Gesundheitswesen 2008; 70(11): 653-657
DOI: 10.1055/s-0028-1100396
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Einflüsse von Cannabiskonsum auf die Gehirnentwicklung und das Erkrankungsrisiko für schizophrene Psychosen

Impact of Cannabis Consumption on Brain Development and the Risk of Developing Psychotic DisordersY. Gudlowski 1 , M. Lautenschlager 1
  • 1Früherkennungs- und Therapiezentrum für beginnende Psychosen Berlin/Brandenburg, Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Berlin (Mitte)
Further Information

Publication History

Publication Date:
27 November 2008 (online)

Zusammenfassung

Die Auswirkungen des Cannabiskonsums variieren erheblich über die gesamte Lebensspanne, insbesondere in Bezug auf die Schule, Ausbildung, Arbeitsfähigkeit und Wahrnehmung sozialer Verpflichtungen. Studien zur Remission neurokognitiver Defizite nach chronischem Cannabiskonsum erbrachten widersprüchliche Ergebnisse und reichen von einer vollständigen Gesundung bis hin zu schwersten persistierenden Defiziten und sogar chronischen psychotischen Erkrankungen. In Einklang konnten diese Ergebnisse jedoch größtenteils gebracht werden, nachdem zwischen Konsumenten mit frühem und spätem Konsumbeginn unterschieden wurde. Persistierende neurokognitive Defizite als auch Volumenveränderungen von grauer Substanz und ein erhöhtes Psychoserisiko scheinen in erster Linie bei Menschen mit einem Konsumbeginn vor dem 16./17. Lebensjahr zu bestehen, also einer Zeit, in der bedeutsame Entwicklungsprozesse des jugendlichen Gehirns, insbesondere des Endocannabinoidsystems stattfinden. Gerade in dieser Zeit werden Reifungsprozesse höherer kognitiver Funktionen, sozialer Informationsverarbeitung, planerischen Denkens und der Handlungskontrolle vollzogen. Auch das Endocannabinoidsystem erreicht in dieser Phase seine höchste Rezeptordichte und ist umfangreich an diesen Prozessen beteiligt. Eine langfristige Schädigung dieses Systems (z. B. durch Herabregulierung und Desensitisierung von CB1-Rezeptoren durch Zufuhr von exogenen Cannabinoiden) in dieser kritischen Entwicklungsperiode stellt somit eine Grundlage von zukünftigen neurophysiologischen und neurokognitiven Defiziten als auch einer Erhöhung des Psychoserisikos dar.

Abstract

Cannabis consumption has varying effects over the whole life span, especially on achievements in the areas of schooling, professional life and performance in a social environment. Data from studies on remission from neurocognitive deficits following chronic cannabis consumption are ambiguous. The outcome range included everything from complete remission over considerable lasting deficits up to even chronic psychotic disorders. The data seem to be consistent however, when a differentiation between early begin of consumption (before the age of 16) and late begin of consumption is taken into account. Mainly those cannabis users with an early begin of consumption are prone to developing lasting neurocognitive deficits and even a decrease in grey substance volume, as well as an increase in the risk of psychosis. The correlation of this outcome with cannabis consumption during a phase of brain development that includes the consolidation of higher cognitive functions, awareness of social cues, planning of concepts and motivation as well as tools of functional control, is highly convincing. The endocannabinoid system reaches the point of highest receptor density during this age of 16/17 years, and many of the above-mentioned developmental processes are modulated by this system. A chronic damage to this system (e.g., down-regulation or desensitisation of CB1 receptors by exogenous cannabinoids) therefore holds the potential for permanent neurophysiological as well as neurocognitive deficits, and also for the development of psychotic disorders.

