Grimm Jr RH, Margolis KL, Probstfield JL, Simons-Morton DG, Sullivan MD. Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial: design and methods.  Am J Cardiol. 2007;  99 21i-33i
  • 13 Alexander CM, Landsman PB, Teutsch SM, Haffner SM. NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older.  Diabetes. 2003;  52 1210-1214
  • 14 Rewers M, Zaccaro D, D’Agostino R, Haffner S, Saad MF, Selby JV, Bergman R, Savage P. Insulin sensitivity, insulinemia, and coronary artery disease: the Insulin Resistance Atherosclerosis Study.  Diabetes Care. 2004;  27 781-787
  • 15 Tenenbaum A, Adler Y, Boyko V, Tenenbaum H, Fisman EZ, Tanne D, Lapidot M, Schwammenthal E, Feinberg MS, Matas Z, Motro M, Behar S. Insulin resistance is associated with increased risk of major cardiovascular events in patients with preexisting coronary artery disease.  Am Heart J. 2007;  153 559-565
  • 16 Bigazzi R, Bianchi S, Buoncristiani E, Campese VM. Increased cardiovascular events in hypertensive patients with insulin resistance: A 13-year follow-up.  Nutr Metab Cardiovasc Dis. 2008;  18 314-319
  • 17 Jeppesen J, Hansen TW, Rasmussen S, Ibsen H, Torp-Pedersen C, Madsbad S. Insulin resistance, the metabolic syndrome, and risk of incident cardiovascular disease: a population-based study.  J Am Coll Cardiol. 2007;  49 2112-2119
  • 18 Tenerz A, Lonnberg I, Berne C, Nilsson G, Leppert J. Myocardial infarction and prevalence of diabetes mellitus. Is increased casual blood glucose at admission a reliable criterion for the diagnosis of diabetes?.  Eur Heart J. 2001;  22 1102-1110
  • 19 Wilkin TJ. Changing perspectives in diabetes: their impact on its classification.  Diabetologia. 2007;  50 1587-1592
  • 20 Marzio D Di, Mohn A, Martino M de, Chiarelli F. Macroangiopathy in adults and children with diabetes: risk factors (part 2).  Horm Metab Res. 2006;  38 706-720
  • 21 Marzio D Di, Mohn A, Mokini ZH, Giannini C, Chiarelli F. Macroangiopathy in adults and children with diabetes: from molecular mechanisms to vascular damage (part 1).  Horm Metab Res. 2006;  38 691-705
  • 22 Ferrannini E, Balkau B, Coppack SW, Dekker JM, Mari A, Nolan J, Walker M, Natali A, Beck-Nielsen H. Insulin resistance, insulin response, and obesity as indicators of metabolic risk.  J Clin Endocrinol Metab. 2007;  92 2885-2892
  • 23 Maahs DM, Snively BM, Bell RA, Dolan L, Hirsch I, Imperatore G, Linder B, Marcovina SM, Mayer-Davis EJ, Pettitt DJ, Rodriguez BL, Dabelea D. Higher prevalence of elevated albumin excretion in youth with type 2 than type 1 diabetes: the SEARCH for Diabetes in Youth study.  Diabetes Care. 2007;  30 2593-2598
  • 24 Kilpatrick ES, Rigby AS, Atkin SL. Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: “double diabetes” in the Diabetes Control and Complications Trial.  Diabetes Care. 2007;  30 707-712
  • 25 Xu P, Cuthbertson D, Greenbaum C, Palmer JP, Krischer JP. Role of insulin resistance in predicting progression to type 1 diabetes.  Diabetes Care. 2007;  30 2314-2320
  • 26 Simonson GD, Kendall DM. Diagnosis of insulin resistance and associated syndromes: the spectrum from the metabolic syndrome to type 2 diabetes mellitus.  Coron Artery Dis. 2005;  16 465-472
  • 27 Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action.  Nat Rev Mol Cell Biol. 2006;  7 85-96
  • 28 Arnqvist HJ. The role of IGF-system in vascular insulin resistance.  Horm Metab Res. 2008;  40 588-592
  • 29 Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.  Nature. 1980;  288 373-376
  • 30 Shaul PW. Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis.  J Physiol. 2003;  547 21-33
  • 31 Taddei S, Virdis A, Mattei P, Natali A, Ferrannini E, Salvetti A. Effect of insulin on acetylcholine-induced vasodilation in normotensive subjects and patients with essential hypertension.  Circulation. 1995;  92 2911-2918
