Horm Metab Res 2008; 40(9): 651-654
DOI: 10.1055/s-0028-1083813
Original

© Georg Thieme Verlag KG Stuttgart · New York

Streptozotocin-induced Diabetes Decreases Conducted Vasoconstrictor Response in Mouse Cremaster Arterioles

A. Rai 1 , M. Riemann 1 , F. Gustafsson 2 , N. H. Holstein-Rathlou 1 , C. Torp-Pedersen 3
  • 1Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
  • 2Department of Cardiology, Frederiksberg Hospital, Denmark
  • 3Department of Cardiology, Gentofte University Hospital, Hellerup, Denmark
Further Information

Publication History

received 10.09.2007

accepted 20.12.2007

Publication Date:
15 September 2008 (online)

Abstract

A conducted vasomotor response (CVR) is characterized by the spread of vasoconstriction or vasodilatation both up- and downstream from a local stimulation site in the microcirculation. It is believed to coordinate vasomotor responses within the microcirculation, and to contribute to the control of the major feed arteries to a given organ or tissue. Microvascular disease is a common and severe complication in diabetes, and we therefore studied CVR in streptozotocin (STZ) diabetic mice to examine whether changes in CVR might have a role in the pathophysiology of microvascular dysfunction in diabetes. The mouse cremasteric arterioles were stimulated locally with KCl and the resulting local response as well as conducted responses at 500 μm and 1000 μm were measured in control and STZ treated mice. Diabetes (n=8) induced by intraperitoneal injection of STZ in a dose of 100 mg/kg (mean blood glucose 16.8±2.1 mmol/l) decreased the conduction of vasoconstriction from 27.3±1.1% to 21.4±1.6% at 500 μm (p<0.01) and from 17.4±1.0% to 9.8±1.1% at 1000 μm (p<0.01) as compared with control (n=9). Treatment with either the protein kinase C β II inhibitor (LY341684) or the oxygen radical scavenger tempol, did not improve the decreased conduction of vasoconstriction, but when administered together, the conduction of vasoconstriction was improved from 21.4±1.6% to 26.5±0.8% at 500 μm and 9.8±1.1% to 16.5±0.7% at 1000 μm (p<0.01). We conclude that STZ induced diabetes reduces conducted vasoconstriction to KCl in mouse cremasteric arterioles, and combined treatment with both an oxygen radical scavenger and a protein kinase C β II inhibitor improves the reduced conducted vasoconstriction.

