Horm Metab Res 2009; 41(3): 213-220
DOI: 10.1055/s-0028-1105919
Animals, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Effect of Miglitol, an α-Glucosidase Inhibitor, on Atherogenic Outcomes in Balloon-injured Diabetic Rats

A. Hirata 1 , M. Igarashi 1 , H. Iwai 1 , M. Tominaga 1
  • 1Department of Laboratory Medicine, Yamagata University School of Medicine, Yamagata, Japan
Further Information

Publication History

received 10.04.2008

accepted 02.10.2008

Publication Date:
15 December 2008 (online)

Abstract

This study investigates the effects of miglitol, an α-glucosidase inhibitor, on the development of balloon-injured neointimal thickening in left common carotid artery, and the changes of glucose metabolism and inflammatory responses in Wistar fatty rats, an obese-hyperglycemic animal model, and their littermates, Wistar lean rats. Miglitol was orally administered at 40 mg/100 g of high-fat diet containing 45% kcal as fat to 12-week-old rats for 29 days, and age-matched rats without the agent were used as the respective controls. Balloon catheterization in the left common carotid artery was performed on day 15, and the artery was removed on day 29. Compared with the area ratio of the neointima/media in fatty rats without treatment, those in fatty rats with miglitol and lean rats without treatment were significantly decreased to 80%. The administration of miglitol significantly decreased the levels of plasma glucose, glycoalbumin and high-sensitivity C-reactive protein, and elevated the high-density lipoprotein-cholesterol level in fatty rats. These findings suggest that miglitol could be effective for the suppression of atherogenic outcomes in diabetic Wistar fatty rat, suggesting that the agent may have clinical benefits and contribute to prevent diabetic macroangiopathy.

