Int J Sports Med 2009; 30(2): 87-93
DOI: 10.1055/s-0028-1103284
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Acute Hypoxic Exposure on Prooxidant/Antioxidant Balance in Elite Endurance Athletes

V. Pialoux 1 , R. Mounier 1 , E. Rock 2 , A. Mazur 2 , L. Schmitt 3 , J.-P. Richalet 4 , P. Robach 5 , J. Coudert 1 , N. Fellmann 1
  • 1Laboratoire de Biologie des Activités Physiques et Sportives, Facultè de Médecine, Clermont-Ferrand, France
  • 2Equipe Stress Métabolique et Micronutriments, Unité de Nutrition Humaine UMR 1019, INRA, Saint Genès Champanelle, France
  • 3Centre National de Ski Nordique, Prémanon, France
  • 4Laboratoire Réponses cellularies et fonctionnelles á l’hypoxie, EA 2363, Université Paris 13, Bobigny, France
  • 5Ecole Nationale de Ski et d’ Alpinisme, BP 24, Chamonix, France
Further Information

Publication History

accepted after revision July 8, 2008

Publication Date:
28 January 2009 (online)

Abstract

We investigated whether acute hypoxic exposures could modify the pro-oxidant/antioxidant balance in elite endurance athletes, known to have efficient antioxidant status. Forty-one elite athletes were subjected to two hypoxic tests: one at an altitude of 4 800 m during 10-min of mild exercise (4 800 m test) and the second at rest for 3 h at an altitude of 3 000 m (3 000 m test). Plasma levels of advanced oxidation protein products (AOPP), malondialdehydes (MDA), ferric reducing antioxidant power (FRAP) and lipid-soluble antioxidants were measured before and immediately after the 4 800 m test and at the end of the 3 000 m test. The 4 800 m and the 3 000 m tests induced a significant increase in the level of MDA and AOPP (+7.1% and +71.7% for 4 800 m test and +8.6% and +40.9% for 3 000 m test). The changes in plasma MDA and arterial oxygen saturations were significantly correlated (r=0.35) during the 3 000 m test. FRAP values (−13%) and alpha-tocopherol (−21%) were decreased following the 3 000 m test. However, following the 4 800 m test, only alpha-tocopherol was decreased (−16%). These results provide evidence that the highly-trained athletes do not have the antioxidant buffering capacity to counterbalance free radical over-production generated by acute hypoxic exposure, with or without mild exercise.

