Laryngorhinootologie 2009; 88: S48-S63
DOI: 10.1055/s-0028-1119515
Technik für Lebensqualität – Biomaterialien und Implantate in der Hals-Nasen-Ohrenheilkunde

© Georg Thieme Verlag KG Stuttgart · New York

Biomaterialien zur Wiederherstellung des knöchernen Schädels

Biomaterials for Craniofacial ReconstructionA.  Neumann1
  • 1Klinik für Hals-, Nasen-, Ohrenheilkunde, Kopf- und Halschirurgie, Plastische und ästhetische Operationen, Stimm- und Sprachstörungen, Städtische Kliniken Neuss Lukaskrankenhaus GmbH
Further Information

Publication History

Publication Date:
07 April 2009 (online)

Zusammenfassung

Biomaterialien zur Wiederherstellung des knöchernen Schädels umfassen solche zur Osteosynthese nach Traumata oder Osteotomien und solche zur Rekonstruktion knöcherner Substanzdefekte als Folge von Fehlbildungen, Traumata oder Tumorresektionen. Weitere Anwendungsgebiete sind funktionelle Augmentationen für (meist dentale) Implantate oder ästhetische Augmentationen im Gesichtsbereich.

Bei der Osteosynthese bieten Mini- oder Mikroplatten aus Titanlegierungen die größten Vorteile hinsichtlich Stabilität, individueller Anpassung an das Implantatbett und Biokompatibilität. Die Frage der Entfernung asymptomatischer metallischer Osteosynthesematerialien wird nach wie vor kontrovers diskutiert. Der Notwendigkeit und den Risiken des Zweiteingriffs steht eine nur geringe Komplikationsrate bei Verbleib der Implantate (durch metallische Korrosionsprodukte) gegenüber. Resorbierbare Osteosynthesesysteme zeigen vergleichbare mechanische Stabilität wie die metallischen Systeme und eignen sich besonders für den wachsenden kindlichen Schädel. Die Vielfalt von Knochenersatzmaterialien ist groß. Ein ideales Knochenersatzmaterial, welches alle Anforderungen hinsichtlich Biokompatibilität, Stabilität, Produktsicherheit und Kosten erfüllt, existiert bisher nicht. Die unterschiedlichen Materialklassen umfassen Knochen (vor allem autogenen) und zahlreiche alloplastische Materialien wie Metalle (Titan), Keramiken, Kunststoffe und Komposite. Zukünftige Entwicklungen zielen auf verbesserte physikalische und biologische Eigenschaften vor allem der Oberflächen der Materialien ab. Per tissue engineering hergestellter Knochen ist bisher noch fern des breiten klinischen Einsatzes.

Abstract

Biomaterials for reconstruction of bony defects of the skull comprise of osteosynthetic materials applied after osteotomies or traumatic fractures and materials to fill bony defects which result from malformations, traumata or tumor resections. Other applications concern functional augmentations for dental implants or asthetic augmentations in the region of the face.

For ostheosynthesis, mini- and microplates from titanium alloys provide major advantages concerning biocompatibility, stability and individual fitting to the implant bed. The necessity of removal of asymptomatic plates and screws after fracture healing is still a controversial issue. Risks and costs of secondary surgery for removal face a low rate of complications (due to corrosion products) when the materials remains in situ. Resorbable osteosynthesis systems have similar mechanical stability and are especially useful in the growing skull.

The huge variety of biomaterials for reconstruction of bony defects makes it difficult to decide which material is adequate for which indication and for which site. The optimal biomaterial that meets every requirement (e. g. biocompatibility, stability, intraoperative fitting, product safety, low costs etc.) does not exist. The different material types are (autogenous) bone and many alloplastics such as metals (mainly titanium), ceramics, plastics and composites. Future developments aim to improve physical and biological properties, especially concerning surface interactions. To date, tissue engineered bone is far from routine clinical application.