References

  • 1 Kannel WB, MacGee DL. Diabetes and cardiovascular disease: The Framingham study.  JAMA. 1979;  241 2035-2038
  • 2 Purnell JQ, Hokanson JE, Marcovina SM, Steffes MW, Cleary PA, Brunzell JD. Effect of excessive weight gain with intensive therapy of Type-1 diabetes on lipid levels and blood pressure.  JAMA. 1998;  280 140-146
  • 3 Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart diseases and in non-diabetic subjects with and without prior myocardial infarction.  N Eng J Med. 1998;  339 229-234
  • 4 Reaven GM. Role of insulin resistance in human disease.  Diabetes. 1998;  37 1595-1606
  • 5 Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study.  BMJ. 2000;  321 405-412
  • 6 Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose: The Funagata Diabetes Study.  Diabetes Care. 1999;  22 920-924
  • 7 DECODE study group . Glucose tolerance and cardiovascular mortality: Comparison of fasting and 2-h diagnostic criteria.  Ann Intern Med. 2001;  161 397-405
  • 8 Kaline K, Bornstein SR, Bergmann A, Hauner H, Schwartz PE. The importance and effect of dietary fiber in diabetes prevention with particular consideration of whole grain products.  Horm Metab Res. 2007;  39 687-693
  • 9 Jessen N, Selmer Buhl E, Pold R, Schmitz O, Lund S. A novel insulin sensitizer (S15511) enhances insulin-stimulated glucose uptake in rat skeletal muscles.  Horm Metab Res. 2008;  40 269-275
  • 10 Hulin B. New hypoglycemic agents.  Prog Med Chem. 1994;  31 1-58
  • 11 Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. STOP-NIDDM Trial Research Group . Acarbose for prevention of type 2 diabetes mellitus: The STOP-NIDDM randomized trial.  Lancet. 2002;  359 2072-2077
  • 12 Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. STOP-NIDDM Trial Research Group . Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: The STOP-NIDDM Trial.  JAMA. 2003;  290 486-494
  • 13 Hanefeld M, Chiasson JL, Koehler C, Henkel E, Schaper F, Temelkova-Kurktschiev T. Acarbose slows progression of intima-dedia thickeness of the carotid arteries in subjects with impaired glucose tolerance.  Stroke. 2004;  35 1073-1078
  • 14 Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: Meta-analysis of seven long-term studies.  Eur Heart J. 2005;  25 10-16
  • 15 Yamasaki Y, Katakami N, Hayashi-Okano R, Matsuhisa M, Kajimoto Y, Kosugi, Hatano M, Hori M. glucosidase inhibitor reduces the progression of carotid intima-media thickeness.  Diabetes Res Clin Pract. 2005;  67 204-210
  • 16 Bollen M, Stalmans W. The antiglycogenolytic action of 1-deoxynojirimycin results from a specific inhibition of the α-1,6-glucosidase activity of the debranching enzyme.  Eur J Biochem. 1989;  181 775-780
  • 17 Bischoff H. Pharmacology of α-glucosidase inhibition.  Eur J Clin Invest. 1994;  24 ((Suppl 3)) 3-10
  • 18 Bollen M, Vanderbroeck A, Stalmans W. 1-Deoxynojirimycin and related compounds inhibit glycogenolysis in the liver without affecting the concentration of phosphorylase a.  Biochem Phamacol. 1988;  37 593-600
  • 19 Axen KV, Li X, Sclafani A. Miglitol (Bay m 1099) treatment of diabetic hypothalamic-dietary obese rats improves islet response to glucose.  Obes Res. 1999;  7 83-89
  • 20 Russsel JC, Graham SE, Dolphin PJ. Glucose tolerance and insulin resistance in the JCR: LA-corpulent rat: Effect of miglitol (Bay m 1099).  Metabolism. 1999;  48 701-706
  • 21 Wang N, Minatoguchi S, Chen X, Uno Y, Arai M, Lu CJ, Takemura G, Fujiwara T, Fujiwara H. Antidiabetic drug miglitol inhibits myocardial apoptosis involving decreased hydroxy radical production and Bax expression in an ischaemia/reperfusion rabbit heart.  Br J Phamacol. 2004;  142 983-990
  • 22 Ikeda H, Shino A, Matsuo T, Iwatsuka HZ, Suzuoki Z. A new geneti-cally obese-hyperglycemic rat (Wistar fatty).  Diabetes. 1981;  30 1045-1050
  • 23 Heek M Van, Compton DS, France CF, Tedesco RP, Frawzi AB, Graziano MP, Sybertz EJ, Strader CD, Davis Jr HR. Diet-induced obese mice develop peripheral, but not central, resistance to leptin.  J Clin Invest. 1997;  99 385-390
  • 24 Hirata A, Igarashi M, Yamaguchi H, Suwabe A, Daimon M, Kato T, Tominaga M. Nifedipine suppresses neointimal thickening by its inhibitory effect on vascular smooth muscle cell growth via a MEK-ERK pathway coupling with Pyk2.  Br J Pharmacol. 2000;  131 1521-1530