References

  • 1 Alessio HM. Exercise-induced oxidative stress.  Med Sci Sports Exerc. 1993;  25 218-224
  • 2 Askew EW. Work at high altitude and oxidative stress: antioxidant nutrients.  Toxicology. 2002;  180 107-119
  • 3 Bailey DM, Davies B, Young IS. Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men.  Clin Sci (Lond). 2001;  101 465-475
  • 4 Bailey DM, Davies B, Young IS, Hullin DA, Seddon PS. A potential role for free radical-mediated skeletal muscle soreness in the pathophysiology of acute mountain sickness.  Aviat Space Environ Med. 2001;  72 513-521
  • 5 Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay.  Anal Biochem. 1996;  239 70-76
  • 6 Brugniaux JV, Schmitt L, Robach P, Jeanvoine H, Zimmermann H, Nicolet G, Duvallet A, Fouillot JP, Richalet JP. Living high-training low: tolerance and acclimatization in elite endurance athletes.  Eur J Appl Physiol. 2006;  96 66-77
  • 7 Chen HJ, Wu CF, Huang JL. Measurement of urinary excretion of 5-hydroxymethyluracil in human by GC/NICI/MS: correlation with cigarette smoking, urinary TBARS and etheno DNA adduct.  Toxicol Lett. 2005;  155 403-410
  • 8 Chen M. Ascorbic acid-stimulated peroxidation in hepatocytes and inhibition by antioxidants.  Biochem Arch. 1988;  4 373-380
  • 9 Clarkson PM, Thompson HS. Antioxidants: what role do they play in physical activity and health?.  Am J Clin Nutr. 2000;  72 637-646
  • 10 Das DK, Maulik N. Cardiac genomic response following preconditioning stimulus.  Cardiovasc Res. 2006;  70 254-263
  • 11 Evelo CT, Palmen NG, Artur Y, Janssen GM. Changes in blood glutathione concentrations, and in erythrocyte glutathione reductase and glutathione S-transferase activity after running training and after participation in contests.  Eur J Appl Physiol. 1992;  64 354-358
  • 12 Ferretti G, Kayser B, Schena F, Turner DL, Hoppeler H. Regulation of perfusive O2 transport during exercise in humans: effects of changes in haemoglobin concentration.  J Physiol. 1992;  455 679-688
  • 13 Forman HJ, Boveris A. Superoxide radical and hydrogen peroxyde in mitochondria. In Free Radicals in Biology, (Pryor WA, ed.) Academic press, New York 1982: 65-90
  • 14 Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance.  Am J Clin Nutr. 1993;  57 715-724
  • 15 Halliwell B, Gutteridge MC. Oxygen toxicity, oxygen radicals, transition metals and disease.  Biochem J. 1994;  219 1-14
  • 16 Hoppeler H, Vogt M, Weibel ER, Fluck M. Response of skeletal muscle mitochondria to hypoxia.  Exp Physiol. 2003;  88 109-119
  • 17 Joanny P, Steinberg J, Robach P, Richalet JP, Gortan C, Gardette B, Jammes Y. Operation Everest III (Comex’97): the effect of simulated severe hypobaric hypoxia on lipid peroxidation and antioxidant defence systems in human blood at rest and after maximal exercise.  Resuscitation. 2001;  49 307-314
  • 18 Jones RD, Hancock JT, Morice AH. NADPH oxidase: a universal oxygen sensor?.  Free Radic Biol Med. 2000;  29 416-424
  • 19 Jung F, Palmer LA, Zhou N, Johns RA. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes.  Circ Res. 2001;  86 319-325
  • 20 Kanter MM. Free radicals, exercise, and antioxidant supplementation.  Int J Sport Nutr. 1994;  4 205-220
  • 21 Kehrer JP, Lund LG. Cellular reducing equivalents and oxidative stress.  Free Radical Biol Med. 1994;  17 65-75
  • 22 Klausen K, Robinson S, Micahel ED, Myhre LG. Effect of high altitude on maximal working capacity.  J Appl Physiol. 1996;  4 1191-1194
  • 23 Levine BD, Stray-Gundersen J, Duhaime G, Schell PG, Friedman DB. “Living high-training low”: the effect of altitude acclimatization/normoxic training in trained runners.  Med Sci Sports Exerc. 1991;  23 S25
  • 24 Lyan B, Azais-Braesco V, Cardinault N, Tyssandier V, Borel P, Alexandre-Gouabau MC, Grolier P. Simple method for clinical determination of 13 carotenoids in human plasma using an isocratic high-performance liquid chromatographic method.  J Chromatogr B Biomed Sci Appl. 2001;  751 297-303
  • 25 Magalhaes J, Ascensao A, Viscor G, Soares J, Oliveira J, Marques F, Duarte J. Oxidative stress in humans during and after 4 h of hypoxia at a simulated altitude of 5 500 m.  Aviat Space Environ Med. 2004;  75 16-22
  • 26 Marzatico F, Pansarasa O, Bertorelli L, Somenzini L, Della Valle G. Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes.  J Sports Med Phys Fitness. 1997;  37 235-239
