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Introduction

Like molecular oxygen (3O2), singlet oxygen (1O2) plays
an important role in atmospheric and biological processes.
It is also a powerful and inexpensive organic reagent
whose chemistry has been initiated by Foote and co-work-
ers in the 1960’s (Figure 1).1 

Figure 1 Triplet (3O2) and singlet (1O2) oxygen

Singlet oxygen can be synthesized by several ways. The
oldest and simplest method consists in a mixture of hydro-
gen peroxide and sodium hypochlorite to form singlet ox-
ygen, water and sodium chloride (Scheme 1).2 

The currently most widely used method is the use of trip-
let oxygen in the presence of light and a sensitizer (e.g.,
rose bengal, methylene blue, tetraphenylporphyrin, vide
infra). 

Storable singlet oxygen sources can also been used. For
example, 1O2 can be obtained thanks to a mixture of tri-
phenyl phosphite and ozone (O3) (via the formation of an
ozonide intermediate),3 the use of calcium peroxide diper-
oxohydrate (CaO2·2H2O2),

4 or the use of 9,10-diphenyl-
anthracene peroxide5 and its water soluble analogue 1,4-
endoperoxide of 3-(4-methyl-1-naphthyl)propionic acid.6

The reactions involving singlet oxygen are usually oxida-
tions or addition reactions that afford clean reactions
which are consistent with the concept of atom economy.7

In this spotlight a special emphasis has been made for il-
lustrating different types of organic reactions in the con-
text of the total synthesis of natural products.
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Scheme 1 Synthetic ways for the formation of 1O2
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(A) Oxidation of Heteroatom Compounds:
Singlet oxygen can be used as a smooth oxidation reagent in the pho-
tooxidation of heteroatom compounds. For example, the oxidation
of triphenylphosphine was performed in the presence of light,
molecular oxygen and the sensitizer 9-mesityl-10-methylacridinium
ion (Acr+-Mes).8 The oxidation of sulfurous compound was also
reported. The synthesis of sulfoxides from various thioethers was
recently performed with a Cd10S6 molecular cluster dendrimer as a
sensitizer.9

(B) [2+2] Cycloaddition:
The reaction of an electron-rich olefin with singlet oxygen might
result in a [2+2] cycloaddition to form a 1,2-dioxetane. Matsumoto
and co-workers have developed efficient methods to synthesize such
compounds.10 In particular, when a phenol moiety is introduced in
the meta position of the 1,2-dioxetane, the resulting compound is
particularly appealing since it can emit light in the presence of a
base. Thus, these 1,2-dioxetanes have found useful applications in
the development of probes for the detection of enzyme activities.11
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(C) Hetero Diels–Alder [4+2] Cycloaddition:
Singlet oxygen, generated with tetraphenylporphyrin (TPP) as a sen-
sitizer, was used during the investigations of the Nicolaou’s group
in their synthesis of brevetoxin A.12 A hetero Diels–Alder [4+2]
cycloaddition13 between 1O2 and a complex diene afforded the cor-
responding cycloadduct. Thus, the molecule was functionalized
quickly since a diol was easily obtained after the cleavage of the O–
O bond by aluminum amalgam.

(D) Ene Reaction:
Singlet oxygen appeared to be a key reagent in the biomimetic
synthesis of the litseaverticillols family of natural products by G.
Vassilikogiannakis et al.14 Indeed, a hetero Diels–Alder was first
performed between 1O2 and a furan to afford litseaverticillol A. This
reaction was followed by an ene reaction15 with 1O2, generated with
methylene blue as a sensitizer, and allowed the synthesis and the re-
assignment of litseaverticillol E.

(E) Peperoxide Synthesis:
Singlet oxygen was smartly used by E. J. Corey and co-workers in
their total synthesis of okaramine N. 1O2 was added to the indole
double bond with facial selectivity to form a transient intermediate
peperoxide. The latter was opened by the diketopiperazine ring to
form the last five-membered ring of okaramine N. The subsequent
cleavage of the hydroperoxide by Me2S allowed the formation of the
tertiary alcohol and the completion of the synthesis.16
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