  • 25 Igarashi M, Hirata A, Yamaguchi H, Tsuchiya H, Ohnuma H, Tominaga M, Daimon M, Kato T. Candesartan inhibits carotid intimal thickening and ameliorates insulin resistance in balloon-injured diabetic rats.  Hypertension. 2001;  38 1255-1259
  • 26 Igarashi M, Takeda Y, Ishibashi N, Takahashi K, Mori S, Tominaga M, Saito Y. Pioglitazone reduces smooth muscle cell density of rat carotid arterial intima induced by balloon catheterization.  Horm Metab Res. 1997;  29 444-449
  • 27 Yamaguchi H, Igarashi M, Hirata A, Sugae N, Tsuchiya H, Jimbu Y, Tominaga M, Kato T. Altered PDGF-BB-induced p38 MAP kinase activation in diabetic vascular smooth muscle cells: Role of protein kinase C-δ.  Arterioscler Thromb Vasc Biol. 2004;  24 2095-2101
  • 28 Aiello LP, Wong JS. Role of vascular endothelial growth factor in diabetic vascular complications.  Kidney Int. 2000;  77 ((Suppl)) S113-S119
  • 29 Greene D, Lattimer SA, Sima AAF. Sorbitol, phosphoinositides and sodium-potassium ATPase in the pathogenesis of diabetic complications.  N Engl J Med. 1987;  316 599-606
  • 30 Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and biochemical basis of diabetic complications.  N Engl J Med. 1998;  318 1315-1321
  • 31 Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, Enden M van den, Kilo C, Tilton RG. Hypergly-cemic pseudhypoxia and diabetic complications.  Diabetes. 1993;  42 801-813
  • 32 Sakakibara F, Hotta N, Koh N, Sakamoto N. Effects of high glucose concentrations and epalrestat on sorbitol and myo-inositol metabolism in cultured rabbit aortic smooth muscle cells.  Diabetes. 1993;  42 1594-1600
  • 33 King GL, Kunisaki M, Nishi N, Inoguchi T, Shiba T, Xia P. Biochemical and molecular mechanisms in the development of diabetic vascular complications.  Diabetes. 1996;  45 ((Suppl. 3)) S105-S108
  • 34 Meyers CC, Kashyad ML. Pharmacologic elevation of high-density lipoproteins: Recent insights on mechanism of action and atherosclerosis protection.  Curr Opin Cardiol. 2004;  19 366-373
  • 35 Schofield I, Malik R, Izzard A, Austin C, Heagerty A. Vascular structural and functional changes in type 2 diabetes mellitus: Evidence for the roles of abnormal myogenic responsiveness and dyslipidemia.  Circulation. 2002;  106 3037-3043
  • 36 Pandolfi A, Grilli A, Cilli C, Patruno A, Giaccari A, Silvestre S Di, Lutiis MA De, Pellegrini G, Capani F, Consoli A, Felaco M. Phenotype modulation in cultures of vascular smooth muscle cells from diabetic rats: Association with increased nitric oxide synthase expression and superoxide anion generation.  J Cell Physiol. 2003;  196 378-385
  • 37 Igarashi M, Hirata A, Nozaki H, Kadomoto-Antsuki Y, Tominaga M. Role of angiotensin II type-1 and type-2 receptors on vasular smooth muscle cell growth and glucose metabolism in diabetic rats.  Diabetes Res Clin Pract. 2007;  75 267-277
  • 38 Hanley AJ, Festa A, D’Agostino Jr RB, Wagenknecht LE, Savage PJ, Tracy RP, Saad MF, Haffner SM. Metabolic and inflammation variable clusters and prediction of type 2 diabetes: Factor analysis using directly measured insulin sensitivity.  Diabetes. 2004;  53 1773-1781
  • 39 Schaumberg DA, Glynn RJ, Jenkins AJ, Lyons TJ, Rifai N, Manson JE, Ridker PM, Nathan DM. Effect of intensive glycemic control on levels of markers of inflammation in type 1 diabetes mellitus in the diabetes control and complications trial.  Circulation. 2005;  111 2446-2453
  • 40 Alexandraki K, Piperi C, Kalofoutis C, Singh J, Alaveras A, Kalofoutis A. Inflammatory process in type 2 diabetes: The role of cytokines.  Ann N Y Acad Sci. 2006;  1084 89-117
  • 41 Ridker PM, Rifal N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events.  N Engl J Med. 2002;  347 1557-1565
  • 42 Zhang H, Chen S, Deng X, Yamg X, Huang X. Danggui-Buxue-Tang deoction has an anti-inflammatory effects in diabetic atherosclerosis rat model.  Diabetes Res Clin Pract. 2006;  74 194-196
  • 43 Yokoyama H, Kannno S, Ishimura I, Node K. Miglitol increases the adiponectin level and decreases urinary albumin excretion in patients with type 2 diabetes mellitus.  Metabolism. 2007;  56 1458-1463

Correspondence

M. IgarashiMD 

Department of Laboratory Medicine

Yamagata University School of Medicine

2-2-2 Iida-nishi

Yamagata 990-9585

Japan

Phone: +81/23/628 54 06

Fax: +81/23/628 54 09

Email: migarasi@med.id.yamagata-u.ac.jp

    >