Literatur

  • 1 Drogen- und Suchtberichtbericht der Bundesregierung 2008 . Verfügbar unter. http://www.drogenbauftragte.de
  • 2 EMCDDA . Report on European Drug Use. 2006;  http://ar2006.emcdda.europa.eu/en/home-en.html?cfid=6556355&cftoken=775dc8d09f40f3c7-c10a6570-94c2-5a43-c5a9eed9672b4893&jsessionid=2e30aa2470a451721240
  • 3 Monshouwer K, Smit F, Graaf R de. et al . First cannabis use: does onset shift to younger ages? Findings from 1988 to 2003 from the Dutch national school survey on substance use.  Addiction. 2005;  100 963-970
  • 4 Miller LL, Branconnier RJ. Cannabis: effects on memory and the cholinergic limbic system.  Psychol Bull. 1983;  93 441-456
  • 5 Hall W, Solowij N. Adverse effects of cannabis.  Lancet. 1998;  352 1611-1616
  • 6 Sullivan JM. Cellular and molecular mechanisms underlying learning and memory impairments produced by cannabinoids.  Learn Mem. 2000;  7 132-139
  • 7 Pope HG Jr, Gruber AJ, Hudson JI. et al . Neuropsychological performance in long-term cannabis users.  Arch Gen Psychiatry. 2001;  58 909-915
  • 8 Schneider M. Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure.  Addiction Biology. 2008;  13 253-263
  • 9 Mc Glothlin WH, West LJ. The marijuana problem: an overview.  Am J Psychiatry. 1968;  125 370-378
  • 10 Ehrenreich H, Rinn T, Kunert HJ. et al . Specific attentional dysfunction in adults following early start of cannabis use.  Psychopharmacology (Berl). 1999;  142 295-301
  • 11 Pope  Jr  HG, Gruber AJ, Hudson JI. et al . Early-onset cannabis use and cognitive deficits: What is the nature of the association?.  Drug Alcohol Depend. 2003;  69 303-310
  • 12 Arseneault L, Cannon M, Witton J. et al . Causal association between cannabis and psychosis: examination of the evidence.  Br J Psychiatry. 2004;  184 110-117
  • 13 Hall W, Degenhardt L. Cannabis use and psychosis: a review of clinical and epidemiological evidence.  Aust NZ J Psychiatry. 2000;  34 26-34
  • 14 Caspi A, Moffitt TE, Cannon M. et al . Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction.  Biol Psychiatry. 2005;  57 1117-1127
  • 15 Skosnik PD, Spatz-Glenn L, Park S. Cannabis use is associated with schizotypy and attentional disinhibition.  Schizophr Res. 2001;  48 83-92
  • 16 Jockers-Scherübl MC, Matthies U, Danker-Hopfe H. et al . Chronic cannabis abuse raises nerve growth factor serum concentrations in drug-naive schizophrenic patients.  J Psychopharmacol. 2003;  17 439-445
  • 17 Veen ND, Selten JP, Tweel I van der. et al . Cannabis use and age at onset of schizophrenia.  Am J Psychiatry. 2004;  161 ((3)) 501-506
  • 18 Solowij N, Michie PT. Cannabis and cognitive dysfunction: parallels with endophenotypes of schizophrenia?.  J Psychiatry Neurosci. 2007;  32 ((1)) 30-52
  • 19 Pope  Jr  HG, Gruber AJ, Hudson JI. et al . Cognitive measures in longterm cannabis users.  J Clin Pharmacol. 2002;  42 ((11 Suppl)) 41S-47S
  • 20 Hollister LE. Health aspects of cannabis.  Pharmacol Rev. 1986;  38 1-20
  • 21 Pope  Jr  HG, Gruber AJ, Yurgelun-Todd D. The residual neuropsychological effects of cannabis: the current status of research.  Drug Alcohol Depend. 1995;  38 25-34
  • 22 Block RI. Does heavy marijuana use impair human cognition and brain function?.  JAMA. 1996;  21 560-561
  • 23 Fletcher JM, Page B, Francis DJ. et al . Cognitive correlates of long-term cannabis use in Costa Rican men.  Arch Gen Psychiatry. 1996;  53 1051-1057
  • 24 Pope  Jr  HG, Yurgelun-Todd D. The residual cognitive effects of heavy marijuana use in college students.  JAMA. 1996;  275 521-527
  • 25 Solowij N, Michie PT, Fox AM. Differential impairments of selective attention due to frequency and duration of cannabis use.  Biol Psychiatry. 1995;  37 731-739
  • 26 Fernandez-Ruiz J, Berrendero F, Hernandez ML. et al . The endogenous cannabinoid system and brain development.  Trends Neurosci. 2000;  23 14-20
  • 27 Fernandez-Ruiz JJ, Berrendero F, Hernandez ML. et al . Role of endocannabinoids in brain development.  Life Sci. 1999;  65 725-736
  • 28 Mesulam M-M. A cortical network for directed attention and unilateral neglect.  Ann Neurol. 1981;  10 309-325
  • 29 Mesulam M-M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory.  Ann Neurol. 1990;  28 597-613
  • 30 Posner MI, Petersen SE. The attention system of human brain.  Annu Rev Neurosci. 1990;  13 25-42
  • 31 Halgren E, Marinkovic K. Neurophysiological networks integrating human emotions. In: Gazzaniga MS, Hrsg. The cognitive neurosciences. Cambridge: MIT Press, MA 1995