Literatur

  • 1 Adelson R T, DeFatta R J, Dudic Y. Integrity of craniofacial plating systems after multiple sterilization procedures.  J Oral Maxillofac Surg. 2007;  65 940-944
  • 2 Aitasalo K MJ, Peltola M J. Bioactive glass hydroxyapatite in fronto-orbital defect reconstruction.  Plast Reconstr Surg. 2007;  120 1963-1972
  • 3 Aksu A E, Rubin J P, Dudas J R. et al . Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells.  Ann Plast Surg. 2008;  60 306-322
  • 4 Alpert B, Seligson D. Removal of asymptomatic bone plates used for orthognathic surgery and facial fractures.  J Oral Maxillofac Surg. 1996;  54 618-621
  • 5 Al-Sukhun J, Törnwall J, Lindqvist C. et al . Bioresorbable Poly-L/DL-Lactide (P[L/DL]LA 70/30) plates are reliable for repairing large inferior orbital wall bony defets: A pilot study.  J Oral Maxillofac Surg. 2006;  64 47-55
  • 6 Amaral M, Lopes M A, Silva R F. et al . Densification route and mechanical properties of Si3N4-bioglass biocomposites.  Biomaterials. 2002;  23 857-862
  • 7 Anderson J M, Rodriguez A, Chang D T. Foreign body reaction to biomaterials.  Semin Immunol. 2008;  20 86-100
  • 8 Ashammakhi N, Renier D, Arnaud E. et al . Successful use of Biosorb osteofixation devices in 165 cranial and maxillofacial cases: A multicenter report.  J Craniofac Surg. 2004;  15 692-701
  • 9 Bakathir A A, Margasahayam M V, Al-Ismaily M I. Removal of bone plates in patients with maxillofacial trauma: a retrospective study.  Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;  105 32-37
  • 10 Bendix D, Liedtke H. Resorbierbare Polymere: Zusammensetzung, Eigenschaften und Anwendungen.  Unfallchir. 1998;  265 3-10
  • 11 Beleites E, Neupert G, Augsten G. et al . Rasterelektronenmikroskopische Untersuchung des Zellwachstums auf maschinell bearbeitbarer Biovitrokeramik und Glaskohlenstoff in vitro und in vivo.  Laryngol Rhinol Otol. 1985;  64 217-220
  • 12 Beleites E, Schneider G, Fried W. et al . 3-D-Referenzimplantate für den Gesichts- und Hirnschädel.  Dtsch Ärztebl. 2001;  5 209-213
  • 13 Berghaus A. Implantate für die rekonstruktive Chirurgie der Nase und des Ohres.  Laryngo-Rhino-Otol. 2007;  86 Suppl 1 67-76
  • 14 Bergsma J E, Braijn W C, Rozema F R. et al . Late degradation tissue response to poly(L-lactide) bone plates and screws.  Biomaterials. 1995;  16 25-31
  • 15 Bhanot S, Alex J C, Lowlicht R A. et al . The efficacy of resorbable plates in head and neck reconstruction.  Laryngoscope. 2002;  112 890-898
  • 16 Bhatt V, Chabra P, Dover M S. Removal of miniplates in maxillofacial surgery: a follow-up study.  J Oral Maxillofac Surg. 2005;  63 756-760
  • 17 Black J. In vivo corrosion of a cobalt-base alloy and its biological consequences. In: Hildebrandt HF, Champy M, Hrsg Biocompatibility of CO-CR-Ni alloys. New York; Plenum Press 1988: 83-100
  • 18 Boenninghaus H G. Die Behandlung der Schädelbasisbrüche. Stuttgart; Georg Thieme Verlag 1960
  • 19 Böstman O, Portio E, Hirvensalo E. et al . Foreign-body reactions to polyglycolide screws.  Acta Orthop Scand. 1992;  63 173-176
  • 20 Brady J M, Cutright D E, Miller R A. et al . Resorption rate, route of elimination and ultrastructure of the implant site of polylactid acid in the abdominal wall of the rat.  J Biomed Mater Res. 1973;  7 155-166
  • 21 Brånemark P I. Osseointegration and its experimental background.  J Prosthet Dent. 1983;  50 399-410
  • 22 Breitbart A S, Staffenberg D A, Thome C HM. et al . Tricalcium phosphate and osteogenin: a bioactive onlay bonegraft substitute.  Plast Reconstr Surg. 1995;  86 699-708
  • 23 Brunner F X. Osteosynthesematerial im Gesichtsschädelbereich – Ja oder nein?.  HNO. 1995;  43 205-208
  • 24 Brunner F X. Aktuelle Gesichtspunkte zur Osteosynthese des Mittelgesichts.  HNO. 2006;  54 918-921
  • 25 Burstein F D, Williams J K, Hudgins R. et al . Hydroxyapatite cement in craniofacial reconstruction: Experiences in 150 patients.  Plast Reconstr Surg. 2006;  118 484-489
  • 26 Byrd H S, Hobar P C, Shewmake K. Augmentation of the craniofacial skeleton with porous hydroxyapatite granules.  Plast Reconstr Surg. 1993;  91 15-22