  • 32 Utriainen T, Malmstrom R, Makimattila S, Yki-Jarvinen H. Methodological aspects, dose-response characteristics and causes of interindividual variation in insulin stimulation of limb blood flow in normal subjects.  Diabetologia. 1995;  38 555-564
  • 33 Stepp DW. Impact of obesity and insulin resistance on vasomotor tone: nitric oxide and beyond.  Clin Exp Pharmacol Physiol. 2006;  33 407-414
  • 34 Rask-Madsen C, King GL. Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes.  Nat Clin Pract Endocrinol Metab. 2007;  3 46-56
  • 35 Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance.  J Clin Invest. 1996;  97 2601-2610
  • 36 Hermann TS, Rask-Madsen C, Ihlemann N, Dominguez H, Jensen CB, Storgaard H, Vaag AA, Kober L, Torp-Pedersen C. Normal insulin-stimulated endothelial function and impaired insulin-stimulated muscle glucose uptake in young adults with low birth weight.  J Clin Endocrinol Metab. 2003;  88 1252-1257
  • 37 Schulman IH, Zhou MS, Jaimes EA, Raij L. Dissociation between metabolic and vascular insulin resistance in aging.  Am J Physiol Heart Circ Physiol. 2007;  293 H853-H859
  • 38 Vallance P, Leone A, Calver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure.  Lancet. 1992;  339 572-575
  • 39 Lin KY, Ito A, Asagami T, Tsao PS, Adimoolam S, Kimoto M, Tsuji H, Reaven GM, Cooke JP. Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase.  Circulation. 2002;  106 987-992
  • 40 Sydow K, Hornig B, Arakawa N, Bode-Boger SM, Tsikas D, Munzel T, Boger RH. Endothelial dysfunction in patients with peripheral arterial disease and chronic hyperhomocysteinemia: potential role of ADMA.  Vasc Med. 2004;  9 93-101
  • 41 Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, Kalea AZ, Lu Y, Rosario RH, Oruganti S, Nikolla Z, Belov D, Lalla E, Ramasamy R, Yan SF, Schmidt AM. Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE mice.  J Clin Invest. 2008;  118 183-194
  • 42 Achan V, Broadhead M, Malaki M, Whitley G, Leiper J, MacAllister R, Vallance P. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase.  Arterioscler Thromb Vasc Biol. 2003;  23 1455-1459
  • 43 Toutouzas K, Riga M, Stefanadi E, Stefanadis C. Asymmetric dimethylarginine (ADMA) and other endogenous nitric oxide synthase (NOS) inhibitors as an important cause of vascular insulin resistance.  Horm Metab Res. 2008;  40 655-659
  • 44 Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase.  Am J Physiol Regul Integr Comp Physiol. 2003;  284 R1-R12
  • 45 Okon EB, Golbabaie A, Breemen C van. Paracrine effects of endothelial cells in a diabetic mouse model: capacitative calcium entry stimulated thromboxane release.  Horm Metab Res. 2008;  40 645-650
  • 46 Figueroa XF, Chen CC, Campbell KP, Damon DN, Day KH, Ramos S, Duling BR. Are voltage-dependent ion channels involved in the endothelial cell control of vasomotor tone?.  Am J Physiol Heart Circ Physiol. 2007;  293 H1371-H1383
  • 47 Yashiro Y, Duling BR. Integrated Ca(2+) signaling between smooth muscle and endothelium of resistance vessels.  Circ Res. 2000;  87 1048-1054
  • 48 Bolon ML, Kidder GM, Simon AM, Tyml K. Lipopolysaccharide reduces electrical coupling in microvascular endothelial cells by targeting connexin40 in a tyrosine-, ERK1/2-, PKA-, and PKC-dependent manner.  J Cell Physiol. 2007;  211 159-166
  • 49 Rai A, Riemann M, Gustafsson F, Holstein-Rathlou NH, Torp-Pedersen C. Streptozotocin-induced diabetes decreases conducted vasoconstrictor response in mouse cremaster arterioles.  Horm Metab Res. 2008;  40 651-654
  • 50 Brodsky SV, Gao S, Li H, Goligorsky MS. Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells.  Am J Physiol Heart Circ Physiol. 2002;  283 H2130-H2139
  • 51 Cosentino F, Eto M, Paolis P De, Loo B van der, Bachschmid M, Ullrich V, Kouroedov A, Delli Gatti C, Joch H, Volpe M, Luscher TF. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species.  Circulation. 2003;  107 1017-1023