  • 32 Luna B, Sweeney JA. The emergence of collaborative brain function – fMRI studies of the development of response inhibition. In: Dahl RE, Spear LP, Hrsg. Adolescent Brain Development: Vulnerabilities and Opportunities. 2004
  • 33 Paus T. Mapping brain maturation and cognitive development during adolescence.  Trends Cogn Sci. 2005;  9 60-68
  • 34 Spear LP. The adolescent brain and age-related behavioral manifestations.  Neurosci Biobehav Rev. 2000;  24 417-463
  • 35 Powell K. Neurodevelopment: how does the teenage brain work?.  Nature. 2006;  442 865-867
  • 36 Andersen SL, Thompson AT, Rutstein M. et al . Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats.  Synapse. 2000;  37 167-169
  • 37 Mato S, Chevaleyre V, Robbe D. et al . A single in-vivo exposure to Delta 9THC blocks endocannabinoid-mediated synaptic plasticity.  Nat Neurosci. 2004;  7 585-586
  • 38 Chevaleyre V, Takahashi KA, Castillo PE. Endocannabinoid-mediated synaptic plasticity in the CNS.  Annu Rev Neurosci. 2006;  29 37-76
  • 39 Iversen L. Cannabis and the brain.  Brain. 2003;  126 1252-1270
  • 40 Hoffman AF, Oz M, Caulder T. et al . Functional tolerance and blockade of long term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure.  J Neurosci. 2003;  23 4815-4820
  • 41 Yücel M, Solowij N, Respondek C. et al . Regional brain abnormalities associated with long-term heavy cannabis use.  Arch Gen Psychiatry. 2008;  65 ((6)) 694-701
  • 42 Wilson W, Mathew R, Turkington T. et al . Brain morphological changes and early marijuana use: a magnetic resonance and positron emission tomography study.  J Addict Dis. 2000;  19 ((1)) 1-22
  • 43 Gottesman II, Gould TD. The endophenotype concept in psychiatry: Etymology and strategic intentions.  Am J Psychiatry. 2003;  160 636-645
  • 44 Solowij N, Michie PT, Fox AM. Effects of long-term cannabis use on selective attention: An event-related potential study.  Pharmacol Biochem Behav. 1991;  40 683-888
  • 45 Carlsson M, Carlsson A. Interactions between glutamatergic and monoaminergic systems within the basal ganglia–implications for schizophrenia and Parkinson's disease.  Trends Neurosci. 1990;  13 ((7)) 272-276
  • 46 Carlsson ML, Carlsson A, Nilsson M. Schizophrenia: from dopamine to glutamate and back.  Curr Med Chem. 2004;  11 ((3)) 267-277
  • 47 Melis M, Perra S, Muntoni AL. et al . Prefrontal cortex stimulation induces 2-arachidonoyl-glycerol-mediated suppression of excitation in dopamine neurons.  J Neurosci. 2004;  24 10707-10715
  • 48 Gilmore CS, Clementz BA, Buckley PF. Stimulus sequence affects schizophrenia – normal differences in event processing during an auditory oddball task.  Brain Res Cogn Brain Res. 2005;  24 215-227
  • 49 Solowij N. Cannabis and cognitive functioning. Cambridge: Cambridge University Press 1998
  • 50 Patrick G, Struve FA. Reduction of auditory P50 gating response in marihuana users: Further supporting data.  Clin Electroencephalogr. 2000;  31 88-93
  • 51 Patrick G, Struve F. Reduced P50 sensory gating in heavy marihuana users.  Clin Electroencephalogr. 2000;  31 ((2)) 88-93
  • 52 Patrick G, Straumanis JJ, Struve FA. et al . Reduced P50 auditory gating response in psychiatrically normal chronic marihuana users: a pilot study.  Biol Psychiatry. 1999;  45 1307-1312
  • 53 Kempel P, Lampe K, Parnefjord R. et al . Auditory-evoked potentials and selective attention: different ways of information processing in cannabis users and controls.  Neuropsychobiology. 2003;  48 95-101
  • 54 Eldreth DA, Matochik JA, Cadet JL. et al . Abnormal brain activity in prefrontal brain regions in abstinent marijuana users.  Neuroimage. 2004;  23 914-920
  • 55 Hambrecht M, Häfner H. Cannabis, vulnerability, and the onset of schizophrenia: an epidemiological perspective.  Aust N Z J Psychiatry. 2000;  34 468-475
  • 56 Hambrecht M, Hafner H. Substance abuse and the onset of schizophrenia.  Biol Psychiatry. 1996;  40 1155-1163
  • 57 Linszen D, Peters B, Haan L de. Cannabis abuse and the course of schizophrenia. In: Castle D, Murray R, Hrsg. Marijuana and madness: psychiatry and neurobiology. Cambridge: Cambridge University Press 2004
  • 58 Ashton CH. Pharmacology and effects of cannabis: a brief review.  Br J Psychiatry. 2001;  178 101-106
  • 59 Kissling W, Höffler J, Seemann U. et al . Die direkten und indirekten Kosten der Schizophrenie.  Fortschr Neurol Psychiatr. 1999;  67 29-36

Korrespondenzadresse

Y. Gudlowski

Früherkennungs- und Therapiezentrum für beginnende Psychosen Berlin/Brandenburg

Klinik für Psychiatrie und Psychotherapie

Charité Universitätsmedizin Berlin (Mitte)

Charitéplatz 1

10117 Berlin

Email: yehonala.gudlowski@charite.de

    >