  • 27 Cabanela M E, Coventry M B, McCarthy C S. et al . The fate of patients with methylmethacrylate cranioplasty.  J Bone Joint Surg Am. 1972;  54A 278-281
  • 28 Cancian D C, Hochuli-Vieira E, Marcantonio R A. et al . Utilization of autogenous bone, bioactive glasses and calzium phosphate cement in surgical mandibular bone defects in Celbus paella monkeys.  Int J Oral Maxillofac Impl. 2004;  1 73-79
  • 29 Case C P, Langkamer V G, James . et al . Widespread dissemination of metal debris from implants.  J Bone joint Surg Br. 1994;  76 701-712
  • 30 Cenzi R, Farina A, Zuccarino L. et al . Clinical Outcome of 285 Medpor grafts used for craniofacial reconstruction.  J Craniofac Surg. 2005;  16 526-530
  • 31 Champy M, Lodde J P, Muster D. et al . Osteosynthesis using miniaturized screws on plates in facial and cranial surgery. Indications and results in 400 cases.  Ann Chir Plast. 1977;  22 261-264 [französisch]
  • 32 Cho Y R, Gosain A K. Biomaterials in craniofacial reconstruction.  Clin Plast Surg. 2004;  31 377-385
  • 33 Clijmans T, Momaerts M, Gelaude F. et al . Skull reconstruction planning transfer to the operation room by thin metallic templates: Clinical results.  J Craniomaxillofac Surg. 2008;  36 66-74
  • 34 Costantino P D, Friedmann C D, Jones . et al . Experimental Hydroxyapatite cement cranioplasty.  Plast Reconstr Surg. 1992;  90 74-191
  • 35 Costantino P D, Hiltzik D H, Sen C. et al . Sphenoethmoid cerebrospinal fluid leak repair with hydroxyapatite cement.  Arch Otolaryngol Head Neck Surg. 2001;  127 588-593
  • 36 Costantino P D, Hiltzik D, Govindaraj S. et al . Bone healing and bone substitutes.  Facial Plast Surg. 2002;  18 13-26
  • 37 Coetzee A S. Regeneration of bone in the presence of calcium sulfate.  Arch Otolaryngol. 1980;  106 405-409
  • 38 Dafnis E, Sabatini S. Biochemistry and pathophysiology of vanadium.  Nephron. 1994;  67 133-143
  • 39 Daniels A U, Chang M KO, Andriano K P. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone.  J Appl Biomater. 1990;  1 57-78
  • 40 De Leonardis D, Pecora G E. Prospective study on the augmentation of the maxillary sinus with calcium sulfate: histological results.  J Periodontol. 2000;  71 940-947
  • 41 Dion I, Bordenave L, Lefebre F. et al . Physico-chemistry and cytotoxicity of ceramics. Part II Cytotoxicity of ceramics.  J Mat Sci: Mat Med. 1994;  5 18-24
  • 42 Dittert D D, Warnecke G, Willert H G. Aluminum levels and stores in patients with total hip endoprostheses from TiAIV or TiAINb alloys.  Arch Orthop Trauma Surg. 1995;  114 133-136
  • 43 Domingo J L. Vanadium: a review of the reproductive and developmental toxicity.  Reprod Toxicol. 1996;  10 175-182
  • 44 Dost P. Biomaterialien in der rekonstruktiven Mittelohrchirugie.  Laryngo-Rhino-Otol. 2000;  79 Suppl 2 53-72
  • 45 Dreesmann H. Über Knochenplombierung.  Beitr Klin Chir. 1892;  9 804-810
  • 46 Duskovaacute M, Smahel Z, Vohradniacutek M. et al . Bioactive glass-ceramics in facial skeleton contouring.  Aesthetic Plast Surg. 2002;  26 274-283
  • 47 Englert C, Angele P, Fierlbeck J. et al . Konduktives Knochenersatzmaterial mit variabler Antibiotikafreisetzung.  Unfallchirurg. 2007;  110 408-413
  • 48 Eppley B L, Prevel C D, Sadove A M. et al . Resorbable bone fixation: its potential role in craniomaxillofacial trauma.  J Craniomaxfac Trauma. 1996;  2 56-60
  • 49 Eppley B L, Reilly M. Degradation characteristics of PLLA-PGA bone fixation devices.  J Craniofac Surg. 1997;  8 116-120
  • 50 Eppley B L. Craniofacial reconstruction with computer-generated HTR patient-matched implants: Use in primary bony tumor excision.  J Craniofac surg. 2002;  13 650-657
  • 51 Eppley B L, Morales L, Wood R. et al . Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: Clinical experience in 1883 patients.  Plast Reconstr Surg. 2004;  114 850-856
  • 52 Eppley B L, Pietrzak W S, Blanton M W. Allograft and alloplastic bone substitutes: A review of science and technology for the craniomaxillofacial surgeon.  J Craniofac Surg. 2005;  16 981-989