  • 52 Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage.  Nature. 2000;  404 787-790
  • 53 Bellin C, Wiza DH de, Wiernsperger NF, Rosen P. Generation of reactive oxygen species by endothelial and smooth muscle cells: influence of hyperglycemia and metformin.  Horm Metab Res. 2006;  38 732-739
  • 54 Kass DA. Getting better without AGE: new insights into the diabetic heart.  Circ Res. 2003;  92 704-706
  • 55 Kass DA, Shapiro EP, Kawaguchi M, Capriotti AR, Scuteri A, deGroof RC, Lakatta EG. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker.  Circulation. 2001;  104 1464-1470
  • 56 Schalkwijk CG, Brouwers O, Stehouwer CDA. Modulation of insulin action by advanced glycation endproducts: a new player in the field.  Horm Metab Res. 2008;  40 614-619
  • 57 Nishizawa Y, Koyama H. Endogenous secretory receptor for advanced glycation end-products and cardiovascular disease in end-stage renal disease.  J Ren Nutr. 2008;  18 76-82
  • 58 Yoshida T, Yamagishi S, Nakamura K, Matsui T, Imaizumi T, Takeuchi M, Koga H, Ueno T, Sata M. Pigment epithelium-derived factor (PEDF) ameliorates advanced glycation end product (AGE)-induced hepatic insulin resistance in vitro by suppressing Rac-1 activation.  Horm Metab Res. 2008;  40 620-625
  • 59 Colette C, Monnier L. Acute glucose fluctuations and chronic sustained hyperglycemia as risk factors for cardiovascular diseases in patients with type 2 diabetes.  Horm Metab Res. 2007;  39 683-686
  • 60 Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes.  JAMA. 2006;  295 1681-1687
  • 61 Hanefeld M, Ceriello A, Schwarz PE, Bornstein SR. The metabolic syndrome – a postprandial disease?.  Horm Metab Res. 2006;  38 435-436
  • 62 Ceriello A, Davidson J, Hanefeld M, Leiter L, Monnier L, Owens D, Tajima N, Tuomilehto J. Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update.  Nutr Metab Cardiovasc Dis. 2006;  16 453-456
  • 63 Bloomgarden ZT. Insulin resistance, dyslipidemia, and cardiovascular disease.  Diabetes Care. 2007;  30 2164-2170
  • 64 Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95 783 individuals followed for 12.4 years.  Diabetes Care. 1999;  22 233-240
  • 65 Qiao Q, Tuomilehto J, Borch-Johnsen K. Post-challenge hyperglycaemia is associated with premature death and macrovascular complications.  Diabetologia. 2003;  46 ((Suppl 1)) M17-M21
  • 66 Chiasson JL, Gomis R, Hanefeld M, Josse RG, Karasik A, Laakso M. The STOP-NIDDM Trial: an international study on the efficacy of an alpha-glucosidase inhibitor to prevent type 2 diabetes in a population with impaired glucose tolerance: rationale, design, and preliminary screening data. Study to Prevent Non-Insulin-Dependent Diabetes Mellitus.  Diabetes Care. 1998;  21 1720-1725
  • 67 Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients.  Diabetes Care. 2004;  27 155-161
  • 68 Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies.  Eur Heart J. 2004;  25 10-16
  • 69 Major-Pedersen A, Ihlemann N, Hermann TS, Christiansen B, Kveiborg B, Dominguez H, Nielsen D, Rask-Madsen C, Svendsen OL, Køber L, Torp-Pedersen C. Effects of acute and chronic attenuation of postprandial hyperglycemia on postglucose-load endothelial function in insulin resistant individuals: Is stimulation of first phase insulin secretion beneficial for the endothelial function?.  Horm Metab Res. 2008;  40 607-613
  • 70 Schmitz G, Langmann T. Metabolic learning in the intestine: adaptation to nutrition and luminal factors.  Horm Metab Res. 2006;  38 452-454
  • 71 Creutzfeldt W. Entero-insular axis and diabetes mellitus.  Horm Metab Res. 1992;  26 ((Suppl)) 13-18
  • 72 Vilsboll T, Krarup T, Sonne J, Madsbad S, Volund A, Juul AG, Holst JJ. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus.  J Clin Endocrinol Metab. 2003;  88 2706-2713