  • 27 Mastaloudis A, Leonard SW, Traber MG. Oxidative stress in athletes during extreme endurance exercise.  Free Radic Biol Med. 2001;  31 911-922
  • 28 Mazzeo RS, Child A, Butterfield GE, Mawson JT, Zamudio S, Moore LG. Catecholamine response during 12 days of high-altitude exposure (4 300 m) in women.  J Appl Physiol. 1998;  84 1151-1157
  • 29 Meneghini R. Iron homeostasis, oxidative stress, and DNA damage.  Free Radic Biol Med. 1997;  23 783-792
  • 30 Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S, Haga S, Ji LL, Ohno H. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise.  Eur J Appl Physiol. 2001;  84 1-6
  • 31 Mohanraj P, Merola AJ, Wright VP, Clanton TL. Antioxidants protect rat diaphragmatic muscle function under hypoxic conditions.  J Appl Physiol. 1998;  84 1960-1966
  • 32 Moller P, Loft S, Lundby C, Olsen NV. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans.  FASEB J. 2001;  15 1181-1186
  • 33 Moore K, Roberts LJ. Measurement of lipid peroxidation.  Free Radic Res. 1998;  28 659-671
  • 34 Neidlinger NA, Hirvela ER, Skinner RA, Larkin SK, Harken AH, Kuypers FA. Postinjury serum secretory phospholipase A2 correlates with hypoxemia and clinical status at 72 h.  J Am Coll Surg. 2005;  200 173-178
  • 35 Niess AM, Hartmann A, Grunert-Fuchs M, Poch B, Speit G. DNA damage after exhaustive treadmill running in trained and untrained men.  Int J Sports Med. 1996;  17 397-403
  • 36 Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.  Anal Biochem. 1979;  95 351-358
  • 37 Pialoux V, Mounier R, Ponsot E, Rock E, Mazur A, Dufour S, Richard R, Richalet JP, Coudert J, Fellmann N. Effects of exercise and training in hypoxia on antioxidant/pro-oxidant balance.  Eur J Clin Nutr. 2006;  60 1345-1354
  • 38 Prior RL, Cao G. In vivo total antioxidant capacity: comparison of different analytical methods.  Free Radic Biol Med. 1999;  27 1173-1181
  • 39 Rayssiguier Y, Gueux E, Bussiere L, Mazur A. Copper deficiency increases the susceptibility of lipoproteins and tissues to peroxidation in rats.  J Nutr. 1993;  123 343-1348
  • 40 Reid MB, Moody MR. Dimethyl sulfoxide depresses skeletal muscle contractility.  J Appl Physiol. 1994;  76 2186-2190
  • 41 Richalet JP, Keromes A, Dersch B, Corizzi F, Mehdioui H, Pophillat B, Chardonnet H, Tassery F, Herry JP, Rathat C, Chaduteau C, Darnaud B. Caractéristiques physiologists des alpinists de haute altitudes.  Sci Sports. 1988;  3 89-108
  • 42 Robertson JD, Maughan RJ, Duthie GG, Morrice PC. Increased blood antioxidant systems of runners in response to training load.  Clin Sci (Lond). 1991;  80 611-618
  • 43 Sinha R, Patterson BH, Mangels AR, Levander OA, Gibson T, Taylor PR, Block G. Determinants of plasma vitamin E in healthy males.  Cancer Epidemiol Biomarkers Prev. 1993;  2 473-479
  • 44 Sohn HY, Krotz F, Gloe T, Keller M, Theisen K, Klauss V, Pohl U. Differential regulation of xanthine and NAD(P)H oxidase by hypoxia in human umbilical vein endothelial cells. Role of nitric oxide and adenosine.  Cardiovas Res. 2003;  58 638-646
  • 45 Stray-Gundersen J, Chapman RF, Levine BD. “Living high-training low” altitude training improves sea level performance in male and female elite runners.  J Appl Physiol. 2001;  91 1113-1120
  • 46 Thurnham DI, Davies JA, Crump BJ, Situnayake RD, Davis M. The use of different lipids to express serum tocopherol: lipid ratios for the measurement of vitamin E status.  Ann Clin Biochem. 1986;  23 514-520
  • 47 Wing SL, Askew EW, Luetkemeier MJ, Ryujin DT, Kamimori GH, Grissom CK. Lack of effect of Rhodiola or oxygenated water supplementation on hypoxemia and oxidative stress.  Wilderness Environ Med. 2003;  14 9-16
  • 48 Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latscha B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia.  Kidney Int. 1996;  49 1304-1313
  • 49 Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes.  Biochem J. 1987;  245 243-250
  • 50 Wood JG, Johnson JS, Mattioli LF, Gonzalez NC. Systemic hypoxia promotes leukocyte-endothelial adherence via reactive oxidant generation.  J Appl Physiol. 1999;  87 1734-1740
  • 51 Zuo L, Clanton TL. Reactive oxygen species formation in the transition to hypoxia in skeletal muscle.  Am J Physiol Cell Physiol. 2005;  289 207-216

Correspondence

Dr. V. PialouxPhD 

Laboratoire de Biologie des

Activités Physiques et Sportives

Facultè de Médecine

Clermont-Ferrand

France

Phone: +33/4/73 17 82 22

Fax: +33/4/73 44 83 19

Email: pialouxvincent@yahoo.fr

    >