  • 53 Eufinger H, Wehmöller M. Individual prefabricated titanium implants in reconstructive craniofacial surgery: Clinical and technical aspects of the first 22 cases.  Plast Reconstr Surg. 1998;  102 300-308
  • 54 Eckelt U, Nitsche M, Müller A. et al . Ultrasound aided pin fixation of biodegradable osteosynthetic materials in cranioplasty for infants with craniosynostosis.  J Craniomaxillofac Surg. 2007;  35 218-221
  • 55 Exley C, Burgess E, Day J P. et al . Aluminum toxicokinetics.  J Toxicol Environ Health. 1996;  48 569-584
  • 56 Fraedrich G, Kracht J, Scheld H H. et al . Sarcoma of the lung in a pacemaker pocket – simple coincidence or oncotaxis?.  Thorac Cardiovasc Surg. 1984;  32 67-69
  • 57 Friedman K E, Vernon S E. Squamous cell carcinoma developing in conjunction with a mandibular staple bone plate.  J Oral Maxillofac Surg. 1983;  41 265-266
  • 58 Friedman C D, Costantino P D, Takagi S. et al . BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction.  J Biomed Mat Res. 1998;  43 428-432
  • 59 Genecov D G, Kremer M, Agarwal R. et al . Norian craniofacial repair system: compatibility with resorbable and nonresorbable plating materials.  Plast Reconstr Surg. 2007;  120 1487-1495
  • 60 Gerlach K L. Resorbierbare Polymere als Osteosynthesematerialien.  Mund Kiefer GesichtsChir. 2000;  4 (Suppl 1) 91-102
  • 61 Gogolewski S. Bioresorbable polymers in trauma and bone surgery.  Injury. 2000;  31 (Suppl 4) 28-32
  • 62 Goldstein J A, Quereshy F A, Coen A R. Early experience with biodegradable fixation for congenital pediatric craniofacial Surgery.  J Craniofac Surg. 1997;  8 110-115
  • 63 Gosain A K, Song L, Riordan P. et al . A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I.  Plast Reconstr Surg. 2002;  109 619-630
  • 64 Gosain A K, Song L, Riordan P. et al . A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part II. Bioengineering implants to optimize bone replacement in reconstruction of cranial defects.  Plast Reconstr Surg. 2004;  114 1155-1163
  • 65 Gosain A K. Plastic Surgery Educational Foundation DATA Committee . Bioactive glass for bone replacement in craniomaxillofacial reconstruction.  Plast Reconstr Surg. 2004;  114 590-593
  • 66 Hansmann C. Eine neue Methode der Fixierung der Fragmente bei complicierten Fracturen.  Verh Dtsch Ges Chir. 1886;  15 134
  • 67 Haers P E, Suuronen R, Lindqvist C. et al . Biodegradable poylactide plates and screws in orthognathic surgery: technical note.  J Craniomaxillofac Surg. 1998;  26 87-91
  • 68 Haers P E, Sailer H F. Biodegradable self-reinforced poly-L/DL-lactide plates and screws in bimaxillary orthognathic surgery: short term skeletal stability and material related failures.  J Craniomaxillofac Surg. 1998;  26 363-372
  • 69 Hardin C K. Banked bone.  Otolaryngol Clin North Am. 1994;  27 911-925
  • 70 Haug R H. Retention of asymptomatic bone plates used for orthognathic surgery and facial fractures.  J Oral Maxillofac Surg. 1996;  54 611-617
  • 71 Hench L L, Splinter R J, Alen W C. et al . Bonding mechanisms at the interface of ceramic prosthetic materials.  J Biomed Mater Res. 1972;  2 117-141
  • 72 Hendus J, Draf W, Bockmühl U. Tabula externa zur Rekonstruktion des frontoorbitalen Knochengerüstes.  Laryngo-Rhino-Otol. 2005;  84 899-904
  • 73 Henkel K O, Gerber T, Dietrich W. et al . Neuartiges Knochenaufbaumaterial auf Kalziumphosphatbasis.  Mund Kiefer Gesichtschir. 2004;  8 277-281
  • 74 Hille G H. Titanium for surgical implants.  J Mat. 1966;  1, 2 373-383
  • 75 Howlett C R, McCartney E, Ching W. The effect of silicon nitride ceramic on rabbit skeletal cells and tissues.  Clin Orthop. 1989;  244 293-304
  • 76 Imola M J, Hamlar D D, Shao W. et al . Resorbable plate fixation in pediatric craniofacial surgery.  Arch Facial Plast Surg. 2001;  3 79-90
  • 77 Islamoglu K, Coskunfirat O K, Tetik G, Ozgentas H E. Complications and removal rates of miniplates and screws used for maxillofacial fractures.  Ann Plast Surg. 2002;  48 265-268