  • 73 Muscelli E, Mari A, Casolaro A, Camastra S, Seghieri G, Gastaldelli A, Holst JJ, Ferrannini E. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients.  Diabetes. 2008;  57(5) 1340-1348
  • 74 Knop FK, Vilsboll T, Hojberg PV, Larsen S, Madsbad S, Volund A, Holst JJ, Krarup T. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state?.  Diabetes. 2007;  56 1951-1959
  • 75 Nyström T. The potential beneficial role of glucagon-like peptide-1 in endothelial dysfunction and heart failure associated with insulin resistance.  Horm Metab Res. 2008;  40 593-606
  • 76 Liang CP, Han S, Senokuchi T, Tall AR. The macrophage at the crossroads of insulin resistance and atherosclerosis.  Circ Res. 2007;  100 1546-1555
  • 77 Gustafson B, Hammarstedt A, Andersson CX, Smith U. Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis.  Arterioscler Thromb Vasc Biol. 2007;  27 2276-2283
  • 78 Konukoglu D, Hatemi H, Bayer H, Bagriacik N. Relationship between serum concentrations of interleukin-6 and tumor necrosis factor alpha in female Turkish subjects with normal and impaired glucose tolerance.  Horm Metab Res. 2006;  38 34-37
  • 79 Yudkin JS. Inflammation, obesity, and the metabolic syndrome.  Horm Metab Res. 2007;  39 707-709
  • 80 Dominguez H, Storgaard H, Rask-Madsen C, Steffen Hermann T, Ihlemann N, Baunbjerg Nielsen D, Spohr C, Kober L, Vaag A, Torp-Pedersen C. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes.  J Vasc Res. 2005;  42 517-525
  • 81 Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY. Interleukin-1-receptor antagonist in type 2 diabetes mellitus.  N Engl J Med. 2007;  356 1517-1526
  • 82 Andersen A, Pedersen BK. The role of inflammation in vascular insulin resistance with focus on IL-6.  Horm Metab Res. 2008;  40 635-639
  • 83 Bjerre M, Hansen TK, Flyvbjerg A. Complement activation and cardiovascular disease.  Horm Metab Res. 2008;  40 626-634
  • 84 Paolisso G, Galderisi M, Tagliamonte MR, Divitis M de, Galzerano D, Petrocelli A, Gualdiero P, Divitis O de, Varricchio M. Myocardial wall thickness and left ventricular geometry in hypertensives. Relationship with insulin.  Am J Hypertens. 1997;  10 1250-1256
  • 85 Giles TD. The patient with diabetes mellitus and heart failure: at-risk issues.  Am J Med. 2003;  115 ((Suppl 8A)) 107S-110S
  • 86 Sundstrom J, Lind L, Nystrom N, Zethelius B, Andren B, Hales CN, Lithell HO. Left ventricular concentric remodeling rather than left ventricular hypertrophy is related to the insulin resistance syndrome in elderly men.  Circulation. 2000;  101 2595-2600
  • 87 Wong C, Marwick TH. Obesity cardiomyopathy: diagnosis and therapeutic implications.  Nat Clin Pract Cardiovasc Med. 2007;  4 480-490
  • 88 Wong C, Marwick TH. Obesity cardiomyopathy: pathogenesis and pathophysiology.  Nat Clin Pract Cardiovasc Med. 2007;  4 436-443
  • 89 Ha JW, Lee HC, Kang ES, Ahn CM, Kim JM, Ahn JA, Lee SW, Choi EY, Rim SJ, Oh JK, Chung N. Abnormal left ventricular longitudinal functional reserve in patients with diabetes mellitus: implication for detecting subclinical myocardial dysfunction using exercise tissue Doppler echocardiography.  Heart. 2007;  93 1571-1576
  • 90 Kato T, Yamashita T, Sekiguchi A, Sagara K, Takamura M, Takata S, Kaneko S, Aizawa T, Fu LT. What are arrhythmogenic substrates in diabetic rat atria?.  J Cardiovasc Electrophysiol. 2006;  17 890-894
  • 91 Yamagishi S, Matsui T, Nakamura K. Possible molecular mechanisms by which angiotensin II type 1 receptor blockers (ARBs) prevent the development of atrial fibrillation in insulin resistant patients.  Horm Metab Res. 2008;  40 640-644

Correspondence

Dr. H. DominguezMD, PhD 

Consultant, Senior Research Fellow

Cardiology Department P

Gentofte Hospital

University of Copenhagen

2900 Hellerup

Denmark

Phone: +45/39/77 39 77 (pager 566)

Fax: +45/70/20 12 81

Email: hd@heart.dk

    >