References

  • 1 Bloch EH, Iberall AS. Toward a concept of the functional unit of mammalian skeletal muscle.  Am J Physiol. 1982;  242 R411-R420
  • 2 Segal SS. Regulation of blood flow in the microcirculation.  Microcirculation. 2005;  12 33-45
  • 3 Wit C de, Wolfle SE, Hopfl B. Connexin-dependent communication within the vascular wall: contribution to the control of arteriolar diameter.  Adv Cardiol. 2006;  42 268-283
  • 4 Segal SS, Damon DN, Duling BR. Propagation of vasomotor responses coordinates arteriolar resistances.  Am J Physiol. 1989;  256 ((3 Pt 2)) H832-H837
  • 5 Segal SS. Cell-to-cell communication coordinates blood flow control.  Hypertension. 1994;  23 ((6 Pt 2)) 1113-1120
  • 6 Xia J, Little TL, Duling BR. Cellular pathways of the conducted electrical response in arterioles of hamster cheek pouch in vitro.  Am J Physiol. 1995;  269 ((6 Pt 2)) H2031-H2038
  • 7 Segal SS, Duling BR. Conduction of vasomotor responses in arterio-les: a role for cell-to-cell coupling?.  Am J Physiol. 1989;  256 ((3 Pt 2)) H838-H845
  • 8 Wagner AJ, Holstein-Rathlou NH, Marsh DJ. Internephron coupling by conducted vasomotor responses in normotensive and spontaneously hypertensive rats.  Am J Physiol. 1997;  272 ((3 Pt 2)) F372-F379
  • 9 Kurjiaka DT. The conduction of dilation along an arteriole is diminished in the cremaster muscle of hypertensive hamsters.  J Vasc Res. 2004;  41 517-524
  • 10 Goto K, Rummery NM, Grayson TH, Hill CE. Attenuation of conducted vasodilatation in rat mesenteric arteries during hypertension: role of inwardly rectifying potassium channels.  J Physiol. 2004;  561 215-231
  • 11 Lidington D, Ouellette Y, Li F, Tyml K. Conducted vasoconstriction is reduced in a mouse model of sepsis.  J Vasc Res. 2003;  40 149-158
  • 12 Lin Y, Duling BR. Vulnerability of conducted vasomotor response to ischemia.  Am J Physiol. 1994;  267 ((6 Pt 2)) H2363-H2370
  • 13 Wiernsperger N, Nivoit P, Aguiar LG De, Bouskela E. Microcirculation and the metabolic syndrome.  Microcirculation. 2007;  14 403-438
  • 14 Gardiner TA, Archer DB, Curtis TM, Stitt AW. Arteriolar involvement in the microvascular lesions of diabetic retinopathy: implications for pathogenesis.  Microcirculation. 2007;  14 25-38
  • 15 Inoguchi T, Yu HY, Imamura M, Kakimoto M, Kuroki T, Maruyama T, Nawata H. Altered gap junction activity in cardiovascular tissues of diabetes.  Med Electron Microsc. 2001;  34 86-91
  • 16 King GL, Brownlee M. The cellular and molecular mechanisms of diabetic complications.  Endocrinol Metab Clin North Am. 1996;  25 255-270
  • 17 Wit C de, Roos F, Bolz SS, Kirchhoff S, Krüger O, Willecke K, Pohl U. Impaired conduction of vasodilation along arterioles in connexin40-deficient mice.  Circ Res. 2000;  86 649-655
  • 18 Tyml K, Wang X, Lidington D, Ouellette Y. Lipopolysaccharide reduces intercellular coupling in vitro and arteriolar conducted response in vivo.  Am J Physiol Heart Circ Physiol. 2001;  281 H1397-H1406
  • 19 Gustafsson F, Holstein-Rathlou N-H. Angiotensin II modulates conducted vasoconstriction to norepinephrine and local electrical stimulation in rat mesenteric arterioles.  Cardiovasc Res. 1999;  44 176-184
  • 20 Kumer SC, Damon DN, Duling BR. Patterns of conducted vasomotor response in the mouse.  Microvasc Res. 2000;  59 310-315
  • 21 Budel S, Bartlett IS, Segal SS. Homocellular conduction along endothelium and smooth muscle of arterioles in hamster cheek pouch: unmasking an NO wave.  Circ Res. 2003;  93 61-68
  • 22 Hungerford JE, Sessa WC, Segal SS. Vasomotor control in arterioles of the mouse cremaster muscle.  FASEB J. 2000;  14 197-207
  • 23 Emerson GG, Neild TO, Segal SS. Conduction of hyperpolarization along hamster feed arteries: augmentation by acetylcholine.  Am J Physiol Heart Circ Physiol. 2002;  283 H102-H109
  • 24 Wagner C. Function of connexins in the renal circulation.  Kidney Int. 2008;  73 547-555
  • 25 Vallon V, Blantz RC, Thomson S. Homeostatic efficiency of tubuloglomerular feedback is reduced in established diabetes mellitus in rats.  Am J Physiol. 1995;  269 ((6 Pt 2)) F876-F883
  • 26 Vallon V. Tubuloglomerular feedback and the control of glomerular filtration rate.  News Physiol Sci. 2003;  18 169-174
  • 27 Peti-Peterdi J. Calcium wave of tubuloglomerular feedback.  Am J Physiol Renal Physiol. 2006;  291 F473-F480
  • 28 Chen YM, Yip KP, Marsh DJ, Holstein-Rathlou NH. Magnitude of TGF-initiated nephron-nephron interactions is increased in SHR.  Am J Physiol. 1995;  269 ((2 Pt 2)) F198-F204
  • 29 King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications.  Histochem Cell Biol. 2004;  122 333-338
  • 30 Kolm-Litty V, Sauer U, Nerlich S, Lehmann R, Schleicher ED. High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells.  J Clin Invest. 1998;  101 160-169
  • 31 Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage.  Nature. 2000;  404 ((6779)) 787-790

Correspondence

Dr. A. RaiMD 

Department of Biomedical Sciences

The Panum Institute

Blegdamsvej 3

2200 Copenhagen N

Denmark

Phone: +45/3532 74 04

Fax: +45/3532 74 18

Email: ar@heart.dk

    >