  • 78 Jacobs J J, Skipor A J, Black J. et al . Release and excretion of metal in patients who have a total hip replacement component made of titanium alloy.  J Bone Joint Surg Am. 1991;  73 1475-1486
  • 79 Jahnke K. Ceramics in reconstructive surgery of the anterior skull base and the facial bones. In: Myers EN, Hrsg New dimensions in otorhinolaryngology head and neck surgery. Vol. 2. Amsterdam; Elsevier Science Publishers B.V 1985: 185-186
  • 80 Jahnke K, Plester D, Heimke G. Al2O3-ceramic, a bioinert material in middle ear surgery.  Arch Otorhinolaryngol. 1979;  223 373-376
  • 81 Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics.  Clin Orthoped. 1981;  157 259-278
  • 82 Jennissen H P. Accelerated and improved osteointegration of implants biocoated with bone morphogenetic protein 2 (BMP-2).  Ann N Y Acad Sci. 2002;  961 39-142
  • 83 Katou F, Andoh N, Motegi K. et al . Immuno-inflammatory responses in the tissue adjacent to titanium miniplates used in the treatment of mandibular fractures.  J Craniomaxillofac Surg. 1996;  24 155-162
  • 84 Kessler P, Hardt N. Erfahrungen mit dem Micro-Titanmesh bei der Rekonstruktion von Defekten im Kieferhöhlenbereich.  Dtsch Z Mund Kiefer GesichtsChir. 1996;  20 55-59
  • 85 Kline R M, Wolfe S A. Complications associated with the harvesting of cranial bone grafts.  Plast Reconstr Surg. 1995;  95 5-13
  • 86 Kosaka M, Uemura F, Tomemori S. et al . Scanning electron microscopic observations of ‘fractured’ biodegradable plates and screws.  J Craniomaxillofac Surg. 2003;  31 10-14
  • 87 Kramer F J, Sinikovic B, Mueller M. et al . Experimental application of a biomaterial in bifocal transport osteogenesis for craniofacial reconstruction.  J Craniomaxillofac Surg. 2008;  36 218-226
  • 88 Kue R, Sohrabi A, Nagle D. et al . Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs.  Biomaterials. 1999;  20 1195-1201
  • 89 Kuhne J H, Bartl R, Frisch B. et al . Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits.  Acta Ortop Scand. 1994;  65 246-252
  • 90 Kulkarni R K, Pani K C, Neumann C. et al . Polylactid acid for surgical implants.  Arch Surg. 1966;  93 839-843
  • 91 Kulkarni R K, Moore E G, Hegyeli A F. et al . Biodegradable poly(lactic acid)polymers.  J Biomed Mat Res. 1971;  5 169-181
  • 92 Kumar A V, Staffenberg D A, Petronio J A. et al . Bioabsorbable plates and screws in pediatric craniofacial surgery: A review of 22 cases.  J Craniofac Surg. 1997;  8 97-99
  • 93 Kuttenberger J J, Hardt N. Long-term results following reconstruction of craniofacial defect with titanium micro-mesh system.  J Craniomaxillofac Surg. 2001;  29 75-81
  • 94 Kveton J F, Friedman C D, Costantino P D. Indications for hydroxyapatite cement reconstruction in lateral skull base surgery.  Am J Otol. 1995;  16 465-469
  • 95 Lee C, Antonshyn O M, Forrst C R. Cranioplasty: indications, technique, and early results of autogenous split skull cranial vault reconstruction.  J Craniomaxillofac Surg. 1995;  23 133-142
  • 96 LeGeros R Z. Properties of osteoconductive biomaterials. Calcium phosphates.  Clin Ortop. 2002;  395 81-98
  • 97 Lewis C G, Belniak R M, Plowman M C. et al . Intraarticular carcinogenesis bioassays of CoCrMo and TiAlV alloys in rats.  J Arthroplasty. 1995;  10 75-82
  • 98 Louis P J, Gutta R, Said-Al-Naief N. et al . Reconstruction of the maxilla and mandible with particulate bone graft and titanium mesh for implant placement.  J Oral Maxillofac Surg. 2008;  66 235-245
  • 99 Luhr H G. Zur stabilen Osteosynthese bei Unterkieferfrakturen.  Dtsch Zahnärztl Z. 1968;  23 754
  • 100 Luhr H G. A micro-system for cranio-maxillofacial skeletal fixation.  J Craniomaxillofac Surg. 1988;  16 312-314
  • 101 Luhr H G. Indications for use of a microsystem for internal fixation in craniofacial surgery.  J Craniofac surg. 1990;  1 35-52
  • 102 Macewen W. Illustrative cases of cerebral surgery.  Lancet. 1885;  1 881-883
  • 103 Manson P N, Crawley W A, Hoopes J E. Frontal cranioplasty: risk factors and choice of cranial vault reconstructive material.  Plast Reconstr Surg. 1986;  77 888-900
  • 104 Marks S C, Popoff S N. Bone cell biology: The regulation of development, structure, and function in the skeleton.  Am J Anat. 1988;  183 1-44
  • 105 Mathur K K, Tatum S A, Kellman R M. Carbonated apatite and hydroxyapatite in craniofacial reconstruction.  Arch Facial Plast Surg. 2003;  5 379-383
  • 106 Matic D, Manson P. Biomechanical analysis of hydroxyapatite cement cranioplasty.  J Craniofac Surg. 2003;  15 415-422
  • 107 Merritt K, Margevicius R W, Brown S A. Storage and elimination of titanium, aluminum, and vanadium salts, in vivo.  J Biomed Mater Res. 1992;  26 1503-1515
  • 108 Mellonig J T, Prewett A B, Moyer M P. HIV inactivation in a bone allograft.  J Periodontol. 1992;  63 979-983
  • 109 Montague A, Merritt K, Brown S. et al . Effects of Ca and H2O2 added to RPMI on the fretting corrosion of Ti6Al4V.  J Biomed Mater Res. 1996;  32 519-526
  • 110 Moreira-Gonzales A, Jackson I T, Miiyawaki T. et al . Clinical outcome in cranioplasty: Critical review in long-term follow-up.  J Craniofac surg. 2003;  14 144-153
  • 111 Murthy A S, Lehman J A . Symptomatic plate removal in maxillofacial trauma: a review of 76 cases.  Ann Plast Surg. 2005;  55 603-607
  • 112 Myshin H L, Wiens J P. Factors affecting soft tissue around dental implants: a review of the literature.  J Prosthet Dent. 2005;  94 440-444
  • 113 Nestle B, Knebel C, Cornelius C P. Kraniofaziale Techniken in der Traumatologie.  Mund Kiefer Gesichtschir. 1998;  2 (Suppl 2) 63-65
  • 114 Neumann A, Schultz-Coulon H J. Obliteration of the frontal sinus with reconstruction of the facial contour using hydroxyapatite cement. In: Jahnke K, Fischer M, Hrsg 4th European Congress of Oto-Rhino-Laryngology Head and Neck Surgery. Monduzzi Editore S. p. A 2000: 1121-1124
  • 115 Neumann A, Reske T, Held M. et al . Comparative investigation of the biocompatibility of various silicon nitride ceramic qualities in vitro.  J Mat Sci: Mat Med. 2004;  15 1135-1140
  • 116 Neumann A, Kramps M, Ragoß C. et al . Histological and microradiographic appearances of Silicon Nitride and Aluminum Oxide in a rabbit femur implantation model.  Mat Wiss Werkstofftech. 2004;  35 569-573
  • 117 Neumann A, Unkel C, Werry C. et al . Prototype of a silicon nitride ceramic-based miniplate osteofixation system for the midface.  Otolaryngol Head Neck Surg. 2006;  134 923-930
  • 118 Neumayer B. Einige grundlegende Gedanken zur Optimierung von Osteosynthese-Miniplatten aus Titan.  Dtsch Z Mund Kiefer Gesichtschir. 1991;  15 265-270
  • 119 Peltola M J, Suonpää J, Aitasalo K MJ. et al . Obliteration of frontal sinus with bioactive glass.  Head Neck. 1998;  20 315-319
  • 120 Peltola M J, Aitasalo K MJ, Suonpää J TK. et al . Frontal sinus and skull bone defect obliteration with three synthetic bioactive materials: A comparative study.  J Biomed Mater Res B Appl Biomater. 2003;  66 364-372
  • 121 Pennekamp P H, Gessmann J, Diedrich O. et al . Short-term microvascular response of striated muscle to cp-Ti, Ti-6Al-4V, and Ti-6Al-7Nb.  J Orthop Res. 2006;  24 531-540
  • 122 Peters F, Reif D. Functional materials for bone regeneration from beta-tricalcium phosphate.  Matwiss Werkstoftech. 2004;  35 203-207
  • 123 Pietrzak W S, Sarver D R, Verstynen M L. Bioresorbable polymer science for the practicing surgeon.  J Craniofac Surg. 1997;  8 87-91
  • 124 Pistner H, Reuther E, Reinhart N. et al . Neuer Hydroxylapatitzement für die kraniofaziale Chirurgie.  Mund Kiefer Gesichtschir. 1998;  2 (Suppl 2) 37-40
  • 125 Plester D, Jahnke K. Ceramic implants in otologic surgery.  Am J Otol. 1981;  3 104-108
  • 126 Por Y C, Barceloacute C R, Salyer K E. et al . Bone generation in the reconstruction of a critical size calvarial defect in an experimental model.  J Craniofac Surg. 2008;  19 383-392
  • 127 Rae T. The biological response to titanium and titanium-aluminium-vanadium alloy particles. I – tissue culture studies. II – long term animal studies.  Biomaterials. 1986;  7 30-40
  • 128 Rallis G, Mourouzis C, Papakosta V. et al . Reasons for miniplate removal following maxillofacial trauma: a 4-year study.  J Craniomaxillofac Surg. 2006;  34 435-439
  • 129 Robinson P A. The historical background of internal fixation of fractures in North America.  Bull Hist Med. 1978;  52 355-382
  • 130 Rosenlicht J L, Tarnow D P. Human histologic evidence of integration of functionally loaded hydroxyapatite-coated implants placed simultaneously with sinus augmentation: a case report 2 1 / 2 years postplacement.  J Oral Implantol. 1999;  25 7-10
  • 131 Rubin J P, Yaremchuk M J. Complications and toxicities of implantable biomaterials used in facial reconstructive and aesthetic surgery: A comprehensive review of the literature.  Plast Reconstr Surg. 1997;  100 1336-1353
  • 132 Salyer K E, Gendler E, Menendez J L. et al . Demineralized perforated bone implants in craniofacial surgery.  J Craniofac Surg. 1992;  3 55-62
  • 133 Schipper J, Ridder G J, Spetzger U. et al . Individual prefabricated titanium implants and titanium mesh in skull base reconstructive surgery. A report of cases.  Eur Arch Otorhinolaryngol. 2004;  261 282-290
  • 134 Schmitz J P, Hollinger J O, Milam S B. Reconstruction of bone using calcium phosphate cements: a critical review.  J Oral Maxillofac Surg. 1999;  57 1122-1126
  • 135 Shang Q, Wang Z, Liu W. et al . Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells.  J Craniofac Surg. 2001;  12 586-593
  • 136 Shumrick K A, Smith C P. The use of cancellous bone for frontal sinus obliteration and reconstruction of frontal bony defects.  Arch Otolaryngol Head Neck Surg. 1994;  120 1003-1009
  • 137 Siebert H, Schleier P, Beinemann J. et al . Evaluierung individueller, in der CAD/CAM-Technik gerfertigter Bioverit®-Keramik-Implantate zur Wiederherstellung mehrdimensionaler kraniofazialer Defekte am menschlichen Schädel.  Mund Kiefer Gesichtschir. 2006;  10 185-191
  • 138 Siegert R. Metallimplantate in der Kopf- und Halschirurgie.  Eur Arch Oto Rhino Laryngol. 1992;  Suppl 1 97-107
  • 139 Solar R J, Pollak S R, Korostoff E. In vitro corrosion testing of titanium surgical implant alloys: an approach to understanding titanium release from implants.  J Biomed Mat Res. 1979;  13 217-221
  • 140 Spiessl B. Erfahrungen mit dem AO-Besteck bei Kieferbruchbehandlungen.  Schweiz Mschr Zahnmed. 1969;  79 112-113
  • 141 Steinhart H, Schroeder H G. Müssen Osteosyntheseplatten im Gesichtsschädelbereich wieder entfernt werden? Ergebnisse experimenteller und klinischer Untersuchungen.  HNO. 1995;  43 211-215
  • 142 Surpure S J, Smith K S, Sullivan S M. et al . The use of a resorbable plating system for treatment of craniosynostosis.  J Oral Maxillofac Surg. 2001;  59 1271-1275
  • 143 Taguchi Y, Pereira B P, Kour B P. et al . Autoclaved autograft bone combined with vascularized bone and bone marrow.  Clin Orthop. 1995;  320 220-230
  • 144 Takamura K, Hayashi K, Ishinishi N. et al . Evaluation of carcinogenicity and chronic toxicity associated with orthopedic implants in mice.  J Biomed Mater Res. 1994;  28 583-589
  • 145 Tessier P, Kawamoto H, Matthews D. et al . Autogenous bone grafts and bone substitutes – tools and techniques: I. A. 20 000-case experience in maxillofacial and craniofacial surgery.  Plast Reconstr Surg. 2005;  116 (Suppl.) 6S-24S
  • 146 Thiele A, Bilkenroth U, Blocing M. et al . Fremdkörperreaktion nach Implantation eines biokompatiblen Osteosynthesesystems.  HNO. 2008;  56 545-548
  • 147 Thomas P, Schuh A, Ring J. et al . Gemeinsame Stellungnahme des Arbeitskreises Implantatallergie (AK 20) der Deutschen Gesellschaft für Orthopädie und Orthopädische Chirurgie, der Deutschen Kontaktallergie Gruppe und der Deutschen Gesellschaft für Allergologie und Klinische Immunologie.  Hautarzt. 2008;  59 220-229
  • 148 Törmälä P. Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties.  Clin Mater. 1992;  10 29-24
  • 149 Traykova T, Böttcher R, Neumann H G. et al . Silica/Calzium phosphate sol-gel derived bone grafting material from animal tests to first clinical experience.  Key Engin Mat. 2004;  411 679-682
  • 150 Trinchi V, Nobis M, Cecchele D. Emission spectrophotometric analysis of titanium, aluminum, and vanadium levels in the blood, urine, and hair of patients with total hip arthroplasties.  Ital J Orthop Traumatol. 1992;  18 331-339
  • 151 Turvey T A, Bell R B, Phillips C. et al . Self-reinforced biodegradable screw fixation compared with titanium screw fixation advancement.  J Oral Maxillofac Surg. 2006;  64 40-46
  • 152 Vainionpää S, Kilpikari J, Laiho J. et al . Strength and strength retention in vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation.  Biomaterials. 1987;  8 46-48
  • 153 Verret D J, Dudic Y, Oxford L. et al . Hydroxyapatite cement in craniofacial reconstruction.  Otolaryngol Head Neck Surg. 2005;  133 897-899
  • 154 Vert M, Chabot F, Leray J. et al . Stereoregular bioresorbable polyesters for orthopaedic surgery.  Macromol Chem Suppl. 1981;  5 30-41
  • 155 Vert M, Christel P, Chabot F. et al .Bioresorbable plastic material for bone surgery. [Chapter 6]. In: Hastings GW, Ducheyne P, Hrsg Macromolecular biomaterials. Boca Raton, Florida; CRC Press, Inc 1984: 119-142
  • 156 Wang J Y, Wicklund B H, Gustilo R B. et al . Prosthetic metals impair murine immune response and cytokine release in vivo and in vitro.  J Orthop Res. 1997;  15 688-699
  • 157 Warnke P H, Springer I NG, Wiltfang J. et al . Growth and transplantation of a custom vascularized bone graft in a man.  Lancet. 2004;  364 766-770
  • 158 Weber R, Draf W, Kahle G. et al . Obliteration of the frontal sinus: state of the art an reflections on new materials.  Rhinology. 1999;  37 1-15
  • 159 Weiler A, Helling H J, Kirch U. et al . Tierexperimentelle Langzeituntersuchung über Fremdkörperreaktionen und Osteolysen nach Verwendung von Polyglykolidimplantaten.  Unfallchirurg. 1998;  265 156-159
  • 160 Wellisz T, Kanel G, Anooshian R V. Characteristics of the tissue response to Medpor porous polyethylene implants in the human facial skeleton.  J Long Term Eff Med Implants. 1993;  3 223-235
  • 161 White R J, Yashon D, Albin M S. et al . Delayed acrylic reconstruction of the skull in craniocerebral trauma.  J Trauma. 1970;  10 780-786
  • 162 Wiltfang J, Merten H A, Becker H J. et al . The resorbable miniplate system Lactosorb in a growing cranio-osteoplasty animal model.  J Craniomaxillofac Surg. 1999;  27 207-210
  • 163 Woodman J L, Black J, Nunamaker D M. Release of cobalt and nickel from a new total finger joint prosthesis made of vitallium.  J Biomed Mat Res. 1983;  17 655-668
  • 164 Wolfe S A. Diskussion zu Aitasalo KMJ, Peltola MJ. Bioactive glass hydroxyapatite in fronto-orbital defect reconstruction.  Plast Reconstr Surg. 2007;  120 1973-1974
  • 165 Yaremchuk M J. Facial skeletal reconstruction using porous polyethylene implants.  Plast Reconstr Surg. 2003;  111 1818-1827
  • 166 Younger E M, Chapman M W. Morbidity at bone graft donor sites.  J Orthop Trauma. 1989;  3 192-195
  • 167 Zins J E, Moreira-Gonzalez A, Papay F A. Use of calcium-based bone cements in the repair of large, full-thickness cranial defects: a caution.  Plast Reconstr Surg. 2007;  120 1332-1342 Erratum in: Plast Reconstr Surg 2008; 121: 347
  • 168 Zins J E, Moreira-Gonzales A, Parikh A. et al . Biomechanical and histologic evaluation of the Norian craniofacial repair system and Norian craniofacial repair system fast set putty in the long-term reconstruction of full-thickness skull defects in a sheep model.  Plas Reconstr Surg. 2008;  121 271e-282e
  • 169 Zhou A J, Peel S A, Clokie C M. An evaluation of hydroxyapatite and biphasic calcium phosphate in combination with Pluronic F127 and BMP on bone repair.  J Craniofac Surg. 2007;  18 1264-1275 Erratum in: J Craniofac Surg 2008; 19: 871

Priv.-Doz. Dr. med. Andreas Neumann

Klinik für Hals-, Nasen-, Ohrenheilkunde, Kopf- und Halschirurgie, Plastische und ästhetische Operationen, Stimm- und Sprachstörungen
Städtische Kliniken Neuss Lukaskrankenhaus GmbH

Preußenstraße 84
41464 Neuss

Email: aneumann@lukasneuss.de

    >